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Abstract

The current generation of intelligent assistants
require explicit user requests to perform tasks
or services, often leading to lengthy and com-
plex conversations. In contrast, human assis-
tants can infer multiple implicit intents from
utterances via their commonsense knowledge,
thereby simplifying interactions. To bridge this
gap, this paper proposes a framework for multi-
domain dialogue systems. This framework au-
tomatically infers implicit intents from user ut-
terances, and prompts a large pre-trained lan-
guage model to suggest suitable task-oriented
bots. By leveraging commonsense knowledge,
our framework recommends associated bots in
a zero-shot manner, enhancing interaction ef-
ficiency and effectiveness. This approach sub-
stantially reduces interaction complexity, seam-
lessly integrates various domains and tasks, and
represents a significant step towards creating
more human-like intelligent assistants that can
reason about implicit intents, offering a supe-
rior user experience.1

1 Introduction

Intelligent assistants have become increasingly pop-
ular in recent years, but they require users to explic-
itly describe their tasks within a single domain. Yet,
the exploration of gradually guiding users through
individual task-oriented dialogues has been rela-
tively limited (Chiu et al., 2022). This limitation
is amplified when tasks extend across multiple do-
mains, compelling users to interact with numerous
bots to accomplish their goals (Sun et al., 2016).
For instance, planning a trip might involve inter-
acting with one bot for flight booking and another
for hotel reservation, each requiring distinct, task-
specific intentions like “Book a flight ticket” to
activate the corresponding bot, such as an airline
bot. In contrast, human assistants can manage high-
level intentions spanning multiple domains, utiliz-

1Code: http://github.com/MiuLab/ImplicitBot.

ing commonsense knowledge. This approach ren-
ders conversations more pragmatic and efficient, re-
ducing the user’s need to deliberate over each task
separately. To overcome this limitation of current
intelligent assistants, we present a flexible frame-
work capable of recommending task-oriented bots
within a multi-domain dialogue system, leveraging
commonsense-inferred implicit intents as depicted
in Figure 1.

Multi-Domain Realization Sun et al. (2016) pin-
pointed the challenges associated with a multi-
domain dialogue system, such as 1) comprehend-
ing single-app and multi-app language descriptions,
and 2) conveying task-level functionality to users.
They also gathered multi-app data to encourage
research in these directions. The HELPR frame-
work (Sun et al., 2017) was the pioneering attempt
to grasp users’ multi-app intentions and conse-
quently suggest appropriate individual apps. Nev-
ertheless, previous work focused on understanding
individual apps based on high-level descriptions
exclusively through user behaviors, necessitating a
massive accumulation of personalized data. Due to
the lack of paired data for training, our work lever-
ages external commonsense knowledge to bridge
the gap between high-level utterances and their
task-specific bots. This approach enables us to
consider a broad range of intents for improved gen-
eralizability and scalability.

Commonsense Reasoning Commonsense rea-
soning involves making assumptions about the
nature and essence of typical situations humans
encounter daily. These assumptions encompass
judgments about the attributes of physical objects,
taxonomic properties, and individuals’ intentions.
Existing commonsense knowledge graphs such as
ConceptNet (Bosselut et al., 2019), ATOMIC (Sap
et al., 2019), and TransOMCS (Zhang et al., 2021)
facilitate models to reason over human-annotated
commonsense knowledge. This paper utilizes a
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I want to plan a trip to Seattle.

User High-Level Intention Utterance

Sure. I want to fly on July 1st and back on July 15th.

[AirlineBot] can book a flight ticket for you. Do you want to set the travel dates?

[HotelBot] can reserve a room for you. Do you want to specify your preference?

Here are the flights: …

Oh, yes. Search the 5-star hotel for 2 people at that period.

Here are the 5-star hotels with available rooms: …

AirlineBot (Flight Ticket Booking), HotelBot (Room Reservation)

Implicit Tasks/Intents

AirlineBot

HotelBot

Figure 1: Illustration of a multi-task dialogue example.

generative model trained on ATOMIC20
20 (Hwang

et al., 2021) to predict potential intents linking
given user high-level utterances with corresponding
task-oriented bots. The inferred intents can activate
the relevant task-oriented bots and also serve as
justification for recommendations, thereby enhanc-
ing explainability. This work is the first attempt
to integrate external commonsense relations with
task-oriented dialogue systems.

Zero-Shot Prompting Recent research has re-
vealed that large language models (Radford et al.,
2019; Brown et al., 2020) have acquired an as-
tounding ability to perform few-shot tasks by us-
ing a natural-language prompt and a handful of
task demonstrations as input context (Brown et al.,
2020). Guiding the model with interventions via an
input can render many downstream tasks remark-
ably easier if those tasks can be naturally framed as
a cloze test problem through language models. As
a result, the technique of prompting, which trans-
poses tasks into a language model format, is in-
creasingly being adopted for different tasks (Zhao
et al., 2021; Schick and Schütze, 2021). Without
available data for prompt engineering (Shin et al.,
2020), we exploit the potential of prompting for
bot recommendation in a zero-shot manner. This
strategy further extends the applicability of our
proposed framework and enables it to accommo-
date a wider variety of user intents and tasks, thus
contributing to a more versatile and efficient multi-
domain dialogue system.

2 Framework

Figure 2 illustrates our proposed two-stage frame-
work, which consists of: 1) a commonsense-
inferred intent generator, and 2) a zero-shot bot
recommender. Given a user’s high-level intention

utterance, the first component focuses on gener-
ating implicit task-oriented intents. The second
component then utilizes these task-specific intents
to recommend appropriate task-oriented bots, con-
sidering the bots’ functionality through a large pre-
trained language model.

2.1 Commonsense-Inferred Intent Generation

The commonsense-inferred implicit intents func-
tion not only as prompts for bot recommendation
but also as rationales for the suggested bots, thereby
establishing a solid connection between the high-
level intention and task-oriented bots throughout
the conversation. For instance, the multi-domain
system shown in Figure 1 recommends not only
the AirlineBot but also describes its functionality—
“can book a flight ticket”—to better convince the
user about the recommendation.

2.1.1 Relation Trigger Selection

ATOMIC20
20 is a commonsense knowledge graph

featuring commonsense relations across three cat-
egories: social-interaction, event-centered, and
physical-entity relations, all of which concern sit-
uations surrounding a specified event of interest.
Following Hwang et al. (2021), we employ a
BART model (Lewis et al., 2020) pre-trained on
ATOMIC20

20 to generate related entities and events
based on the input sentence. However, despite hav-
ing a total of 23 commonsense relations, not all
are suitable for inferring implicit intents in assis-
tant scenarios. We utilize AppDialogue data (Sun
et al., 2016) to determine which commonsense re-
lations can better trigger the task-specific intents.
Given a high-level intention description ui and its
task-specific sentences sij , we calculate the trig-
ger score of each relation r as an indicator of its
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We are planning to celebrate 

friend’s birthday at a restaurant.

User High-Level Intention

ATOMIC20
20

xIntent

xNeed

xWant

isAfter LLM

Task-Oriented 

Prompt

Implicit Intent

Commonsense 

Knowledge 

Graph

have a good time

celebrate a birthday

go to the restaurant

make a reservation

buy a gift

:

OpenTable

Task-Oriented 

Bot

Commonsense-Inferred Intent Generation

The user … by using 

a popular app called

isBefore

Commonsense 

Knowledge

Generation

Relation Trigger Selection

Zero-Shot Bot Recommendation

Figure 2: Our zero-shot framework for triggering task-oriented bots via the commonsense-inferred prompts.

Relation Definition

So
ci

al

xIntent the likely intent or desire of an agent (X)
behind the execution of an event

“X gives Y gifts” → X wanted “to be thoughtful”

xNeed a precondition for X achieving the event
“X gives Y gifts” → X must first “buy the presents”

xWant post-condition desires on the part of X
“X gives Y gifts” → X may also desire “to hug [Y]”

E
ve

nt

isAfter events that can precede an event
“X is in a hurry to get to work” → “X wakes up late”

isBefore events that can follow an event
“X is in a hurry to get to work” → “X drives too fast”

Table 1: Selected relations from ATOMIC20
20.

suitability as a trigger relation.

T (r) =
∑

i

∑

j

PBART ([ui, r, sij ]), (1)

where PBART ([ui, r, sij ]) represents the probabil-
ity of the sentence beginning with the high-level
user description ui, followed by a relation trigger r,
and the corresponding task-specific sentences sij .
By summing up multiple task-specific sentences
over j and all samples over i, a higher T (r) im-
plies that the relation r can better trigger implicit
task-oriented intents in assistant scenarios.

We identify a total of five relations with the high-
est T (r) and present their definitions (Sap et al.,
2019) in Table 1. These relations are also reason-
able from a human perspective to trigger implicit
user intents.

2.1.2 Commonsense Knowledge Generation
Given the selected relations R = {r1, r2, ..., r5},
where ri represents the i-th relation from {xIntent,
xNeed, xWant, isAfter, isBefore}, we concatenate
each relation with a user utterance u to serve as the
context input for our pre-trained BART model:

<s> u ri [GEN] </s>,

where <s> and </s> are special tokens in BART,
and [GEN] is a unique token employed during the
pre-training of BART to initiate the commonsense-
related events. BART accepts this input and de-
codes the commonsense events into implicit task-
oriented intents Y = y11:k, y

2
1:k, ..., y

5
1:k, where yik

denotes the k-th generated commonsense event of
the relation ri.

2.2 Zero-Shot Bot Recommendation

With the inferred intents, the second component
aims to recommend appropriate bots capable of
executing the anticipated tasks. To pinpoint the
task-specific bots based on the required functional-
ity, we leverage the remarkable capacity of a large
pre-trained language model, assuming that app de-
scriptions form a part of the pre-trained data.

2.2.1 Pre-trained Language Model
The language model used in this study is GPT-J
6B2, an GPT-3-like causal language model trained
on the Pile dataset3 (Radford et al., 2019), a diverse,
open-source language modeling dataset that com-
prises 22 smaller, high-quality datasets combined
together. Making the assumption that app descrip-
tions in mobile app stores are incorporated in the
pre-training data, we exploit the learned language
capability to suggest task-oriented bots based on
the given intents.

2.2.2 Prompting for Bot Recommendation
To leverage the pre-trained language capability of
GPT-J, we manually design prompts for each re-
lation type. For social-interaction relations, the
prompt is formulated as “The user ri y

i
1:k by us-

ing a popular app called”. For instance, Figure 2
generates a prompt “The user needs to go to the
restaurant and make the reservation by using a pop-
ular app called”. For event-centered relations, we

2https://huggingface.co/EleutherAI/gpt-j-6B
3https://pile.eleuther.ai/
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Method Precision Recall F1 Human Score (Mean±STD)

1-Stage Prompting Baseline 30.3 20.6 23.7 1.73±1.03
2-Stage Prompting (GPT-3) 28.6 41.7 31.8 2.11±0.46
Proposed 2-Stage (COMeT) 36.0 35.7 32.9 2.18±0.34
Proposed 2-Stage (COMeT) w/o Reasons - - - 2.15±0.35

Gold 2.44±0.27

Table 2: Evaluation scores (%).

User Input We are planning to celebrate friend’s birthday at a restaurant in [City]. Score
User-labeled Line (Communication), Google Maps (Maps & Navigation), Calendar (Productivity) 2.25
1-Stage Prompting Tinder (Lifestyle), Grindr (Lifestyle) 1.83
2-Stage Prompting Zomato can help to book the restaurant in advance. 2.00

WhatsApp can find out about their contact information.

Proposed 2-Stage WhatsApp can help have a good time and to celebrate a friend’s birthday 2.67
OpenTable can help book a table at the restaurant and go to the restaurant.

w/o Reasons WhatsApp (Communication), OpenTable (Food & Drink) 2.17

Table 3: Generated results for given user high-level descriptions.

simply concatenate the generated events and app-
prompt to trigger the recommended task-oriented
apps/bots.

3 Experiments

To evaluate the zero-shot performance of our pro-
posed framework, we collected a test set specific to
our multi-domain scenarios. We recruited six vol-
unteers who were knowledgeable about the target
scenarios to gather their high-level intention utter-
ances along with the associated task-oriented bots.
Upon filtering out inadequate data, our test set in-
corporated a total of 220 task-oriented bots and 92
high-level utterances, each linked with an average
of 2.4 bots. The number of bot candidates consid-
ered in our experiments is 6,264, highlighting the
higher complexity of our tasks.

Our primary aim is to connect a high-level inten-
tion with its corresponding task-oriented bot rec-
ommendation by leveraging external commonsense
knowledge. Therefore, we assess the effectiveness
of the proposed methodology and compare it with
a 1-stage prompting baseline using GPT-J to main-
tain fairness in comparison. For this baseline, we
perform simple prompting on the user’s high-level
utterance concatenating with a uniform app-based
prompt: “so I can use some popular apps called.”
In response to these context prompts, GPT-J gener-
ates the associated (multiple) app names, serving
as our baseline results.

To further investigate whether our proposed
commonsense-inferred implicit intent generator
is suitable for our recommendation scenarios, we

introduce another 2-stage prompting baseline for
comparison. Taking into account that contempo-
rary large language models exhibit astonishing pro-
ficiency in commonsense reasoning, we substitute
our first component with the state-of-the-art GPT-
3 (Brown et al., 2020) to infer implicit intents, serv-
ing as another comparative baseline.

3.1 Automatic Evaluation Results

Considering that multiple bots can fulfill the same
task (functionality), we represent each app by its
category as defined on Google Play, then compute
precision, recall, and F1 score at the category level.
This evaluation better aligns with our task objec-
tive; for instance, both “WhatsApp” and “Line” be-
long to the same category—“communication” as
demonstrated in Table 3.

Table 2 presents that the 2-stage methods signifi-
cantly outperform the 1-stage baseline, suggesting
that commonsense knowledge is useful to bridge
high-level user utterances with task-oriented bots.
Further, our proposed approach, which leverages
external commonsense knowledge, achieves supe-
rior precision over GPT-3, a quality that is more
important in recommendation scenarios. The rea-
son is that GPT-3 may generate hallucinations for
inferring more diverse but may not suitable intents.

3.2 Human Evaluation Results

Given that our goal can be interpreted as a recom-
mendation task, the suggested bots different from
user labels can be still reasonable and useful to
users. Therefore, we recruited crowd workers from
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Method Win Lose Tie

Ours vs. 2-Stage Prompt (GPT-3) 57.6 40.2 2.2
Ours vs. Ours w/o Reasons 55.1 38.8 6.1

Table 4: Pair-wise human preference results (%).

Amazon Mechanical Turk (AMT) to evaluate the
relevance of each recommended result given its
high-level user utterance. Each predicted bot or app
is assessed by three workers on a three-point scale:
irrelevant (1), acceptable (2), and useful (3). The
human-judged scores are reported in the right part
of Table 2, and our proposed framework achieves
the average score of 2.18, implying that most rec-
ommended tasks are above acceptable. Compared
with the 1-stage baseline with a score below 2, it
demonstrates that commonsense inferred implicit
intents can more effectively connect the reasonable
task-oriented bots. Considering that the score of
2-stage prompting is also good, we report the pair-
wise comparison in Table 4, where we can see that
humans prefer ours to 2-stage prompting baseline
for 57% of the data.

In additon to simply suggesting task-oriented
bots, providing the rationale behind their recom-
mendation could help users better judge their utility.
Within our proposed framework, the commonsense-
inferred implicit intents, which are automatically
generated by the first component, can act as the ex-
planations for the recommended task-oriented bots,
as illustrated in Table 3. Consequently, we provide
these rationales alongside the recommended results
using the predicted intents and undergo the same
human evaluation process. Table 4 validates that
providing these justifications results in improved
performance from a human perspective, further
suggesting that commonsense-inferred intents are
useful not only for prompting task-oriented bots
but also for generating human-interpretable recom-
mendation.

4 Discussion

Table 5 showcases the implicit intents generated
by our proposed COMeT generator and GPT-3. It
is noteworthy that GPT-3 occasionally produces
hallucinations, which can render the recommended
bots unsuitable. For instance, given the text prompt
“My best friend likes pop music.”, GPT-3 infers an
intent to “buy a ticket to see Justin Bieber”, which
may not align accurately with the user’s need.

Hence, our experiments reveal that while the

Generated Intent Example

Input My best friend likes pop music.

COMet Want → to listen to music
Intent → to be entertained
Need → to listen to music

GPT-3 Want → to get her tickets to see Justin Bieber
for her birthday
Intent → to buy her a CD by Taylor Swift for
her birthday
Need → to find songs that are pop and appro-
priate for her

Input I am looking for a job.

COMet Want → to apply for a job
Intent → to make money
Need → to apply for a job

GPT-3 Want → to learn more
Intent → to apply for a job
Need → to update my resume

Table 5: Generated commonsense-inferred intents.

2-stage prompting achieves higher recall, its pre-
cision is lower. As our objective is to recommend
reasonable task-specific bots, a higher precision is
more advantageous in our scenarios.

5 Conclusion

This paper introduces a pioneering task centered
around recommending task-oriented dialogue sys-
tems solely based on high-level user intention ut-
terances. The proposed framework leverages the
power of commonsense knowledge to facilitate
zero-shot bot recommendation. Experimental re-
sults corroborate the reasonability of the recom-
mended bots through both automatic and human
evaluations. Experiments show that the recom-
mended bots are reasonable for both automatic
and human evaluation, and the inferred intents can
provide informative and interpretable rationales to
better convince users of the recommendation for
practical usage. This innovative approach bridges
the gap between user high-level intention and ac-
tionable bot recommendations, paving the way for
a more intuitive and user-centric conversational AI
landscape.

Limitations

This paper acknowledges three main limitations:
1) the constraints of a zero-shot setting, 2) an un-
certain generalization capacity due to limited data
in the target task, and 3) the longer inference time
required by a large language model.

Given the absence of data for our task and the
complexity of the target scenarios, collecting a
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large dataset for supervised or semi-supervised
learning presents a significant challenge. As the
first approach tackling this task, our framework per-
forms the task in a zero-shot manner, but is applica-
ble to fine-tuning if a substantial dataset becomes
available. Consequently, we expect that future re-
search could further train the proposed framework
using supervised learning or fine-tuning, thereby
enhancing the alignment of inferred implicit in-
tents and recommended bots with training data.
This would expand our method to various learning
settings and validate its generalization capacity.

Conversely, the GPT-J model used for recom-
mending task-oriented bots is considerably large
given academic resources, thereby slowing down
inference speed. To mitigate this, our future work
intends to develop a lightweight student model that
accelerates the prompt inference process. Such a
smaller language model could not only expedite the
inference process to recommend task-oriented bots
but also be conveniently fine-tuned using collected
data.

Despite these limitations, this work can be con-
sidered as the pioneering attempt to leverage com-
monsense knowledge to link task-oriented intents.
The significant potential of this research direction
is evidenced within this paper.

Ethics Statement

This work primarily targets the recommendation of
task-oriented bots, necessitating a degree of person-
alization. To enhance recommendation effective-
ness, personalized behavior data may be collected
for further refinement. Balancing the dynamics be-
tween personalized recommendation and privacy
is a critical consideration. The data collected may
contain subjective annotations, and the present pa-
per does not dive into these issues in depth. Future
work should address these ethical considerations,
ensuring an balance between personalized recom-
mendations and privacy preservation.
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A Implementation Details

In our zero-shot bot recommendation experiments,
which are evaluated using Android apps based on
RICO data (Deka et al., 2017), we append the
phrase “in Android phone” to all prompts. This
helps guide the resulting recommendations. Task-
oriented prompts are fed into GPT-J to generate
token recommendations for bots/apps, such as
“OpenTable”, an Android app, which aligns better
with our evaluation criteria.

In the 2-stage prompting baseline, our prompts
for GPT-3, designed to generate commonsense-
related intents, are coupled with our selected re-
lations to ensure a fair comparison. These prompts
are outlined in Table 6.

B Reproducibility

To enhance reproducibility, we release our data and
code. Detailed parameter settings employed in our
experiments are as follows.

In commonsense knowledge generation, we
apply beam search during generation, setting
beam_size=10. In prompting for bot recommen-
dation, a sampling strategy is implemented during
recommendation generation, with max_length=50,
temperature=0.01, and top_p=0.9.

Relation GPT-3 Prompt

So
ci

al xIntent so I intend

xNeed so I need

xWant so I want

E
ve

nt isAfter Before, the user needs to

isBefore After, the user needs to

Table 6: Designed prompts of GPT-3. The prompts are
converted from selected relations of ATOMIC20

20 for a
fair comparison.

C Crowdsourcing Interface

Figure 3 and 4 display annotation screenshots for
both types of outputs. Workers are presented with a
recommendation result from 1) user-labeled ground
truth, 2) the baseline, and 3) our proposed method.
Note that results accompanied by reasons originate
only from our proposed method.

D Qualitative Analysis

Table 7 features additional examples from our test
set, highlighting our method’s ability to use com-
monsense knowledge to recommend more appro-
priate apps than the baseline, and broaden user
choices.

In the first example, our method discerns the
user’s financial needs and suggests relevant finan-
cial apps such as Paypal. Conversely, the baseline
method could only associate the user’s needs with
communication apps like WeChat, possibly influ-
enced by the term friend in the high-level descrip-
tion.

In the second example, our method infers poten-
tial user intents about checking their bank account
and purchasing a new notebook, thus recommend-
ing Paypal for bank account management and Ama-
zon for shopping.

In the third example, the user mentions having a
tight schedule. Hence, our method suggests Uber
to expedite the user’s commute to the movie theater
or Netflix for instant access to movies.
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Figure 3: An annotation screenshot of annotating the recommended apps/bots on the Amazon Mechanical Turk,
where the results may come from the ground truth, the baseline, or the proposed method.

Figure 4: An annotation screenshot of annotating the recommended apps/bots together with the predicted intents as
reasons on the Amazon Mechanical Turk.

Data Example

User Input Check if my friend sent the money to me.
User-labeled Bank (Finance), Messenger (Communication)
Baseline WhatsApp (Communication), WeChat (Communication)
Proposed Google Wallet (Finance), WhatsApp (Communication), Paypal (Finance)
Reasons Google Wallet can help check if the money was sent to the right place and check if the money was sent to

the correct place
WhatsApp can help find out where the money came from and find out who sent the money
Paypal can help to give the money to my friend and to give the money to the person who sent it to me

User Input My notebook was broken. I need to get a new one. Check how much money is left in my account.
User-labeled Shopee (Shopping)
Baseline Google Play (Google Play)
Proposed Google Play (Google Play), Amazon (Shopping), Mint (Tools), Paypal (Finance)
Reasons Google Play can help to buy a new one and to buy a new notebook.

Amazon can help to buy a new one and find out how much money is left.
Mint can help to buy a new one and to buy a new notebook.
PayPal can help my credit card is maxed out and my credit card is maxed out and I can’t afford a new one.

User Input I really like watching movie, but my schedule is so tight.
User-labeled Calendar (Productivity), Movies (Entertainment)
Baseline MovieBox (Entertainment)
Proposed WhatsApp (Communication), Netflix (Entertainment), Youtube (Media), Uber (Maps & Navigation)
Reasons WhatsApp can help to be entertained and to have fun.

Netflix can help find a movie to watch and find a movie to watch.
Youtube can help go to the movies and to find a movie to watch.
Uber can help when you have a lot of work to do and have to go to work.

Table 7: Generated results for given user high-level descriptions.
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