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Abstract

This paper studies speculative reasoning task
on real-world knowledge graphs (KG) that con-
tain both false negative issue (i.e., potential
true facts being excluded) and false positive
issue (i.e., unreliable or outdated facts being
included). State-of-the-art methods fall short
in the speculative reasoning ability, as they as-
sume the correctness of a fact is solely deter-
mined by its presence in KG, making them vul-
nerable to false negative/positive issues. The
new reasoning task is formulated as a noisy
Positive-Unlabeled learning problem. We pro-
pose a variational framework, namely nPU-
Graph, that jointly estimates the correctness
of both collected and uncollected facts (which
we call label posterior) and updates model pa-
rameters during training. The label posterior es-
timation facilitates speculative reasoning from
two perspectives. First, it improves the robust-
ness of a label posterior-aware graph encoder
against false positive links. Second, it identifies
missing facts to provide high-quality grounds
of reasoning. They are unified in a simple yet
effective self-training procedure. Empirically,
extensive experiments on three benchmark KG
and one Twitter dataset with various degrees
of false negative/positive cases demonstrate the
effectiveness of nPUGraph.

1 Introduction

Knowledge graphs (KG), which store real-world
facts in triples (head entity, relation, tail entity),
have facilitated a wide spectrum of knowledge-
intensive applications (Wang et al., 2018b; Saxena
et al., 2021; Qian et al., 2019; Wang et al., 2018a,
2022a). Automatically reasoning facts based on
observed ones, a.k.a. Knowledge Graph Reasoning
(KGR) (Bordes et al., 2013), becomes increasingly
vital since it allows for expansion of the existing
KG at a low cost.

Numerous efforts have been devoted to KGR
task (Bordes et al., 2013; Lin et al., 2015; Trouil-
lon et al., 2017; Sun et al., 2019; Li et al., 2021),
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Figure 1: An illustrative example of speculative KG
reasoning. Blue solid lines denote the true positive fact,
blue dashed lines denote the false negative (missing)
fact, and red solid lines denote the false positive (incor-
rect) fact. We aim to mitigate the false negative/positive
issues to enable speculative KG reasoning.

which assume the correctness of a fact is solely
determined by its presence in KG. They ideally
view facts included in KG as positive samples and
excluded facts as negative samples. However, most
real-world reasoning has to be performed based
on sparse and unreliable observations, where there
may be true facts excluded or false facts included.
Reasoning facts based on sparse and unreliable
observations (which we call speculative KG rea-
soning) are still underexplored.

In this paper, we aim to enable the speculative
reasoning ability on real-world KG. The fulfillment
of the goal needs to address two commonly existing
issues, as shown in Figure 1: 1) The false negative
issue (i.e., sparse observation): Due to the graph
incompleteness, facts excluded from the KG can
be used as implicit grounds of reasoning. This is
particularly applicable to non-obvious facts. For ex-
ample, personal information such as the birthplace
of politicians may be missing when constructing a
political KG, as they are not explicitly stated in the
political corpus (Tang et al., 2022). However, it can
be critical while reasoning personal facts like na-
tionality. 2) The false positive issue (i.e., noisy ob-
servation): Facts included in the KG may be unre-
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liable and should not be directly grounded without
inspection. It can happen when relations between
entities are incorrectly collected or when facts are
extracted from outdated or unreliable sources. For
example, Mary Elizabeth is no longer the Prime
Minister of the United Kingdom, which may af-
fect the reasoning accuracy of her current work-
place. These issues generally affect both one-hop
reasoning (Bordes et al., 2013) and multi-hop rea-
soning (Saxena et al., 2021). The main focus of
this paper is investigating the one-hop speculative
reasoning task as it lays the basis for complicated
multi-hop reasoning capability.

Speculative KG reasoning differs from conven-
tional KG reasoning in that the correctness of each
collected/uncollected fact needs to be dynamically
estimated as part of the learning process, such that
the grounds of reasoning can be accordingly cali-
brated. Unfortunately, most existing work, if not
all, lacks such inspection capability. Knowledge
graph embedding methods (Bordes et al., 2013; Lin
et al., 2015; Yang et al., 2014; Trouillon et al., 2017;
Sun et al., 2019) and graph neural network (GNN)
methods (Schlichtkrull et al., 2017; Dettmers et al.,
2018; Nguyen et al., 2018; Vashishth et al., 2020;
Li et al., 2021) can easily overfit the false neg-
ative/positive cases because of their training ob-
jective that ranks the collected facts higher than
other uncollected facts in terms of plausibility. Re-
cent attempts on uncertain KG (Chen et al., 2019;
Kertkeidkachorn et al., 2019) measure the uncer-
tainty scores for facts, which can be utilized to
detect false negative/positive samples. However,
they explicitly require the ground truth uncertainty
scores as supervision for reasoning model training,
which are usually unavailable in practice.

Motivated by these observations, we formu-
late the speculative KG reasoning task as a noisy
Positive-Unlabeled learning problem. The facts
contained in the KG are seen as noisy positive sam-
ples with a certain level of label noise, and the
facts excluded from the KG are treated as unla-
beled samples, which include both negative ones
and possible factual ones. Instead of determining
the correctness of facts before training the reason-
ing model without inspection, we learn the two
perspectives in an end-to-end training process. To
this end, we propose nPUGraph, a novel varia-
tional framework that regards the underlying cor-
rectness of collected/uncollected facts in the KG
as latent variables for the reasoning process. We

jointly update model parameters and estimate the
posterior likelihood of the correctness of each col-
lected/uncollected fact (referred to as label pos-
terior), through maximizing a theoretical lower
bound of the log-likelihood of each fact being col-
lected or uncollected.

The estimated label posterior further facilitates
the speculative KG reasoning from two aspects:
1) It removes false positive facts contained in KG
and improves the representation quality. We ac-
cordingly propose a label posterior-aware encoder
to incorporate information only from entity neigh-
bors induced by facts with a high posterior proba-
bility, under the assumption that the true positive
facts from the collected facts provide more reli-
able information for reasoning. 2) It complements
the grounds of reasoning by selecting missing but
possibly plausible facts with high label posterior,
which are iteratively added to acquire more infor-
mative samples for model training. These two pro-
cedures are ultimately unified in a simple yet effec-
tive self-training strategy that alternates between
the data sampling based on latest label posteriors
and the model training based on latest data sam-
ples. Empirically, nPUGraph outperforms eleven
state-of-the-art baselines on three benchmark KG
data and one Twitter data we collected by large mar-
gins. Additionally, its robustness is demonstrated
in speculative reasoning on data with multiple ra-
tios of false negative/positive cases.

Our contributions are summarized as follows:
(1) We open up a practical but underexplored prob-
lem space of speculative KG reasoning, and for-
mulate it as a noisy Positive-Unlabeled learning
task; (2) We take the first step in tackling this prob-
lem by proposing a variational framework nPU-
Graph to jointly optimize reasoning model parame-
ters and estimate fact label posteriors; (3) We pro-
pose a simple yet effective self-training strategy
for nPUGraph to simultaneously deal with false
negative/positive issues; (4) We perform extensive
evaluations to verify the effectiveness of nPUGraph
on both benchmark KG and Twitter interaction data
with a wide range of data perturbations.

2 Preliminaries

2.1 Speculative Knowledge Graph Reasoning

A knowledge graph (KG) is denoted as G =
{(eh, r, et)} ⊆ S, where S = E ×R× E denotes
triple space, E denotes the entity set, R denotes the
relation set. Each triple s = (eh, r, et) refers to that
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a head entity eh ∈ E has a relation r ∈ R with a tail
entity et ∈ E . Typically, a score function ψ(s; Θ),
parameterized by Θ, is designed to measure the
plausibility of each potential triple s = (eh, r, et),
and to rank the most plausible missing ones to com-
plete KG during inference (Bordes et al., 2013; Sun
et al., 2019). The goal of speculative KG reasoning
is to infer the most plausible triple for each incom-
plete triple (eh, r, e?) or (e?, r, et) given by sparse
and unreliable observations in G. In addition, it
requires correctness estimation for each potential
fact collected or uncollected by G.

2.2 Noisy Positive-Unlabeled Learning
Positive-Unlabeled (PU) learning is a learning
paradigm for training a model when only positive
and unlabeled data is available (Plessis et al., 2015).
We formulate the speculative KG reasoning task
as a noisy Positive-Unlabeled learning problem,
where the positive set contains potentially label
noise from false facts (Jain et al., 2016).
PU Triple Distribution. For the speculative KG
reasoning task, we aim to learn a binary classi-
fier that maps a triple space S to a label space
Y = {0, 1}. Data are split as labeled (collected)1

triples sl ∈ SL and unlabeled (uncollected) triples
su ∈ SU . The labeled triples are considered noisy
positive samples with a certain level of label noise.
The distribution of labeled triples can be repre-
sented as follows:

sl ∼ βϕl
1(s

l) + (1− β)ϕl
0(s

l), (1)

where ϕly denotes the probability of being collected
over triple space S for the positive class (y = 1)
and negative class (y = 0), and β ∈ [0, 1) denotes
the proportion of true positive samples in labeled
data. Unlabeled triples include both negative sam-
ples and possible factual samples. The distribution
of unlabeled samples can be represented as follows:

su ∼ αϕu
1 (s

u) + (1− α)ϕu
0 (s

u), (2)

where ϕuy = 1−ϕly denotes the probability of being
uncollected, α ∈ [0, 1) denotes the positive class
prior, i.e., the proportion of positive samples in
unlabeled data.
PU Triple Construction. We then discuss the con-
struction of SL and SU based on the collected KG
G. Triples in G naturally serve as labeled sam-
ples with a ratio of noise, i.e., SL = G. For unla-
beled set SU , However, directly using S \ G as

1In this paper, we interchangeably use the term la-
beled/unlabeled and collected/uncollected with no distinction.

𝜙"(𝑠; Θ)

𝜙((𝑠; Θ)

Label Posterior-
aware EncoderPU Triple Construction

𝑠)Labeled Triple

Unlabeled 
Triple 𝑠"*, 𝑠(,,⋯ , 𝑠.,

𝑚𝑖𝑛2: ℒ

Probability 
Measure

Label Posterior Estimation Optimization

Speculative
Reasoning

Labeled SampleUnlabeled Sample

Figure 2: nPUGraph overview. It jointly optimizes
parameters and estimates label posterior, to detect false
negative/positive cases for the encoder and self-training.

the unlabeled set SU would result in too many
unlabeled samples for training due to the large
number of possible triples in triple space S. Fol-
lowing (Tang et al., 2022), we construct SU as
follows: For each labeled triple sli = (eh, r, et),
we construct K unlabeled triples suik by replacing
the head and tail respectively with other entities:
suik = (eh, r, e

−
k ) or (e−k , r, et), where e−k is the

selected entity that ensures suik /∈ SL. Initially,
the construction can be randomized. During the
training process, it is further improved by select-
ing unlabeled samples with high label posterior
in a self-training scheme, so as to cover positive
samples in the unlabeled set to the greatest extent.

3 Methodology

3.1 Overview

Our approach views underlying triple labels (pos-
itive/negative) as latent variables, influencing the
collection probability. Unlike the common objec-
tive of reasoning training that ranks the plausibil-
ity of the collected triples higher than uncollected
ones, we instead maximize the data likelihood of
each potential triple being collected or not. To
this end, as shown in Figure 2, we propose nPU-
Graph framework to jointly optimize parameters
and infer the label posterior. During the training
process, the latest label posterior estimation can be
utilized by a label posterior-aware encoder, which
improves the quality of representation learning by
only integrating information from the entity neigh-
bors induced by true facts. Finally, a simple yet
effective self-training strategy based on label pos-
terior is proposed, which can dynamically update
neighbor sets for the encoder and sample unlabeled
triplets to cover positive samples in the unlabeled
set to the greatest extent for model training.

The remaining of this section is structured as
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follows: Section 3.2 first formalizes the learning
objective and the variational framework for likeli-
hood maximization. Section 3.3 details the label
posterior-aware encoder for representation learn-
ing, followed by Section 3.4 that introduces the
self-training strategy.

3.2 Noisy PU Learning on KG
Due to the false negative/positive issues, the cor-
rectness of a fact (y) is not solely determined by
its presence in a knowledge graph. nPUGraph ad-
dresses the issue by treating the underlying label as
a latent variable that influences the probability of
being collected or not. We, therefore, set maximiz-
ing the data collection likelihood as our objective.
In such a learning paradigm, the assumptions that
collected triples are correct p(y = 1|sl) = 1 and
uncollected triples are incorrect p(y = 0|su) = 1
are removed. We aim to train a model on labeled
triples SL and unlabeled ones SU , and infer the la-
bel posterior p(y|su) and p(y|sl) at the same time
by data likelihood maximization. The latest label
posterior can help to detect false negative/positive
cases during model training.

We first derive our training objective. To be
more formal, the log-likelihood of each potential
fact being collected or not is lower bounded by
Eq. (3), which is given by Theorem 1.
Theorem 1. The log-likelihood of the complete
data log p(S) is lower bounded as follows:

log p(S) ≥ E
q(Y)

[log p(S|Y)] − KL(q(Y)∥p(Y))

= E
sl∈SL

[
w

l
log[ϕ

l
1(s

l
)] + (1 − w

l
) log[ϕ

l
0(s

l
)]
]

+ E
su∈SU

[
(w

u
log[ϕ

u
1 (s

u
)] + (1 − w

u
) log[ϕ

u
0 (s

u
)]
]

− KL(WU∥W̃U
) − KL(WL∥W̃L

) − ∥WL∥1

|SL| − ∥WU∥1

|SU | ,

(3)

where S denotes all labeled/unlabeled triples, Y
is the corresponding latent variable indicating the
positive/negative labels for triples, WU = {wu

i }
denotes the point-wise probability for the uncol-
lected triples being positive, WL = {wl

i} denotes
the probability for the collected triples being pos-
itive. W̃U and W̃U are the approximation of
the collection probability for uncollected/collected
triples respectively, produced by nPUGraph based
on the latest parameters.

Proof. Refer to Appendix A.1 for proof.

We treat label Y as a latent variable and derive
the lower bound for the log-likelihood, which is

influenced by the prior knowledge of positive class
prior α and true positive ratio β. Thus, maximizing
the lower bound can jointly optimize model param-
eters and infer the posterior label distribution, WU

and WL. Such a learning process enables us to
avoid false negative/positive issues during model
training since it considers ϕl0 (one negative triple
is collected) and ϕu1 (one positive triple is missing)
as non-zero probability, which are determined by
the latest label posterior during model training.
Probability Measure. We then specify the proba-
bility measures for positive/negative triples being
collected, i.e., ϕl1(·) and ϕl0(·) (ϕuy(·) = 1− ϕly(·)
for y = 1/0). To better connect to other meth-
ods utilizing score functions for KGR, we hereby
utilize the sigmoid function σ(·) to directly trans-
form the score function ψ(s; Θ), parameterized by
model parameters Θ, to probability:

ϕl
1(s) = σ(ψ1(s; Θ)), ϕl

0(s) = σ(ψ0(s; Θ)), (4)

we hereby utilize two score functions ψ1(s; Θ) and
ψ0(s; Θ) to measure the positive/negative triples
being collected, as the influencing factors based
on triple information can be different. We utilize
two neural networks to approximate the probability
measure, which will be detailed in Section 3.3.

Since we aim to detect the potential existence of
positive triples in an unlabeled set, it is unnecessary
to push the collection probability of all uncollected
triple ϕly(s

u) to 0 (ϕuy(s
u) to 1). A loose constraint

is that we force the uncollection probability of a
collected triple sl lower than its corresponding un-
collected triples su: ϕuy(s

l) < ϕuy(s
u). Therefore,

we adopt the pair-wise ranking measure ϕ⋆y(s
l, su)

to replace ϕuy(s
u) as follows:

ϕu
y (s

u) → ϕ⋆
y(s

l, su) = σ(ψy(s
u; Θ)− ψy(s

l; Θ)). (5)

Maximum Probability Training. We then derive
the training objective based on Eq. (3) The first
part of Eq. (3) measures the probability of data be-
ing collected/uncollected. Concretely, given each
collected triple sli ∈ SL and its corresponding K
uncollected triples suik ∈ SU , We denote the loss
function measuring the probability as Ltriple:

Ltriple = − 1

K|SL|
∑

i

∑

k

(wl
i log[ϕ

l
1(s

l
i)]

+ (1− wl
i) log[ϕ

l
0(s

l
i)] + wu

ik log[ϕ
⋆
1(s

l
i, s

u
ik)]

+ (1− wu
ik) log[ϕ

⋆
0(s

l
i, s

u
ik)]),

(6)
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Figure 3: The label posterior-aware encoder. Red line
denotes the detected false positive facts based on poste-
rior, which are excluded during neighbor sampling.

where wl
i denotes the point-wise probability for

the collected triple sli being positive, wu
ik denotes

the probability for the uncollected triple suik being
positive. Based on the definition, the posterior prob-
ability of each collected/uncollected triple being
positive can be computed as:

w̃l
i =

βϕl
1(s

l
i)

βϕl
1(s

l
i) + (1− β)ϕl

0(s
l
i)
, (7)

w̃u
ik =

αϕu
1 (s

u
ik)

αϕu
1 (s

u
ik) + (1− α)ϕu

0 (s
u
ik)

. (8)

To increase model expression ability, instead of
forcing WL = W̃L and WU = W̃U , we set
WL and WU as free parameters and utilize the
term LKL = KL(WL∥W̃L)+KL(WU∥W̃U ) to
regularize the difference. Finally, based on Eq. (3),
the training objective is formalized as follows:

min
Θ

L = min
Θ

Ltriple + LKL + Lreg, (9)

where Lreg = ∥WL∥1 + ∥WU∥1 can be viewed
as a normalization term. Considering the sparsity
property of real-world graphs, Lreg penalizes the
posterior estimation that there are too many true
positive facts on KG.

3.3 Label Posterior-aware Encoder
We then introduce the encoder and the score func-
tions ψ1(s; Θ) and ψ0(s; Θ) to measure the prob-
ability of positive/negative triples being collected,
as shown in Figure 3. Recent work (Schlichtkrull
et al., 2017; Dettmers et al., 2018; Nguyen et al.,
2018; Vashishth et al., 2020) has shown that inte-
grating information from neighbors to represent
entities engenders better reasoning performance.
However, the message-passing mechanism is vul-
nerable to the false positive issue, as noise can be
integrated via a link induced by a false positive fact.

In light of this, we propose a label posterior-aware
encoder to improve the quality of representations.

We represent each entity e ∈ E and each re-
lation r ∈ R into a d-dimensional latent space:
he,hr ∈ Rd. To encode more information in he,
we first construct a neighbor set Ne induced by the
positive facts related to entity e. The latest label
posterior for collected facts W̃L naturally serves
this purpose, as it indicates the underlying correct-
ness for each collected fact.

Therefore, for each entity e, we first sort the re-
lated facts by label posterior W̃L and construct the
neighbor set Ne(W̃

L) = {(ei, ri)} from the top
facts. Then the encoder attentively aggregates in-
formation from the collected neighbors, where the
attention weights take neighbor features, relation
features into account. Specifically:

hl
e = hl−1

e + σ


 ∑

(ei,ri)∈Ne(W̃L)

γl
e,ei

(
hl−1
ei M

)

 , (10)

where l denotes the layer number, σ(·) denotes
the activation function, γle,ei denotes the attention
weight of entity ei to the represented entity e, and
M is the trainable transformation matrix. The atten-
tion weight γle,ei is supposed to be aware of entity
feature and topology feature induced by relations.
We design the attention weight γle,ei as follows:

γl
e,ei =

exp(qle,ei)∑
Ne(W̃L)

exp(qle,ek )
, qle,ek = a

(
hl−1
e ∥hl−1

ek ∥hrk

)
,

(11)

where qle,ek measures the pairwise importance from
neighbor ek by considering the entity embedding,
neighbor embedding, and relation embedding, a ∈
R3d is a shared parameter in the attention.

To measure the collection probability for pos-
itive/negative triples, we utilize two multilayer
perception (MLP) to approximate score function
ψ1(s; Θ) and ψ0(s; Θ). Specifically, for each triple
s = (eh, r, et):

ψ1(s; Θ) = MLP1(hs), ψ0(s; Θ) = MLP0(hs), (12)

where the MLP input hs = [hl
eh
∥hr∥hl

et ] concate-
nates entity embeddings and relation embedding.

3.4 Self-Training Strategy
The latest label posterior W̃L and W̃U is further
utilized in a self-training strategy to enhance spec-
ulative reasoning. First, the latest posterior estima-
tion W̃L for collected links updates neighbor sets
to gradually prevent the encoder effects by false
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Algorithm 1: Summary of nPUGraph.
Input: The collected triple set SL.
Output: The model parameter Θ, predicted triples.

1 Construct the uncollected triple set SU randomly;
2 Initialize the model parameter Θ and the label

posterior W̃L and W̃U randomly;
3 for each training epoch do
4 Construct neighbor set Ne(W̃

L) by W̃L;
5 Construct uncollected triple set SU by W̃U ;
6 for each collected triple sli ∈ SL do
7 Collect unlabeled triples {suik}Kk=1;
8 Calculate ϕl

y(s
l
i) by Eq. (4);

9 Calculate each ϕ⋆
y(s

l
i, s

u
ik) by Eq. (5);

10 end
11 Calculate the total loss L by Eq. (9);
12 Optimize model parameter: Θ = Θ− ∂L

∂Θ
;

13 Update label posterior W̃L and W̃U ;
14 end

positive links. Moreover, the latest estimation W̃U

for uncollected facts enables us to continuously
sample unlabeled triplets with high label posterior
to cover positive samples in the unlabeled set to
the greatest extent. For each labeled triple sli =
(eh, r, et), we construct K unlabeled triples suik by
replacing the head and tail respectively with other
entities: suik = (eh, r, e

−
k ) or (e−k , r, et), where

e−k is the selected entity that ensures suik /∈ SL.
Such selection is performed by ranking the cor-
responding label posterior w̃u

ik. The updates of
neighbor sets and unlabeled triples based on label
posterior are nested with parameter optimization
during model training alternatively. The training of
nPUGraph is summarized in Algorithm 1.

4 Experiment

4.1 Experimental Setup

Dataset. We evaluate nPUGraph mainly on
three benchmark datasets: FB15K (Bordes et al.,
2013), FB15k-237 (Toutanova et al., 2015), and
WN18 (Bordes et al., 2013) and one Twitter data
we collected, which describes user interaction in-
formation towards tweets and hashtags. Table 1
summarizes the dataset statistics.

To better fit the real scenario for speculative rea-
soning, we randomly modify links on KG to simu-
late more false negative/positive cases. We modify
a specific amount of positive/negative links (the ra-
tio of the modified links is defined as perturbation
rate, i.e., ptb_rate) by flipping. 90% of them are the
removed positive links to simulate false negative
cases and the remaining 10% are the added neg-
ative links to simulate false positive cases. More

Table 1: The statistics of the datasets.

ptb_rate Dataset |E| |R| #Train #Valid #Test

0.1

FB15K 14,951 1,345 340,968 146,129 59,071
FB15K-237 14,541 237 184,803 79,201 20,466

WN18 40,943 18 92,428 39,612 5,000
Twitter 17,839 2 282,233 120,956 110,456

0.3

FB15K 14,951 1,345 276,940 118,688 59,071
FB15K-237 14,541 237 149,229 63,954 20,466

WN18 40,943 18 72,462 31,055 5,000
Twitter 17,839 2 232,748 99,749 110,456

0.5

FB15K 14,951 1,345 213,380 91,448 59,071
FB15K-237 14,541 237 113,772 48,759 20,466

WN18 40,943 18 52,707 22,588 5,000
Twitter 17,839 2 183,263 78,540 110,456

0.7

FB15K 14,951 1,345 150,485 64,493 59,071
FB15K-237 14,541 237 78,531 33,656 20,466

WN18 40,943 18 34,984 14,993 5,000
Twitter 17,839 2 133,778 57,333 110,456

details about datasets and the data perturbation pro-
cess can be found in Appendix A.2.
Baselines. We compare to eleven state-of-
the-art baselines: 1) KG embedding methods:
TransE (Bordes et al., 2013), TransR (Lin
et al., 2015), DistMult (Yang et al., 2014),
ComplEX (Trouillon et al., 2017), and Ro-
tatE (Sun et al., 2019); 2) GNN methods on
KG: RGCN (Schlichtkrull et al., 2017) and
CompGCN (Vashishth et al., 2020); 3) Uncertain
KG reasoning: UKGE (Chen et al., 2019); 4) Neg-
ative sampling methods: NSCaching (Zhang et al.,
2019) and SANS (Ahrabian et al., 2020); 5) PU
learning on KG: PUDA (Tang et al., 2022). More
details can be found in Appendix A.3.
Evaluation and Implementation. For each
(eh, r, e?) or (e?, r, et), we rank all entities at
the missing position in triples, and adopt filtered
mean reciprocal rank (MRR) and filtered Hits at
{1, 3, 10} as evaluation metrics (Bordes et al.,
2013). More implementation details of baselines
and nPUGraph can be found in Appendix A.4.

4.2 Main Results

We first discuss the model performance on noisy
and incomplete graphs, with ptb_rate = 0.3, as
shown in Table 2. nPUGraph achieves consistently
better results than all baseline models, with 10.3%
relative improvement on average. Specifically, con-
ventional KGE and GNN-based methods produce
unsatisfying performance, as they ignore the false
negative/positive issues during model training. In
some cases, GNN-based ways are worse, as the
message-passing mechanism is more vulnerable
to false positive links. As expected, the perfor-
mance of uncertain knowledge graph embedding
model (Chen et al., 2019) is much worse when there
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Table 2: Overall performance on noisy and incomplete graphs, with ptb_rate = 0.3. Average results on 5 independent
runs are reported. ∗ indicates the statistically significant results over baselines, with p-value < 0.01. The best results
are in boldface, and the strongest baseline performance is underlined.

Dataset FB15K FB15K-237 WN18
Metrics MRR H@10 H@3 H@1 MRR H@10 H@3 H@1 MRR H@10 H@3 H@1

Knowledge graph embedding methods
TransE 0.336 0.603 0.425 0.189 0.196 0.394 0.236 0.094 0.229 0.481 0.416 0.030
TransR 0.314 0.579 0.397 0.170 0.184 0.359 0.211 0.098 0.229 0.480 0.408 0.035

DistMult 0.408 0.627 0.463 0.296 0.240 0.407 0.262 0.158 0.397 0.518 0.453 0.320
ComplEx 0.396 0.616 0.451 0.284 0.238 0.411 0.262 0.154 0.448 0.526 0.475 0.403

RotatE 0.431 0.636 0.489 0.323 0.255 0.433 0.280 0.169 0.446 0.524 0.474 0.400
Graph neural network methods on KG

RGCN 0.154 0.307 0.164 0.078 0.141 0.276 0.145 0.075 0.362 0.464 0.412 0.300
CompGCN 0.409 0.631 0.465 0.294 0.253 0.422 0.275 0.171 0.445 0.522 0.471 0.400

Uncertain knowledge graph embedding method
UKGE 0.311 0.556 0.337 0.189 0.172 0.233 0.128 0.081 0.241 0.447 0.309 0.119

Negative sampling methods
NSCaching 0.371 0.576 0.424 0.265 0.190 0.329 0.208 0.121 0.306 0.401 0.334 0.255

SANS 0.372 0.599 0.434 0.252 0.243 0.416 0.267 0.158 0.453 0.528 0.479 0.409
Positive-Unlabeled learning methods on KG

PUDA 0.403 0.623 0.458 0.291 0.234 0.394 0.255 0.156 0.382 0.499 0.444 0.306
nPUGraph 0.486* 0.718* 0.534* 0.342* 0.287* 0.481* 0.315* 0.191* 0.493* 0.582* 0.519* 0.442*
Gains (%) 12.7 12.8 9.2 5.9 12.6 11.2 12.5 11.4 8.9 10.3 8.3 8.0
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Figure 4: Performance with respect to various ptb_rate ,
i.e., different degrees of noise and incompleteness, on
FB15K-237. nPUGraph exhibits impressive robustness
against false negative/positive issues.

are no available uncertainty scores for model train-
ing. SANS and PUDA generate competitive results
in some cases, as their negative sampling strategy
and PU learning objective can respectively mitigate
the false negative/positive issues to some extent.
Table 2 demonstrates the superiority of nPUGraph
which addresses the false negative/positive issues
simultaneously. For space limitations, we report
and discuss the model performance on Twitter data
in Table 4 in Appendix A.5.1.

4.3 Experiments under Various Degrees of
Noise and Incompleteness

We investigate the performance of baseline mod-
els and nPUGraph under different degrees of noise

Table 3: Ablation Studies.

Dataset FB15K FB15K-237 Gains
Ablations MRR H@10 MRR H@10 %

nPUGraph w/o nPU 0.401 0.619 0.230 0.407 -20.0
nPUGraph w/o LP-Encoder 0.457 0.681 0.261 0.459 -6.6
nPUGraph w/o Self-Training 0.471 0.704 0.276 0.461 -3.4

nPUGraph 0.486 0.718 0.287 0.481 -

and incompleteness. Figure 4 reports the perfor-
mance under various ptb_rate , from 0.1 to 0.7,
where higher ptb_rate means more links are per-
turbed as false positive/negative cases. Full re-
sults are included in Appendix A.5.2. The perfor-
mance degrades as the ptb_rate increases for all
in most cases, demonstrating that the false nega-
tive/positive issues significantly affect the reason-
ing performance. However, nPUGraph manages to
achieve the best performance in all cases. Notably,
the relative improvements are more significant un-
der higher ptb_rate .

4.4 Model Analysis

Ablation Study. We evaluate performance im-
provements brought by the nPUGraph framework
by following ablations: 1) nPUGraph w/o nPU is
trained without the noisy Positive-Unlabeled frame-
work, which instead utilizes the margin loss for
model training; 2) nPUGraph w/o LP-Encoder
eliminates the label posterior-aware encoder (LP-
Encoder), which aggregates information from all
neighbors instead of the sampled neighbors; 3)
nPUGraph w/o Self-Training is trained without
the proposed self-training algorithm.
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Figure 5: Model analysis w.r.t. the number of unlabeled
samples and positive class prior α.

We report MRR and Hit@10 over FB15K and
FB15K-237 data, as shown in Table 3. As we
can see, training the encoder without the proposed
noisy Positive-Unlabeled framework will cause
the performance drop, as this variant ignores the
false negative/positive issues. Removing the label
posterior-based neighbor sampling in the encoder
will also cause performance degradation, as the
information aggregation no longer distinguishes
between true and false links. Such a variant can be
easily influenced by the existence of false positive
facts. Moreover, the last ablation result shows if
the training process is further equipped with the
self-training strategy, the performance will be en-
hanced, which verifies its effectiveness to select
informative unlabeled samples for model training.
The Effect of PU Triple Construction. We then
investigate the effect of PU Triple Construction
on model performance, by varying different sizes
of unlabeled samples from 10 to 50. Figure 5a
shows that the performance improves as the num-
ber of unlabeled samples increases. Because more
unlabeled samples can cover more false negative
cases for model training. The training time grows
linearly.
The Effect of Positive Class Prior α. The posi-
tive class prior α and true positive ratio β are two
important hyperparameters. While β has a clear
definition from real-world data, the specific value
of α is unknown in advance. Figure 5b shows the
model performance w.r.t. different values of α by
grid search. Reasoning performance fluctuates a
bit with different values of α since incorrect prior
knowledge of α can bias the label posterior estima-
tion and thus hurt the performance.

5 Related Work

Knowledge Graph Reasoning. Knowledge graph
reasoning (KGR) aims to predict missing facts to
automatically complete KG, including one-hop rea-
soning (Bordes et al., 2013) and multi-hop rea-

soning (Saxena et al., 2021). It has facilitated
a wide spectrum of knowledge-intensive applica-
tions (Wang et al., 2018b, 2020; Saxena et al., 2021;
Qian et al., 2019; Shao et al., 2020; Yang et al.,
2020; Yan et al., 2021b,a; Li et al., 2022; Wang
et al., 2022a).To set the scope, we primarily focus
on one-hop reasoning and are particularly inter-
ested in predicting missing entities in a partial fact.
Knowledge graph embeddings achieve state-of-the-
art performance (Bordes et al., 2013; Lin et al.,
2015; Yang et al., 2014; Trouillon et al., 2017; Sun
et al., 2019; García-Durán et al., 2018; Wang et al.,
2022b, 2023). Recently, graph neural networks
(GNN) have been incorporated to enhance repre-
sentation learning by aggregating neighborhood
information (Schlichtkrull et al., 2017; Dettmers
et al., 2018; Nguyen et al., 2018; Vashishth et al.,
2020; Li et al., 2021). However, most approaches
significantly degrade when KG are largely incom-
plete and contain certain errors (Pujara et al., 2017),
as they ignore the false negative/positive issues. Re-
cent attempts on uncertain KG (Chen et al., 2019;
Kertkeidkachorn et al., 2019; Chen et al., 2021)
measure the uncertainty score for facts, which can
detect false negative/positive samples. However,
they explicitly require the ground truth uncertainty
scores for model training, which are usually un-
available in practice. Various negative sampling
strategies have been explored to sample informa-
tive negative triples to facilitate model training (Cai
and Wang, 2018; Zhang et al., 2019; Ahrabian
et al., 2020). However, they cannot detect false
negative/positive facts. We aim to mitigate the
false negative/positive issues and enable the au-
tomatic detection of false negative/positive facts
during model training.

Positive-Unlabeled Learning. Positive-Unlabeled
(PU) learning is a learning paradigm for training
a model that only has access to positive and un-
labeled data, where unlabeled data includes both
positive and negative samples (Plessis et al., 2015;
Bekker and Davis, 2018). PU learning roughly
includes (1) two-step solutions (He et al., 2018;
Jain et al., 2016); (2) methods that consider the
unlabeled samples as negative samples with label
noise (Shi et al., 2018); (3) unbiased risk estimation
methods (Plessis et al., 2015; Tang et al., 2022). Re-
cent work further studies the setting that there exists
label noise in the observed positive samples (Jain
et al., 2016). We formulate the KGR task on noisy
and incomplete KG as a noisy Positive-Unlabeled
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learning problem and propose a variational frame-
work for it, which relates to two-step solutions and
unbiased risk estimation methods.

6 Conclusion

We studied speculative KG reasoning based on
sparse and unreliable observations, which con-
tains both false negative issue and false positive
issue. We formulated the task as a noisy Positive-
Unlabeled learning problem and proposed a vari-
ational framework nPUGraph to jointly update
model parameters and estimate the posterior like-
lihood of collected/uncollected facts being true or
false, where the underlying correctness is viewed
as latent variables. During the training process, a
label posterior-aware encoder and a self-training
strategy were proposed to further address the false
positive/negative issues. We found label posterior
estimation plays an important role in moving to-
ward speculative KG reasoning in reality, and the
estimation can be fulfilled by optimizing an alterna-
tive objective without additional cost. Extensive ex-
periments verified the effectiveness of nPUGraph
on both benchmark KGs and Twitter interaction
data with various degrees of data perturbations.

Limitations

There are certain limitations that can be concerned
for further improvements. First, the posterior in-
ference relies on the prior estimation of positive
class prior α and true positive ratio β. Our experi-
ments show that a data-driven estimation based on
end-to-end model training produces worse results
than a hyperparameter grid search. An automatic
prior estimation is desirable for real-world appli-
cations. Moreover, in nPUGraph, we approximate
the probability of negative/positive facts being col-
lected/uncollected via neural networks, which lacks
a degree of interpretability. In the future, we plan
to utilize a more explainable random process de-
pending on entity/relation features to model the
collection probability distribution.

Ethical Impact

nPUGraph neither introduces any social/ethical
bias to the model nor amplifies any bias in data.
Benchmark KG are publicly available. For Twitter
interaction data, we mask all identity and privacy
information for users, where only information re-
lated to user interactions with tweets and hashtags

is presented. Our model is built upon public li-
braries in PyTorch. We do not foresee any direct
social consequences or ethical issues.
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A Appendix

A.1 Theorem Proof
Theorem 2. The log-likelihood of the complete
data log p(S) is lower bounded as follows:

log p(S) ≥ E
q(Y)

[log p(S|Y)] − KL(q(Y)∥p(Y))

= E
sl∈SL

[
w

l
log[ϕ

l
1(s
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) log[ϕ
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)]
]
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) log[ϕ
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0 (s

u
)]
]

− KL(WU∥W̃U
) − KL(WL∥W̃L

) − ∥WL∥1

|SL| − ∥WU∥1

|SU | ,

(13)

where S denotes all labeled/unlabeled triples, Y
is the corresponding latent variable indicating the
positive/negative labels for triples, WU = {wu

i }
denotes the point-wise probability for the uncol-
lected triples being positive, WL = {wl

i} denotes
the probability for the collected triples being posi-
tive.

Proof. Let log p(S) denote the log-likelihood of
all potential triples being collected in the KG or
not, Y denote the corresponding latent variable
indicating the positive/negative labels. We aim to
infer the label posterior p(Y|S), which can be ap-
proximated by q(Y|S). We therefore are interested
at the difference between the two, measured by the
Kullback–Leibler (KL) divergence as follows:

KL(q(Y|S)∥p(Y|S)) = − E
q(Y|S)

log

(
p(S|Y)p(Y)

q(Y|S)

)
+ log p(S),

(14)

as KL divergence is positive, we derive the lower
bound of the log-likelihood as follows:

log p(S) ≥ E
q(Y|S)

log

(
p(S|Y)p(Y)

q(Y|S)

)

≥ E
q(Y|S)

log p(S|Y) − KL(q(Y|S)∥p(Y)) − E
p(S)

q(Y|S),

(15)

which consists of three terms: triple collection prob-
ability measure, KL term and regularization of la-
bel posterior (positive). We discuss each term in
detail.

Recall that the distribution of labeled triples can
be represented as follows:

s
l ∼ βϕ

l
1(s

l
) + (1 − β)ϕ

l
0(s

l
), (16)

where ϕly denotes the probability of being collected
over triple space S for the positive class (y = 1)
and negative class (y = 0), and β ∈ [0, 1) denotes
the proportion of true positive samples in labeled

data. Similarly, considering the existence of unla-
beled positive triples, the distribution of unlabeled
samples can be represented as follows:

s
u ∼ αϕ

u
1 (s

u
) + (1 − α)ϕ

u
0 (s

u
), (17)

where ϕuy = 1 − ϕly denotes the probability of
being uncollected, α ∈ [0, 1) is the class prior
or the proportion of positive samples in unlabeled
data. Based on that, the first term can be detailed
as follows:

E
q(Y|S)

log p(S|Y) = E
sl∈SL

E
y∈{0,1}

q(y|sl) log p(s
l|y)

+ E
su∈SU

E
y∈{0,1}

q(y|sl) log p(s
l|y)

= E
sl∈SL

[
q(y = 1|sl) log[p(sl|y = 1))]

+ q(y = 0|sl) log[p(sl|y = 0))]

+ E
su∈SU

[
q(y = 1|su) log[p(su|y = 1))]

+ q(y = 0|su) log[p(su|y = 0))]

= E
sl∈SL

[
w

l
log[ϕ
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1(s

l
)] + (1 − w

l
) log[ϕ

l
0(s

l
)]
]

+ E
su∈SU

[
(w

u
log[ϕ

u
1 (s

u
)] + (1 − w

u
) log[ϕ

u
0 (s

u
)]
]
,

(18)

where WU = {wu} denotes the point-wise prob-
ability for the uncollected triples being positive
q(y = 1|su), WL = {wl} denotes the probability
for the collected triples being positive q(y = 1|sl).

We view WU and WL as free parameters and
regularize them by W̃U and W̃L, which are esti-
mated posterior probability as follows:

w̃
l
i =

βϕl
1(s

l
i)

βϕl
1(s

l
i) + (1 − β)ϕl

0(s
l
i)

, (19)

w̃
u
ik =

αϕu
1 (s

u
ik)

αϕu
1 (s

u
ik) + (1 − α)ϕu

0 (s
u
ik)

. (20)

Therefore, the KL term in Eq. (15) becomes
KL(WU∥W̃U ) +KL(WL∥W̃L).

Last but not least, the third term E
p(S)

q(Y|S) =

∥WU∥1/|SU | + ∥WL∥1/|SL| regulates the total
number of potential triples (including both col-
lected ones and uncollected ones), because of the
sparsity nature of graphs. Finally, we derive the
lower bound of the log-likelihood, as shown in
Eq (13).

A.2 Datasets

A.2.1 Dataset Information
We evaluate our proposed model based on three
widely used knowledge graphs and one Twitter
ineraction graph:
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• FB15K (Bordes et al., 2013) is a subset of Free-
base (Bollacker et al., 2008), a large database
containing general knowledge facts with a vari-
ety of relation types;

• FB15K-237 (Toutanova et al., 2015) is a re-
duced version of FB15K, where inverse rela-
tions are removed;

• WN18 (Bordes et al., 2013) is a subset of
WorldNet (Fellbaum, 1998), a massive lexical
English database that captures semantic rela-
tions between words;

• Twitter is an interaction graph relevant with
Russo-Ukrainian War. Data is collected in the
Twitter platform from May 1, 2022, to Decem-
ber 25, 2022, which records user-tweet interac-
tions and user-hashtag interactions. Thus, the
graph is formed by two relations (user-tweet
and user-hashtag) and multiple entities, which
can be categorized into three types (user, tweet,
and hashtag). Following (Wang et al., 2021,
2022a), when constructing the graph, thresh-
olds will be selected to remove inactive users,
tweets, and hashtags according to their occur-
rence frequency. We set the thresholds for the
user, tweet, and hashtag as 30, 30, and 10, re-
spectively, i.e., if a tweet has fewer than 30
interactions with users, it will be regarded as in-
active and removed from the graph. Besides, the
extremely frequent users and tweets are deleted
as they may be generated by bots.

For all datasets, we first merge the training set
and validation set as a whole. Then we simulate
noisy and incomplete graphs for the training pro-
cess by adding various proportions of false nega-
tive/positive cases in the merged set. After that, we
partition the simulated graphs into new train/valid
sets with a ratio of 7 : 3 and the test set remains the
same. Table 1 provides an overview of the statistics
of the simulated datasets corresponding to various
perturbation rates and based graphs.

A.2.2 Dataset Perturbation
Data perturbation aims to simulate noisy and in-
complete graphs from clean benchmark knowledge
graphs. It consists of two aspects: First, to simulate
the false negative issue, it randomly removes some
existing links in a graph, considering the removed
links as missing but potentially plausible facts. Sec-
ond, to simulate the false positive issue, it randomly

adds spurious links to the graph as unreliable or
outdated facts.

We define perturbation rate, i.e., ptb_rate , as a
proportion of modified edges in a graph to control
the amount of removing positive links and adding
negative links. For example, if a graph has 100
links and the perturbation rate is 0.5, then we will
randomly convert the positivity or negativity of
50 links. Among these 50 modified links, 10%
of them will be added and the rest of them will
be removed, i.e., we will randomly add 5 nega-
tive links and remove 45 positive links to generate
a perturbed graph. The perturbed graph can be
regarded as noisy and incomplete, leading to signif-
icant performance degradation. In our experiments,
we set ptb_rate in a range of {0.1, 0.3, 0.5, 0.7}.
The detailed perturbation process is summarized in
Figure 6.

A.3 Baselines
We describe the baseline models utilized in the
experiments in detail:

• TransE2 (Bordes et al., 2013) is a translation-
based embedding model, where both entities
and relations are represented as vectors in the
latent space. The relation is utilized as a trans-
lation operation between the subject and the
object entity;

• TransR (Lin et al., 2015) advances TransE by
optimizing modeling of n-n relations, where
each entity embedding can be projected to hy-
perplanes defined by relations;

• DistMult3 (Yang et al., 2014) is a general
framework with the bilinear objective for multi-
relational learning that unifies most multi-
relational embedding models;

• ComplEx (Trouillon et al., 2017) introduces
complex embeddings, which can effectively
capture asymmetric relations while retaining
the efficiency benefits of the dot product;

• RotatE (Sun et al., 2019) extends ComplEx
by representing entities as complex vectors and
relations as rotation operations in a complex
vector space;

2The experiments of TransE and TransR are implemented
with https://github.com/thunlp/OpenKE.

3The experiments of DistMult, ComplEx, and Ro-
tatE are implemented with https://github.com/
DeepGraphLearning/KnowledgeGraphEmbedding.

2452

https://github.com/thunlp/OpenKE
https://github.com/DeepGraphLearning/KnowledgeGraphEmbedding
https://github.com/DeepGraphLearning/KnowledgeGraphEmbedding


…

KG Dataset 

Relation ID: 0 Relation ID: 1 Relation ID: n-1 Relation ID: n

Relation i:

False Positive Fact False Negative Fact True Positive Fact

Original Graph Undirected Graph Perturbed Undirected Graph Final Perturbed Graph

Step 2 Step 3 Step 4

Step 1:

Figure 6: Summary of graph perturbation to construct noisy and incomplete KGs.

• R-GCN4 (Schlichtkrull et al., 2017) uses
relation-specific weight matrices that are de-
fined as linear combinations of a set of basis
matrices;

• CompGCN5 (Vashishth et al., 2020) is a frame-
work for incorporating multi-relational informa-
tion in graph convolutional networks to jointly
embeds both nodes and relations in a graph;

• UKGE6 (Chen et al., 2019) learns embeddings
according to the confidence scores of uncertain
relation facts to preserve both structural and un-
certainty information of facts in the embedding
space;

• NSCaching7 (Zhang et al., 2019) is an inexpen-
sive negative sampling approach by using cache
to keep track of high-quality negative triplets,
which have high scores and rare;

• SANS8 (Ahrabian et al., 2020) utilizes the rich
graph structure by selecting negative samples
from a node’s k-hop neighborhood for negative
sampling without additional parameters and dif-
ficult adversarial optimization;

• PUDA9 (Tang et al., 2022) is a KGC method
to circumvent the impact of the false negative
issue by tailoring positive unlabeled risk esti-
mator and address the data sparsity issue by
unifying adversarial training and PU learning
under the positive-unlabeled minimax game.

4https://github.com/JinheonBaek/RGCN
5https://github.com/malllabiisc/CompGCN
6https://github.com/stasl0217/UKGE
7https://github.com/AutoML-Research/NSCaching
8https://github.com/kahrabian/SANS
9https://github.com/lilv98/PUDA

A.4 Reproducibility

A.4.1 Baseline Setup

All baseline models and nPUGraph are trained on
the perturbed training set and validated on the per-
turbed valid set. We utilize MRR on the valid set to
determine the best models and evaluate them on the
clean test set. For uncertain knowledge graph em-
bedding methods UKGE (Chen et al., 2019), since
the required uncertainty scores are unavailable, we
set the scores for triples in training set as 1 and 0
otherwise. The predicted uncertainty scores pro-
duced by UKGE are utilized to rank the potential
triples for ranking evaluation. We train all baseline
models and nPUGraph on the same GPUs (GeForce
RTX 3090) and CPUs (AMD Ryzen Threadripper
3970X 32-Core Processor).

A.4.2 nPUGraph Setup

For model training, we utilize Adam optimizer and
set the maximum number of epochs as 200. Within
the first 50 epochs, we disable self-training and
focus on learning suboptimal model parameters on
noisy and incomplete data. After that, we start the
self-training strategy, where the latest label poste-
rior estimation is utilized to sample neighbors for
the encoder and select informative unlabeled sam-
ples for model training. We set batch size as 256,
the dimensions of all embeddings as 128, and the
dropout rate as 0.5. For the sake of efficiency, we
employ 1 neighborhood aggregation layer in the
encoder.

For the setting of hyperparameter, we mainly
tune positive class prior α in the range of {1e −
1, 5e − 2, 1e − 2, 5e − 3, 1e − 3, 5e − 4, 1e −
4, 5e − 5}; true positive ratio β in the range of
{0.3, 0.2, 0.1, 0.005, 0.001}; learning rate in the
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Table 4: Overall performance on noisy and incomplete
Twitter data, with ptb_rate = 0.3. Average results
on 5 independent runs are reported. ∗ indicates the
statistically significant results over baselines, with p-
value < 0.01. The best results are in boldface, and the
strongest baseline performance is underlined.

Dataset Twitter
Metrics MRR HIT@100 HIT@50 HIT@30
Random 0.001 0.006 0.003 0.002

Knowledge graph embedding methods
TransE 0.010 0.091 0.058 0.041
TransR 0.009 0.078 0.048 0.033

DistMult 0.021 0.091 0.065 0.052
ComplEx 0.022 0.089 0.064 0.051

RotatE 0.022 0.1115 0.077 0.059
Graph neural network methods on KG

RGCN 0.005 0.054 0.029 0.019
CompGCN 0.014 0.089 0.059 0.044

Uncertain knowledge graph embedding method
UKGE 0.011 0.072 0.053 0.033

Negative sampling methods
NSCaching 0.012 0.095 0.060 0.043

SANS 0.019 0.104 0.070 0.054
Positive-Unlabeled learning method

PUDA 0.013 0.082 0.057 0.044
nPUGraph 0.030* 0.127* 0.096* 0.074*
Gains (%) 38.2 13.9 25.3 26.5

range of {0.02, 0.01, 0.005, 0.001, 0.0005}; the
number of sampled unlabeled triples for each la-
beled one in the range of {50, 40, 30, 20, 10}. We
will publicly release our code and data upon accep-
tance.

A.5 Experiments

A.5.1 Experimental Results on Twitter Data
We discuss the model performance on noisy and
incomplete Twitter data with ptb_rate = 0.3 in this
section, which is shown in Table 4. According to
the result of Random, we can infer that all relations
on Twitter are n− n, where relations can be 1− n,
n−1, and n−n for benchmark KG. Therefore, link
prediction is more challenging for Twitter data and
we adopt Hits at 30, 50, 100 as evaluation metrics,
instead.

For Twitter data, nPUGraph achieves impres-
sive performance compared with the baseline mod-
els, with 25.98% relative improvement on aver-
age. The results of Twitter data support the ro-
bustness of nPUGraph, which can mitigate false
negative/positive issues not only in benchmark KG
but also in the real-world social graph.

A.5.2 Experimental Results under Different
Perturbation Rates

The experimental results under perturbation rates
0.1, 0.5, and 0.7 are shown in Table 5, Table 6,

and Table 7, respectively. nPUGraph outperforms
all baseline models for various perturbation rates,
demonstrating that nPUGraph can mitigate false
negative/positive issues on knowledge graphs with
different degrees of noise and incompleteness. No-
tably, comparing these three tables, the relative
improvements are more significant under higher
ptb_rate in most cases, showing stronger robust-
ness for nPUGraph on graphs with more false neg-
ative/positive facts.
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Table 5: Overall performance on noisy and incomplete graphs, with ptb_rate = 0.1. Average results on 5 independent
runs are reported. ∗ indicates the statistically significant results over baselines, with p-value < 0.01. The best results
are in boldface, and the strongest baseline performance is underlined.

Dataset FB15K FB15K-237 WN18
Metrics MRR H@10 H@3 H@1 MRR H@10 H@3 H@1 MRR H@10 H@3 H@1

Knowledge graph embedding methods
TransE 0.419 0.666 0.507 0.280 0.245 0.441 0.284 0.144 0.318 0.646 0.579 0.044
TransR 0.398 0.658 0.494 0.250 0.246 0.434 0.280 0.153 0.319 0.646 0.575 0.051

DistMult 0.516 0.719 0.578 0.407 0.271 0.446 0.297 0.185 0.524 0.686 0.610 0.418
ComplEx 0.503 0.711 0.570 0.390 0.276 0.459 0.305 0.186 0.612 0.702 0.643 0.560

RotatE 0.544 0.732 0.608 0.441 0.292 0.480 0.324 0.199 0.613 0.691 0.642 0.567
Graph neural network methods on KG

RGCN 0.196 0.372 0.209 0.110 0.169 0.317 0.177 0.097 0.483 0.625 0.554 0.396
CompGCN 0.460 0.677 0.525 0.343 0.293 0.475 0.324 0.203 0.608 0.686 0.636 0.564

Uncertain knowledge graph embedding method
UKGE 0.338 0.425 0.321 0.233 0.231 0.411 0.204 0.110 0.381 0.541 0.407 0.331

Negative sampling method
NSCaching 0.495 0.689 0.557 0.390 0.153 0.305 0.167 0.080 0.434 0.542 0.470 0.374

SANS 0.422 0.649 0.493 0.298 0.271 0.453 0.301 0.182 0.619 0.702 0.644 0.574
Positive-Unlabeled learning method

PUDA 0.493 0.713 0.559 0.377 0.271 0.443 0.298 0.185 0.520 0.667 0.608 0.419
nPUGraph 0.561* 0.791* 0.621* 0.449* 0.328* 0.535* 0.343* 0.221* 0.630* 0.754* 0.671* 0.599*
Gains (%) 3.0 8.1 2.1 1.9 12.0 11.4 5.9 8.7 1.8 7.4 4.1 4.4

Table 6: Experimental results under ptb_rate = 0.5.

Dataset FB15K FB15K-237 WN18
Metrics MRR H@10 H@3 H@1 MRR H@10 H@3 H@1 MRR H@10 H@3 H@1

Knowledge graph embedding methods
TransE 0.279 0.540 0.363 0.136 0.151 0.342 0.190 0.053 0.158 0.337 0.285 0.018
TransR 0.256 0.500 0.323 0.127 0.141 0.294 0.160 0.064 0.150 0.327 0.267 0.020

DistMult 0.328 0.536 0.372 0.224 0.210 0.366 0.228 0.133 0.279 0.370 0.319 0.224
ComplEx 0.322 0.525 0.365 0.220 0.201 0.358 0.220 0.123 0.314 0.373 0.335 0.280

RotatE 0.350 0.547 0.398 0.249 0.227 0.387 0.246 0.149 0.307 0.377 0.333 0.266
Graph neural network methods on KG

RGCN 0.134 0.271 0.142 0.065 0.116 0.234 0.117 0.058 0.253 0.323 0.287 0.209
CompGCN 0.378 0.600 0.429 0.266 0.223 0.377 0.240 0.149 0.345 0.315 0.336 0.279

Uncertain knowledge graph embedding method
UKGE 0.257 0.299 0.213 0.088 0.143 0.284 0.172 0.053 0.228 0.297 0.210 0.115

Negative sampling method
NSCaching 0.272 0.454 0.310 0.179 0.176 0.297 0.190 0.115 0.123 0.182 0.133 0.093

SANS 0.335 0.545 0.387 0.224 0.225 0.382 0.244 0.147 0.313 0.379 0.337 0.275
Positive-Unlabeled learning method

PUDA 0.329 0.525 0.369 0.229 0.202 0.347 0.217 0.131 0.231 0.329 0.264 0.178
nPUGraph 0.417* 0.663* 0.470* 0.291* 0.258* 0.433* 0.285* 0.171* 0.373* 0.443* 0.379* 0.327*
Gains (%) 10.4 10.5 9.6 9.6 13.9 12.0 16.1 14.8 8.2 16.9 12.6 16.9

Table 7: Experimental results under ptb_rate = 0.7.

Dataset FB15K FB15K-237 WN18
Metrics MRR H@10 H@3 H@1 MRR H@10 H@3 H@1 MRR H@10 H@3 H@1

Knowledge graph embedding methods
TransE 0.219 0.457 0.294 0.087 0.104 0.273 0.128 0.020 0.114 0.229 0.199 0.020
TransR 0.195 0.396 0.248 0.087 0.096 0.217 0.108 0.036 0.096 0.207 0.167 0.016

DistMult 0.250 0.425 0.282 0.163 0.173 0.308 0.186 0.105 0.181 0.240 0.211 0.143
ComplEx 0.241 0.408 0.271 0.157 0.158 0.290 0.170 0.092 0.202 0.243 0.219 0.178

RotatE 0.271 0.439 0.309 0.185 0.198 0.337 0.212 0.129 0.192 0.250 0.212 0.159
Graph neural network methods on KG

RGCN 0.129 0.229 0.134 0.075 0.086 0.178 0.086 0.040 0.166 0.215 0.191 0.135
CompGCN 0.354 0.578 0.402 0.243 0.193 0.325 0.204 0.129 0.212 0.262 0.229 0.183

Uncertain knowledge graph embedding method
UKGE 0.186 0.358 0.199 0.076 0.133 0.201 0.115 0.075 0.099 0.176 0.153 0.116

Negative sampling method
NSCaching 0.174 0.309 0.194 0.105 0.157 0.276 0.169 0.099 0.057 0.085 0.062 0.041

SANS 0.292 0.478 0.332 0.196 0.201 0.342 0.216 0.131 0.202 0.254 0.222 0.171
Positive-Unlabeled learning method

PUDA 0.254 0.421 0.283 0.170 0.165 0.291 0.176 0.104 0.109 0.171 0.127 0.077
nPUGraph 0.365* 0.600* 0.427* 0.277* 0.243* 0.390* 0.266* 0.155* 0.247* 0.303* 0.257* 0.209*
Gains (%) 3.0 3.8 6.3 13.9 20.9 14.1 23.0 18.5 16.8 15.5 12.3 14.4
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