
Findings of the Association for Computational Linguistics: ACL 2023, pages 2083–2096
July 9-14, 2023 ©2023 Association for Computational Linguistics

Exploiting Abstract Meaning Representation for
Open-Domain Question Answering

Cunxiang Wang♠♣∗, Zhikun Xu♡, Qipeng Guo♢, Xiangkun Hu♢,

Xuefeng Bai♣, Zheng Zhang♢ and Yue Zhang♣†

♠Zhejiang University, China
♣School of Engineering, Westlake University, China

♡Fudan University, China; ♢Amazon AWS AI
{wangcunxiang, zhangyue}@westlake.edu.cn

Abstract

The Open-Domain Question Answering
(ODQA) task involves retrieving and subse-
quently generating answers from fine-grained
relevant passages within a database. Current
systems leverage Pretrained Language Models
(PLMs) to model the relationship between
questions and passages. However, the diversity
in surface form expressions can hinder the
model’s ability to capture accurate correlations,
especially within complex contexts. Therefore,
we utilize Abstract Meaning Representation
(AMR) graphs to assist the model in under-
standing complex semantic information. We
introduce a method known as Graph-as-Token
(GST) to incorporate AMRs into PLMs.
Results from Natural Questions (NQ) and
TriviaQA (TQ) demonstrate that our GST
method can significantly improve performance,
resulting in up to 2.44/3.17 Exact Match
score improvements on NQ/TQ respectively.
Furthermore, our method enhances robustness
and outperforms alternative Graph Neural
Network (GNN) methods for integrating
AMRs. To the best of our knowledge, we are
the first to employ semantic graphs in ODQA.
1

1 Introduction

Question Answering (QA) is a significant task in
Natural Language Processing (NLP) (Rajpurkar
et al., 2016). Open-domain QA (ODQA) (Chen
et al., 2017), particularly, requires models to output
a singular answer in response to a given question
using a set of passages that can total in the millions.
ODQA presents two technical challenges: the first
is retrieving (Karpukhin et al., 2020) and rerank-
ing (Fajcik et al., 2021) relevant passages from the

∗ Done during the internship at Amazon AWS AI.
† The correponding author.

1 We release our code and data at
https://github.com/wangcunxiang/Graph-aS-Tokens

dataset, and the second is generating an answer for
the question using the selected passages. In this
work, we focus on the reranking and reading pro-
cesses, which necessitate fine-grained interaction
between the question and passages.

Existing work attempts to address these chal-
lenges using Pretrained Language Models (PLMs)
(Glass et al., 2022). However, the diverse sur-
face form expressions often make it challenging
for the model to capture accurate correlations, es-
pecially when the context is lengthy and complex.
We present an example from our experiments in
Figure 1. In response to the question, the reranker
incorrectly ranks a confusing passage first, and the
reader generates the answer “2015–16”. The er-
ror arises from the PLMs’ inability to effectively
handle the complex semantic structure. Despite

“MVP”, “Stephen Curry” and “won the award”
appearing together, they are not semantically re-
lated. In contrast, in the AMR graph, it is clear that

“Stephen Curry” wins over “international players”,
not the “MVP”, which helps the model avoid the
mistake. The baseline model may fail to associate
"Most Valuable Player" in the passage with "MVP"
in the question, which may be why the baseline
does not rank it in the Top10. To address this is-
sue, we adopt structured semantics (i.e., Abstract
Meaning Representation (Banarescu et al., 2013)
graphs shown on the right of Figure 1) to enhance
Open-Domain QA.

While previous work has integrated graphs into
neural models for NLP tasks, adding additional
neural architectures to PLMs can be non-trivial,
as training a graph network without compromis-
ing the original architecture of PLMs can be chal-
lenging (Ribeiro et al., 2021). Converting AMR
graphs directly into text sequences and append-
ing them can be natural, but leads to excessively
long sequences, exceeding the maximum process-

2083

Question: When did Stephen

Curry won the MVP award?

Golden Answer: 2014–15

Stephen Curry… In 2014-15, Curry

won the NBA Most Valuable Player

Award and led the Warriors to their first

championship since 1975. …

…Dirk Nowitzki of Germany are the

only MVP winners considered

"international players" by the NBA.

Stephen Curry in 2015–16 is the only

player to have won the award

unanimously.

Baseline ranker

Top1 psg;

Baseline reader

answer: 2015–16

Our ranker

Top1 psg;

Our reader

answer: 2014-15

Dirk

Nowitzki

multi-

sentences

MVP

person
:snt1

win

consider

:wiki

:ARG2

:ARG1-of

person

:ARG2 International

player
:mod

person

:snt2

Stephen

Curry

:name

winaward

:ARG1

:ARG2

:name

date-

entity

:time

2015

2016

:year

:year

Abstract Meaning Representation (AMR) graph

parsed with question and the blue passage

Figure 1: An example from our experiments. The top-middle square contains the question and the gold standard
answer. The middle section shows a confusing passage with an incorrect answer generated by the baseline model and
ranked first by the baseline reranker. The bottom-middle section presents a passage with the gold standard answer,
which is ranked within the top ten by our reranker but not by the baseline. Important information is highlighted.

ing length of the transformer. To integrate AMR
into PLMs without altering the transformer archi-
tecture and at a manageable cost, we treat nodes
and edges of AMR Graphs aS Tokens (GST) in
PLMs. This is achieved by projecting the embed-
dings of each node/edge, which consist of multiple
tokens, into a single token embedding and append-
ing them to the textual sequence embeddings. This
allows for integration into PLMs without altering
the main model architecture. This method does not
need to integrate a Graph Neural Network into the
transformer architecture of PLMs, which is com-
monly used in integrating graph information into
PLMs Yu et al. (2022); Ju et al. (2022). The GST
method is inspired by Kim et al. (2022) in the graph
learning domain, who uses token embeddings to
represent nodes and edges for the transformer ar-
chitecture in graph learning tasks. However, their
method is not tailored for NLP tasks, does not con-
sider the textual sequence embeddings, and only
handles a certain types of nodes/edges, whereas we
address unlimited types of nodes/edges consisting
of various tokens.

Specifically, we select BART and FiD as base-
lines for the reranking and reading tasks, respec-
tively. To integrate AMR information, we initially
embed each question-passage pair into text embed-
dings. Next, we parse the pair into a single AMR
graph using AMRBART (Bai et al., 2022a). We
then employ the GST method to embed the graph
nodes and graph edges into graph token embed-
dings and concatenate them with the text embed-
dings. Lastly, we feed the concatenated text-graph

embeddings as the input embeddings to a BART-
based (Lewis et al., 2020a) reranker to rerank or
a FiD-based (Izacard and Grave, 2020b) reader to
generate answers.

We validate the effectiveness of our GST ap-
proach using two datasets – Natural Question
(Kwiatkowski et al., 2019) and TriviaQA (Joshi
et al., 2017). Results indicate that AMR enhances
the models’ ability to understand complex seman-
tics and improves robustness. BART-GST-reranker
and FiD-GST outperform BART-reranker and FiD
on the reranking and reading tasks, respectively,
achieving up to 5.9 in Top5 scores, 3.4 in Top10
score improvements, and a 2.44 increase in Exact
Match on NQ. When the test questions are para-
phrased, models equipped with GST prove more
robust than the baselines. Additionally, GST out-
performs alternative GNN methods, such as Graph-
transformer and Relational Graph Convolution Net-
work (RGCN) (Schlichtkrull et al., 2018), for inte-
grating AMR.

To the best of our knowledge, we are the first to
incorporate semantic graphs into ODQA, thereby
achieving better results than the baselines.

2 Related Work

Open-domain QA. Open-Domain Question An-
swering (ODQA) (Chen et al., 2017) aims to
answer one factual question given a large-scale
text database, such as Wikipedia. It consists of
two steps. The first is dense passage retrieval
(Karpukhin et al., 2020) , which retrieves a cer-
tain number of passages that match the question. In

2084

this process, a reranking step can be used to filter
out the most matching passages (Fajcik et al., 2021;
Glass et al., 2022). The second is reading, which
finds answer by reading most matching passages
(Izacard and Grave, 2020b; Lewis et al., 2020b).
We focus on the reranking and reading, and inte-
grate AMR into those models.

Abstract Meaning Representation (AMR) (Ba-
narescu et al., 2013) is a formalism for representing
the semantics of a text as a rooted, directed graph.
In this graph, where nodes represent basic semantic
units such as entities and predicates, and edges rep-
resent the relationships between them. Compared
with free-form natural language, AMR graphs are
more semantically stable as sentences with same se-
mantics but different expressions can be expressed
as the same AMR graph (Bai et al., 2021; Naseem
et al., 2021). In addition, AMR graphs are believed
to have more structure semantic information than
pure text (Naseem et al., 2021).

Previous work has implemented AMR graphs
into neural network models. For example, (Bai
et al., 2021) adopts Graph-transformer (Yun et al.,
2019) to integrate AMRs into the transformer ar-
chitecture for the dialogue understanding and gen-
eration. AMR-DA (Shou et al., 2022) uses AMRs
as an data augmentation approach which first feeds
the text into AMRs and regenerates the text from
the AMRs. Bai et al. (2022b) uses AMR graphs
with rich semantic information to redesign the pre-
training tasks which results in improvement on
downstream dialogue understanding tasks. How-
ever, none of them is used for Open-domain QA
or applied with the GST technique. which does
not need to implement extra architectures in the
PLMs, avoiding the incompatibility of different
model architectures.

Integrating Structures into PLMs for ODQA
Some work also tries to integrate structure informa-
tion into PLMs for ODQA. For example, GRAPE
(Ju et al., 2022) insert a Relation-aware Graph Neu-
ral Network into the T5 encoders of FiD to encode
knowledge graphs to enhance the output embed-
dings of encoders; KG-FiD (Yu et al., 2022) uses
the knowledge graph to link different but corre-
lated passages, reranks them before and during the
reading, and only feeds the output embeddings of
most correlated passages into the decoder. How-
ever, existing work concentrates on the knowledge
graph as the source of structure information and no

previous work has considered AMRs for ODQA.

LLMs in Open-Domain Question Answering
(ODQA) Research has been conducted that uti-
lizes pre-trained language models (PLMs) to di-
rectly answer open-domain questions without re-
trieval (Yu et al., 2023; Wang et al., 2021; Ye et al.,
2021; Rosset et al., 2021). The results, however,
have traditionally not been as effective as those
achieved by the combined application of DPR and
FiD. It was not until the emergence of ChatGPT
that direct answer generation via internal parame-
ters appeared to be a promising approach.

In a study conducted by Wang et al. (2023), the
performances of Large Language Models (LLMs),
such as ChatGPT (versions 3.5 and 4), GPT-3.5,
and Bing Chat, were manually evaluated and com-
pared with that of DPR+FiD across NQ and TQ test
sets. The findings demonstrated that FiD surpassed
ChatGPT-3.5 and GPT-3.5 on the NQ test set and
outperformed GPT-3.5 on the TQ test set, affirming
the relevance and effectiveness of the DPR+FiD
approach even in the era of LLMs.

3 Method

We introduce the Retrieval and Reading of Open-
Domain QA and their baselines in Section 3.1,
AMR graph generation in Section 3.2 and our
method Graph-aS-Token (GST) in Section 3.3.

3.1 Baseline
Retrieval. The retrieval model aims to retrieve
N1 passages from M reference passages (N1 <<
M) given the question q. Only fast algorithms,
such as BM25 and DPR (Karpukhin et al., 2020),
can be used to retrieve from the large-scale
database, and complex but accurate PLMs can-
not be directly adopted. So, retrieval algorithm
is often not very accurate. One commonly used
method is applying a reranking process to fine-
grain the retrieval results, and we can use PLMs
to encode the correlations, which is usually more
accurate. Formally, reranking requires model to
sort out the most correlated N2 passages with q
from N1 passages (N2 < N1). For each passage p
in the retrieved passage PN1 , we concatenate the
q p together and embed them into text sequence
embeddings Xqp ∈ RL×H , where L is the max
token length of the question and passage pair and
H is the dimension.

We use a pretrained language model to encode
each Xqp and a classification head to calculate a

2085

𝐱𝟏
𝐓

… … …

… …

Nodeu
Token 1

𝐱𝟏
𝐮

Self-Attention LayerMLP

Nodeu
Embs 𝐱𝐮

…

[‘cls’, ‘ordinal’, ‘ -’, ‘ entity’,‘eos’, ‘pad’]

Tokenized node ‘ordinal-entity’

𝑅3𝑑 → 𝑅𝑑

AVERAGE

… …

Text Sequence Embs 𝐗𝐓 Node Sequence Embs 𝐗𝐍 Edge Sequence Embs 𝐗𝐄

Overall Sequence Embs 𝐗 = [𝐗𝐓, 𝐗𝐍, 𝐗𝐄]

Nodeu
Token 𝐧𝐮

𝐱𝐧𝐮
𝐮

Rel
Token 1

𝐱𝟏
𝐫

Rel
Token 𝐧𝐫

𝐱𝐧𝐫
𝐫

Nodev
Token 1

𝐱𝟏
𝐯

Nodev
Token 𝐧𝐯

𝐱𝐧𝐯
𝐯

Rel
Embs 𝐱𝐫

Nodev
Embs 𝐱𝐯

𝐱𝐧
𝐓 𝐱𝟏

𝐍 𝐱𝐧
𝐓

𝐱𝟏
𝐄 𝐱𝐢

𝐄 𝐱𝐧
𝐄

Figure 2: The structure of our Graph-aS-Token method. The input consists of the text and the AMR graph of one
passage; The output is a united embedding.

correlation score between q and p:

sqp = PLM(Xqp) (1)

where PLM denotes the pretrained language
model and the commonly used Multi-Layer Per-
ceptron (MLP) is used as as the classification head.

We use the cross entropy as the loss function,

L =
1

Nq

∑

q

[
1

Npos +Nneg

∑

p

lqp]

=
1

Nq ∗ (Npos +Nneg)

∑

q

∑

p

−

[(yqp ∗ log(sqp) + (1− yqp) ∗ log(1− sqp))],
(2)

where Npos and Nneg are the numbers of positive
and negative passages for training one question,
respectively. To identify positive/negative label of
each passage to the question, we follow Karpukhin
et al. (2020), checking whether at least one answer
appears in the passage.

We choose the N2 passages which have reranked
among Top-N2 for the reading process.

Reading. The reader needs to generate an an-
swer a given the question q and N2 passages. In
this work, we choose the Fusion-in-Decoder (FiD)
model (Izacard and Grave, 2020b) as the baseline
reader model. The FiD model uses N2 separate
T5 encoders (Raffel et al., 2020) to encode N2 pas-
sages and concatenate the encoder hidden states to
feed in one T5 decoder to generate answer.

Similar to reranking, we embed the question q
and each passage p to text sequence embeddings

Xqp ∈ RL×dH , where L is the max token length
of the question and passage pair and dH is the
dimension. Next, we feed the embeddings in the
FiD model to generate the answer

a = FiD([Xqp1 , . . . ,Xqpi
,XqpN2

]) (3)

where a is a text sequence.

3.2 AMR
We concatenate each question q and passage p,
parse the result sequence into an AMR graph
Gqp = {V,E}, where V,E are nodes and edges,
respectively. Each edge is equipped with types,
so e = {(u, r, v)} where u, r, v represent the head
node, relation and the tail node, respectively.

3.3 Graph aS Token (GST)
As shown in Figure 2, we project each node n
or edge e in one AMR graph G into node em-
bedding xn or edge embedding xe. We adopt
two types of methods to project each node and
edge embeddings to one token embedding, which
are MLP projection and Attention projection. Af-
ter the projection, we append the node embed-
dings XN = [xn

1 , . . . ,x
n
nn

] and edge embeddings
XE = [xe

1, . . . ,x
e
ne
] to the corresponding text se-

quence embeddings XT = [xt
1, . . . ,x

t
nt
]. So, the

result sequence embedding is in the following no-
tation:

X = [XT,XN,XE] (4)

Initialization We explain how we initialize em-
beddings of nodes and edges here.

2086

As each node n and relation r contain plu-
ral tokens (example of node ‘ordinal-entity’ is
shown the left and bottom of Figure 2), n =
[t1, .., tn] and r = [t1, . . . , tr], and each edge
e contains two nodes and one relation, we have
e = [[t1, .., tu], [t1, . . . , tr], [t1, .., tv]].

For edges and nodes, we first embed their inter-
nal tokens into token embedding.

For edges, we have

xe1 =[[xu
1 , . . . ,x

u
nu

],

[xr
1, . . . ,x

r
nr
],

[xv
1, . . . ,x

v
nv
]]

(5)

For nodes, we have

xn1 = [xn
1 , . . . ,x

n
n] (6)

MLP Projection The process is illustrated in the
MLP Projection part of Figure 2. As each AMR
node can have more than one tokens, we first aver-
age its token embeddings. For example, for a head
node u, xu = AV E([xu

1 , . . . ,x
u
nu

]) ∈ RdH . The
same is done for the relation.

Then, we concatenate the two node embeddings
and one relation embedding together as the edge
embedding,

xe2 = [xu,xr,xv] ∈ R3dH (7)

Next, we use a R3dH×dH MLP layer to project
the xe2 ∈ RdH into xe ∈ RdH , and the final edge
embedding

xe = MLP (xe2)

= MLP ([xu,xr,xv])
(8)

Similarly, we average the node tokens em-
beddings first xn1 = AV E([xn

1 , . . . ,x
n
n]). To

reuse the MLP layer, we copy the node em-
bedding two times and concatenate, so, xn2 =
[xn1,xn1,xn1] ∈ R3dH . Last, We adopt an MLP
layer to obtain final node embedding

xn = MLP (xn2) ∈ RdH (9)

We have also tried to assign separate MLP layers
to nodes and edges, but preliminary experiments
show that it does not improve the results.

Attention Projection We use one-layer self-
attention to project nodes and edges into embed-
dings, which is shown in the Attn Projection part
in Figure 2. The edge embedding is calculated

xe = AttE([x
u
1 , . . . ,x

u
nu

,

xr
1, . . . ,x

r
nr
,xv

1, . . . ,x
v
nv
])

(10)

Similarly, the node embedding is calculated

xn = AttN ([xn
1 , . . . ,x

n
n), (11)

where AttE and AttN both denote one self-
attention layer for edges and nodes, respectively.
We take the first token (additional token) embed-
ding from the self-attention output as the final em-
bedding.

We only modify the input embeddings from
X = XT to X = [XT,XN,XE]. The rest details
of models, such as the transformer architecture and
the training paradigm, are kept the same with the
baselines. Our model can directly use the PLMs to
encode AMR graphs, without incompatibility be-
tween GNN’s parameters and PLMs’ parameters.

4 Experiments

4.1 Data

We choose two representative Open-Domain QA
datasets, namely Natural Questions (NQ) and Triv-
iaQA (TQ), for experiments. Data details are in
presented in Appendix Table 9.

Since retrieval results have a large impact on the
performance of downstream reranking and reading,
we follow Izacard and Grave (2020b) and (Yu et al.,
2022) to fix retrieval results for each experiment to
make the reranking and reading results comparable
for different models. In particular, we use the DPR
model initialized with parameters in Izacard and
Grave (2020a) 2 to retrieve 100 passages for each
question. Then we rerank them into 10 passages,
which means N1 = 100, N2 = 10.

We generate the amr graphs using AMR-
BART (Bai et al., 2022a) (the AMRBART-large-
finetuned-AMR3.0-AMRParsing checkpoint) 3.

4.2 Models Details

We choose the BART model as the reranker base-
line and the FiD model (implemented on T5
model(Raffel et al., 2020)) as the reader baseline,
and adopt the GST method on them. For each
model in this work, we use its Large checkpoint,
such as BART-large and FiD-large, for reranking
and reading, respectively. In the reranking pro-
cess, we evaluate the model using the dev set per

2https://dl.fbaipublicfiles.com/FiD/
pretrained_models/nq_retriever.tar.gz
https://dl.fbaipublicfiles.com/FiD/pretrained_
models/tqa_retriever.tar.gz

3https://huggingface.co/xfbai/AMRBART-large-
finetuned-AMR3.0-AMRParsing

2087

https://dl.fbaipublicfiles.com/FiD/pretrained_models/nq_retriever.tar.gz
https://dl.fbaipublicfiles.com/FiD/pretrained_models/nq_retriever.tar.gz
https://dl.fbaipublicfiles.com/FiD/pretrained_models/tqa_retriever.tar.gz
https://dl.fbaipublicfiles.com/FiD/pretrained_models/tqa_retriever.tar.gz

Reranker + Reader \ Dataset
Natural Questions TriviaQA

Reranking Reading Reranking Reading
Top5 Top10 EM Top5 Top10 EM

w/o reranker + FiD-reader
73.7/74.6 79.5/80.3

49.47/50.66
78.0/78.1 81.5/81.8

69.02/69.50
w/o reranker + FiD-GST-A 50.12/51.11 70.17/70.39
w/o reranker + FiD-GST-M 50.06/50.97 69.98/70.10

BART-reranker + FiD-reader
78.7/78.6 83.0/83.3

50.33/51.33
83.2/83.2 85.2/85.1

71.16/71.33
BART-reranker + FiD-GST-A 50.80/52.38 71.93/72.05
BART-reranker + FiD-GST-M 50.76/52.24 72.12/72.24

BART-GST-A + FiD-reader 79.3/79.3 83.3/83.3 50.68/52.18 83.5/83.3 85.3/85.3 71.54/71.71
BART-GST-A + FiD-GST-A 51.05/52.80 72.63/72.67

BART-GST-M + FiD-reader 79.6/80.0 83.3/83.7 51.11/52.13 83.1/82.9 85.0/85.1 71.47/71.62
BART-GST-M + FiD-GST-M 51.40/53.10 72.58/72.61

Table 1: Reranking and reading results on the dev/test set of NQ and TQ. In each cell, the left is on the dev while
the right is on the test. For the BART/FiD with GST-M/A in the first column, they are equipped AMR graphs with
the GST method, -M indicates the MLP projection while -A is the attention projection.

Rearnker \ Dataset Natural Questions TriviaQA
MRR MH@10 MRR MH@10

w/o reranker 20.2/18.0 37.9/34.6 12.1/12.3 25.5/25.9

BART-reranker 25.7/23.3 49.3/45.8 16.9/17.0 37.7/38.0

BART-GST-A 28.1/24.7 52.7/48.2 17.7/17.8 39.3/39.9

BART-GST-M 28.4/25.0 53.2/48.7 17.5/17.6 39.1/39.5

Table 2: Overall reranking results on NQ and TQ. In
each cell, the left is dev and the right is test.

epoch, and use Top10 as the pivot metric to select
the best-performed checkpoint for the test. For the
reading, we evaluate the model per 10000 steps,
and use Exact Match as the pivot metric. For train-
ing rerankers, we set number of positive passages
as 1 and number of negative passages as 7. We run
experiments on 2 Tesla A100 80G GPUs.

4.3 Metric

Following Glass et al. (2022) and Izacard and
Grave (2020b), we use Top-N to indicate the rerank-
ing performance and Exact Match for the reading
performance.

However, TopN is unsuitable for indicating
the overall reranking performance for all positive
passages, so we also adopt two metrics, namely
Mean Reciprocal Rank (MRR) and Mean Hits@10
(MHits@10). The MRR score is the Mean Re-
ciprocal Rank of all positive passages. Higher
scores indicate that the positive passages are ranked
higher overall. The MHits@10 indicates the per-
centage of positive passages are ranked in Top10.
Higher scores indicate that more positive passages
are ranked in Top10. Their formulations are in

Appendix Section A.5. Note that, only when the
retrieved data is exactly the same, the MRR and
MHits@10 metrics are comparable.

4.4 Preliminary Experiments

We present the reranking performance of four base-
line PLMs, including BERT (Devlin et al., 2019),
RoBERTa (Liu et al., 2019), ELECTRA (Clark
et al., 2020) and BART (Lewis et al., 2020a) on the
NQ and TQ in Appendix Table 8. BART outper-
forms other three models in every metric on both
NQ and TQ. So, we choose it as the reranker base-
line and apply our Graph-aS-Token method to it in
following reranking experiments.

4.5 Main Results

The Main results are presented in Table 1. Our
method can effectively boost the performance on
both reranking and reading.

Reading. As shown in the reading columns of Ta-
ble 1, our method can boost the FiD performance,
no matter whether there is reranker and whether the
reranker is with AMR or not. Without reranking,
FiD-GST-A achieves 51.11/70.39 EM on NQ/TQ
test , which are 0.45/0.89 EM higher over the base-
line FiD; With reranking, ‘BART-GST-M + FiD-
GST-M ’ achieves 53.10/72.61 EM on NQ/TQ test,
1.77/1.27 EM better than ‘BART-reranker + FiD’.
With the same reranker, FiD-GST is better than
the baseline FiD, for example, ‘BART-reranker +
FiD-GST-A’ achieves 52.38/72.05 on NQ/TQ test,
which is 1.05/0.72 higher than the 51.33/71.33 of
‘BART-reranker + FiD’.

Overall, our GST models have achieved up to

2088

Orig Test New Test Drop

BART-reranker 78.6/83.3
23.3/45.8

76.2/81.8
21.5/43.6

-2.6/-1.5
-1.8/-2.2

BART-GST-A 79.3/83.3
24.7/48.2

77.4/82.0
23.2/46.1

-1.9/-1.3
-1.4/-2.1

BART-GST-M 80.0/83.7
25.0/48.7

78.0/82.4
23.4/46.3

-2.0/-1.3
-1.6/-2.4

A: Robustness of rerankers. Each cell contains
Top5/Top10/MRR/MHits@10 as the metrics.

Orig Test New Test Drop

FiD-reader 50.66 46.76 -3.90

FiD-GST-A 51.11 47.84 -3.27

FiD-GST-M 50.97 47.76 -3.21
B: Robustness of readers. Exact Match as the Metric.
To avoid the influence of different reranking results,

we use the same DPR results to train and eval.

Table 3: Robustness on rerankers and readers. We con-
duct experiments on NQ. Orig Test is the original test
questions while New Test means the paraphased test
questions. Drop is the difference from the original test
to the paraphrased test, the smaller absolute number
indicates better robustness.

2.44 EM (53.10 vs 50.66) on NQ test and 3.17
(72.67 vs 69.50) on TQ test.

Reranking Shown in the reranking columns
of Table 1, BART-GST-M can achieve 80.0/83.7
scores in Top5/Top10, which improve 5.4/3.4 on
NQ-test compared to DPR and 1.4/0.4 compared to
BART-reranker. BART-GST-M achieves 79.3/83.3
scores in Top5/Top10, which outperform DPR by
4.7/3.0 on NQ-test, showing that our GST method
is effective.

We present results of the MRR and MHits@10
metrics in Table 2. Our GST method can help
positive passages rank higher in Top10. In
NQ, BART-GST-M has 7.0/14.1 advantages on
MRR/MHits@10 over DPR while 1.7/2.9 advan-
tages over BART-reranker; In TQ, BART-GST-A
has 5.5/14.0 advantages on MRR/MHits@10 over
DPR and 0.8/1.9 advantages on MRR, MHits@10
over BART-reranker.

The overall reranking results can also explain the
reason why even when the Top10 results are similar
and readers are the same, the reranked passages by
BART-GST can lead to better reading performance.
For example, in NQ test, the reading performance
of ‘BART-GST-M + FiD’ is 0.80 better than ‘BART-
reranker + FiD’.

NQ dev NQ test TQ dev TQ test

FiD-10 49.47 50.66 69.02 69.50

FiD-100 51.60 52.88 71.61 71.88

FiD-10
w/ BART-reranker 50.33 51.33 71.16 71.33

FiD-GST-A-10
w/ BART-GST-A reranker 51.03 52.80 72.63 72.67

FiD-GST-M-10
w/ BART-GST-M reranker 51.30 53.10 72.58 72.61

Table 4: Reading experiments of with and without
reranking. The first two row are trained/evaluated with
DPR data while the rest are with reranked data.

4.6 Analysis

Robustness. To evaluate the robustness of the
baseline and our models, we paraphrase the test
questions of NQ and TQ, evaluate paraphrased
test questions and the original ones with the same
model checkpoint. We use a widely-used para-
phraser, namely Parrot Paraphraser (Damodaran,
2021) to paraphrase test questions. The results are
shown in Table 3.

The performance drops in reranking and read-
ing of our GST models are lower than the
baseline model, despite that our models have
better performance. For reranking, the drop
of our BART-GST-A is -1.9/-1.3/-1.4/-2.1 for
Top5/Top10/MRR/MHits@10, which is lower than
the baseline’s -2.6/-1.5/-1.8/-2.2. For reading, the
-3.21 EM drop of FiD-GST-M is also smaller than
the -3.90 of baseline FiD. It shows that our GST
method can not only improve performance but also
improve robustness, which can prove that adding
structural information can help models avoid the
erroneous influence of sentence transformation.

Comparison with FiD-100. We also compare
the reranking+reading paradigm with the directly-
reading paradigm. For the latter, the FiD reader
is directly trained and evaluated on 100 retrieved
passages without reranking. The results are shown
in Table 4.

Without our GST method, the reranking+reading
paradigm (FiD-10 w/ BART reranker) is worse than
FiD-100 without reranking, which is 71.33 to 71.78
on the test. However, with our GST method, the
reranking+reading paradigm outperforms FiD-100.
For example, FiD-GST-M-10 w/ BART-GST-M
reranker has better performance on NQ test than
FiD-100, which is 53.10 vs 52.88, and FiD-GST-
A-10 w/ BART-GST-A reranker vs FiD-100 on TQ

2089

Top5 Top10 MRR MH@10

BART-reranker 78.7/78.6 83.0/83.3 25.7/23.3 49.3/45.8

BART-GST-M
(superior AMRs) 79.6/80.0 83.3/83.7 28.4/25.0 53.2/48.7

BART-GST-M
(inferior AMRs) 79.5/79.3 83.5/83.1 28.4/24.7 52.9/47.8

In reranking.

Exact Match

FiD-reader 48.47/50.66

FiD-GST-A
(superior AMRs) 50.12/51.11

FiD-GST-A
(inferior AMRs) 49.95/50.83

In reading.

Table 5: Influence of superior AMR graphs which gener-
ated by a larger model, and inferior AMR graphs which
generated by a smaller model.

Top5 Top10 MRR MH@10

BART-reranker 78.7/78.6 83.0/83.3 25.7/23.3 49.3/45.8

BART-GST-M 79.6/80.0 83.3/83.7 28.4/25.0 53.2/48.7

BART-GST-M
only nodes 78.5/78.9 82.9/83.1 27.6/24.2 51.8/47.3

BART-GST-M
only edges 78.6/79.3 83.0/83.3 27.9/24.7 52.4/47.4

Table 6: Ablation to nodes and edges to our GST meth-
ods on NQ. We choose BART-GST-M because it better
performs on NQ.

test is 72.67 vs 71.78.
To our knowledge, we are the first make FiD-10

beat FiD-100.

Influence of AMR Quality. We explore how
AMR graphs quality influence the performance of
our models in this section, by using the AMRBART-
base-finetuned-AMR3.0-AMRParsing, 4 which is
a smaller version. We compare the reranking per-
formance of BART-GST with either superior or
inferior graphs on NQ and TQ. We use the each
kind of graphs to train its own reranking models.
The results are shown in Table 5.

Our models still work with inferior AMR graphs
but the performance is not good as the superior ones
in both reranking and reading. This indicates that
when the quality of AMR graphs is higher, the GST
models can potentially achieve better performance.

Ablation to Nodes/Edges We ablate nodes and
edges in our models to explore whether nodes or

4https://huggingface.co/xfbai/AMRBART-base-
finetuned-AMR3.0-AMRParsing

Question: When did the smoking ban in public places start?

Golden Answer: 1995

Act in 1993 and started implementing

the act in 1995. The act regulated

smoking in public areas and

prohibited tobacco sales to people

under the age of 16....

Smoking ban ... the consequences of

smoking that introduced a ban on

smoking in all closed public areas…

took effect on 1 June 2013. At first

smoking ban abusers were not fined ...

Baseline ranker in

Top10 psg;

Baseline reader

answer: 1 June 2013

Our ranker

in Top10 psg;

Our reader answer:

1995

Question: Who did

the Minnesota

Vikings lose to in the

Super Bowl?

Golden Answers:

"Kansas City Chiefs"

… The Vikings went on to the NFC

Championship for the opportunity to play

in Super Bowl LII in their own stadium,

only to lose 38–7 to the eventual Super

Bowl champion Philadelphia Eagles …

… he was unable to lead the team to

victory in the Super Bowl, as the Vikings

lost 23–7 to the Kansas City Chiefs …

A: A case for reranking, where the baseline ranker does not

rank the positive psg into Top10 while our model does.

B: A case for reading, where the negative and positive psgs are

both ranked into Top10. The baseline reader finds the wrong

psg to answer while our model answer correctly.

Figure 3: Two cases from our experiments for rerank-
ing and reading, respectively. We highlight important
information over questions and passages.

edges contribute more to the results. We con-
duct reranking experiments on NQ. The results
are shown in Table 6. As can be seen, nodes are
edges are both useful for the GST method, where
‘BART-GST-M (only nodes)’ and ‘BART-GST-M
(only edges)’ both outperform the baseline BART-
reranker in MRR/MHits@10 on NQ test, which are
24.2/48.7 vs 24.7/47.4 vs 23.3/45.8, respectively.
However, ‘BART-GST-M (only edges)’ are better
than ‘BART-GST-M (only nodes)’ in four metrics
on NQ, partly due to the fact that edges also contain
nodes information.

Case Study We present two cases from our in
Figure 3. In the upper one, for the negative passage,
the baseline may consider “a ban on smoking in
all closed public areas” same as “the smoking ban
in public places”, which are actually different; For
the positive passage, the baseline may not take “act
regulated smoking in public area” as “the smoking
ban in public places” while our model does.

In the lower one, the baseline reader ignores
the competition is “ for the opportunity to play
in Super Bow” rather than “in the Super Bowl” ,
and because the number of similar passages with

“Philadelphia Eagle” are more than the positive
passage’s, the baseline reader finds the incorrect
passage which leads to the incorrect answer. In

2090

Top5 Top10 MRR MH@10

BART-reranker 78.7/78.6 83.0/83.3 25.7/23.3 49.3/45.8

BART-GST-M 79.6/80.0 83.3/83.7 28.4/25.0 53.2/48.7

RGCN-Stacking 78.6/78.2 82.3/83.0 26.1/23.1 49.5/46.0

Table 7: Comparison between the baseline, GST and
RGCN-Stacking in reranking on NQ.

contrast, our model focuses on the only positive
passage and answers the question correctly.

4.7 Alternative Graph Methods
We have also tried several methods to integrate
AMRs into PLMs, but their performance is worse
than our Graph-aS-Token method. Here we
take two representative examples, which are Re-
lational Graph Convolution Network (RGCN)
(Schlichtkrull et al., 2018) for the reranker and
Graph-transformer (Yun et al., 2019) for FiD. All
those methods require alignments between text to-
kens and graph nodes, for which only some nodes
can be successfully aligned.

Stacking RGCN above Transformer The
model architecture consists of a transformer en-
coder and a RGCN model where RGCN is stacked
on top of the transformer. After the vanilla forward
by transformer encoder, AMR graphs abstracted
from queries and passages in advance are con-
structed with node embeddings initialized from
transformer output. Then they are fed into the
RGCN model and the final output of the [CLS]
node is used for scoring.

For the text embeddings of one question-passage
pair, its encoder hidden states

H = Encoder(Xqp)

For one node n, its initial embedding

h0 = MeanPooling(Hstart:end)

where start and end are the start and end positions
of the text span aligned with the node.

The update of node embedding for each layer l
is

hl+1
i = σ(W l

0h
l
i +

∑

r∈R

∑

j∈Nr
i

1

ci,r
W l

rh
l
i)

ci,r = ∥N r
i ∥

where R is the set of edge types, N r
i stands for

the group of nodes which connect with node i in
relation r.

so the correlation score of q and p:

sqp = ClsHead(hL[CLS])

The results are presented in Table 7, which is
clear that the RGCN-stacking method is inferior to
the GST method. Some metrics, including Top5,
Top10 and MRR, of RGCN-stacking are worse than
the baseline, meaning the RGCN method is not
feasible for integrating AMRs into PLMs though it
looks like reasonable and practical.

Graph-transformer We apply the graph-
transformer architecture to FiD model for reading.
We follow the graph-transformer architecture in
Bai et al. (2021), whose main idea is using AMR
information to modify the self-attention scores
between text tokens. However, we find stucking
challenging for PLMs because the new-initialized
graph architectures are not compatible with
architectures of PLMs, lead to non-convergence
during training. Despite that, tricks such as
incrementally training and separate tuning can lead
to convergence, results are still below the baseline
model, let alone GST.

Flattening AMR Graphs We have also tried to
directly flatten AMR graphs into text sequences,
but the result sequences are always beyond the max-
imum processing length (1024) of the transformer.
So, we have to cut off some nodes and edges to fit
in the transformer, but the results show that it does
not work well and has only a very sight improve-
ment while the computational cost is tens times
over the baseline.

5 Conclusion

In this study, we successfully incorporated Ab-
stract Meaning Representation (AMR) into Open-
Domain Question Answering (ODQA) by innova-
tively employing a Graph-aS-Token (GST) method
to assimilate AMRs with pretrained language mod-
els. The reranking and reading experiments con-
ducted on the Natural Questions and TriviaQA
datasets have demonstrated that our novel approach
can notably enhance the performance and resilience
of Pretrained Language Models (PLMs) within the
realm of ODQA.

Acknowledgement

This publication has emanated from research con-
ducted with the financial support of the Pioneer and

2091

“Leading Goose" R&D Program of Zhejiang under
Grant Number 2022SDXHDX0003.

Limitations

Our Graph-aS-Token (GST) method can increase
the time and GPU memory cost, we set an quanti-
tative analysis in Appendix Section A.4. We train
the models with only one random seed. We do
not conduct a large number of hyper-parameter
tuning experiments, but use a fixed set of hyper-
parameters to make the baseline and our models
comparable.

Ethics Statement

No consideration.

References
Xuefeng Bai, Yulong Chen, Linfeng Song, and Yue

Zhang. 2021. Semantic representation for dialogue
modeling. In Proceedings of the 59th Annual Meet-
ing of the Association for Computational Linguistics
and the 11th International Joint Conference on Natu-
ral Language Processing (Volume 1: Long Papers),
pages 4430–4445, Online. Association for Computa-
tional Linguistics.

Xuefeng Bai, Yulong Chen, and Yue Zhang. 2022a.
Graph pre-training for AMR parsing and generation.
In Proceedings of the 60th Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 6001–6015, Dublin, Ireland.
Association for Computational Linguistics.

Xuefeng Bai, Linfeng Song, and Yue Zhang. 2022b.
Semantic-based pre-training for dialogue understand-
ing. In Proceedings of the 29th International Confer-
ence on Computational Linguistics, pages 592–607,
Gyeongju, Republic of Korea. International Commit-
tee on Computational Linguistics.

Laura Banarescu, Claire Bonial, Shu Cai, Madalina
Georgescu, Kira Griffitt, Ulf Hermjakob, Kevin
Knight, Philipp Koehn, Martha Palmer, and Nathan
Schneider. 2013. Abstract Meaning Representation
for sembanking. In Proceedings of the 7th Linguistic
Annotation Workshop and Interoperability with Dis-
course, pages 178–186, Sofia, Bulgaria. Association
for Computational Linguistics.

Danqi Chen, Adam Fisch, Jason Weston, and Antoine
Bordes. 2017. Reading Wikipedia to answer open-
domain questions. In Association for Computational
Linguistics (ACL).

Kevin Clark, Minh-Thang Luong, Quoc V. Le, and
Christopher D. Manning. 2020. Pre-training trans-
formers as energy-based cloze models. In EMNLP.

Prithiviraj Damodaran. 2021. Parrot: Paraphrase gener-
ation for nlu.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Martin Fajcik, Martin Docekal, Karel Ondrej, and Pavel
Smrz. 2021. R2-D2: A modular baseline for open-
domain question answering. In Findings of the As-
sociation for Computational Linguistics: EMNLP
2021, pages 854–870, Punta Cana, Dominican Re-
public. Association for Computational Linguistics.

Michael Glass, Gaetano Rossiello, Md Faisal Mahbub
Chowdhury, Ankita Naik, Pengshan Cai, and Alfio
Gliozzo. 2022. Re2G: Retrieve, rerank, generate.
In Proceedings of the 2022 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 2701–2715, Seattle, United States. Association
for Computational Linguistics.

Gautier Izacard and Edouard Grave. 2020a. Distilling
knowledge from reader to retriever for question an-
swering.

Gautier Izacard and Edouard Grave. 2020b. Leveraging
passage retrieval with generative models for open
domain question answering.

Mandar Joshi, Eunsol Choi, Daniel S. Weld, and Luke
Zettlemoyer. 2017. Triviaqa: A large scale distantly
supervised challenge dataset for reading comprehen-
sion. In Proceedings of the 55th Annual Meeting of
the Association for Computational Linguistics, Van-
couver, Canada. Association for Computational Lin-
guistics.

Mingxuan Ju, Wenhao Yu, Tong Zhao, Chuxu Zhang,
and Yanfang Ye. 2022. Grape: Knowledge graph
enhanced passage reader for open-domain question
answering. In Findings of Empirical Methods in
Natural Language Processing.

Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick
Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, and
Wen-tau Yih. 2020. Dense passage retrieval for open-
domain question answering. In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 6769–6781,
Online. Association for Computational Linguistics.

Jinwoo Kim, Tien Dat Nguyen, Seonwoo Min, Sungjun
Cho, Moontae Lee, Honglak Lee, and Seunghoon
Hong. 2022. Pure transformers are powerful graph
learners. ArXiv, abs/2207.02505.

2092

https://doi.org/10.18653/v1/2021.acl-long.342
https://doi.org/10.18653/v1/2021.acl-long.342
https://aclanthology.org/2022.acl-long.415
https://aclanthology.org/2022.coling-1.49
https://aclanthology.org/2022.coling-1.49
https://aclanthology.org/W13-2322
https://aclanthology.org/W13-2322
https://www.aclweb.org/anthology/2020.emnlp-main.20.pdf
https://www.aclweb.org/anthology/2020.emnlp-main.20.pdf
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/2021.findings-emnlp.73
https://doi.org/10.18653/v1/2021.findings-emnlp.73
https://doi.org/10.18653/v1/2022.naacl-main.194
https://arxiv.org/abs/2012.04584
https://arxiv.org/abs/2012.04584
https://arxiv.org/abs/2012.04584
https://arxiv.org/abs/2007.0128
https://arxiv.org/abs/2007.0128
https://arxiv.org/abs/2007.0128
https://doi.org/10.18653/v1/2020.emnlp-main.550
https://doi.org/10.18653/v1/2020.emnlp-main.550

Tom Kwiatkowski, Jennimaria Palomaki, Olivia Red-
field, Michael Collins, Ankur Parikh, Chris Alberti,
Danielle Epstein, Illia Polosukhin, Matthew Kelcey,
Jacob Devlin, Kenton Lee, Kristina N. Toutanova,
Llion Jones, Ming-Wei Chang, Andrew Dai, Jakob
Uszkoreit, Quoc Le, and Slav Petrov. 2019. Natu-
ral questions: a benchmark for question answering
research. Transactions of the Association of Compu-
tational Linguistics.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Veselin Stoyanov, and Luke Zettlemoyer. 2020a.
BART: Denoising sequence-to-sequence pre-training
for natural language generation, translation, and com-
prehension. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 7871–7880, Online. Association for Computa-
tional Linguistics.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio
Petroni, Vladimir Karpukhin, Naman Goyal, Hein-
rich Küttler, Mike Lewis, Wen-tau Yih, Tim Rock-
täschel, Sebastian Riedel, and Douwe Kiela. 2020b.
Retrieval-augmented generation for knowledge-
intensive nlp tasks. In Proceedings of the 34th Inter-
national Conference on Neural Information Process-
ing Systems, NIPS’20, Red Hook, NY, USA. Curran
Associates Inc.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Tahira Naseem, Austin Blodgett, Sadhana Kumaravel,
Timothy J. O’Gorman, Young-Suk Lee, Jeffrey Flani-
gan, Ramón Fernández Astudillo, Radu Florian,
Salim Roukos, and Nathan Schneider. 2021. Docamr:
Multi-sentence amr representation and evaluation. In
North American Chapter of the Association for Com-
putational Linguistics.

Colin Raffel, Noam Shazeer, Adam Roberts, Kather-
ine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. 2020. Exploring the
limits of transfer learning with a unified text-to-text
transformer. Journal of Machine Learning Research,
21(140):1–67.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. SQuAD: 100,000+ questions for
machine comprehension of text. In Proceedings of
the 2016 Conference on Empirical Methods in Natu-
ral Language Processing, pages 2383–2392, Austin,
Texas. Association for Computational Linguistics.

Leonardo F. R. Ribeiro, Yue Zhang, and Iryna Gurevych.
2021. Structural adapters in pretrained language
models for AMR-to-Text generation. In Proceed-
ings of the 2021 Conference on Empirical Methods
in Natural Language Processing, pages 4269–4282,
Online and Punta Cana, Dominican Republic. Asso-
ciation for Computational Linguistics.

Corbin L Rosset, Chenyan Xiong, Minh Phan, Xia Song,
Paul N. Bennett, and saurabh tiwary. 2021. Pretrain
knowledge-aware language models.

Michael Schlichtkrull, Thomas N. Kipf, Peter Bloem,
Rianne van den Berg, Ivan Titov, and Max Welling.
2018. Modeling relational data with graph convolu-
tional networks. In The Semantic Web, pages 593–
607, Cham. Springer International Publishing.

Ziyi Shou, Yuxin Jiang, and Fangzhen Lin. 2022. AMR-
DA: Data augmentation by Abstract Meaning Rep-
resentation. In Findings of the Association for Com-
putational Linguistics: ACL 2022, pages 3082–3098,
Dublin, Ireland. Association for Computational Lin-
guistics.

Cunxiang Wang, Sirui Cheng, Zhikun Xu, Bowen Ding,
Yidong Wang, and Yue Zhang. 2023. Evaluating
open question answering evaluation.

Cunxiang Wang, Pai Liu, and Yue Zhang. 2021. Can
generative pre-trained language models serve as
knowledge bases for closed-book QA? In Proceed-
ings of the 59th Annual Meeting of the Association for
Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing
(Volume 1: Long Papers), pages 3241–3251, Online.
Association for Computational Linguistics.

Qinyuan Ye, Belinda Z. Li, Sinong Wang, Benjamin
Bolte, Hao Ma, Wen tau Yih, Xiang Ren, and Madian
Khabsa. 2021. Studying strategically: Learning to
mask for closed-book qa.

Donghan Yu, Chenguang Zhu, Yuwei Fang, Wenhao
Yu, Shuohang Wang, Yichong Xu, Xiang Ren, Yim-
ing Yang, and Michael Zeng. 2022. KG-FiD: Infus-
ing knowledge graph in fusion-in-decoder for open-
domain question answering. In Proceedings of the
60th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
4961–4974, Dublin, Ireland. Association for Compu-
tational Linguistics.

Wenhao Yu, Dan Iter, Shuohang Wang, Yichong Xu,
Mingxuan Ju, Soumya Sanyal, Chenguang Zhu,
Michael Zeng, and Meng Jiang. 2023. Generate
rather than retrieve: Large language models are
strong context generators. In International Confer-
ence for Learning Representation (ICLR).

Seongjun Yun, Minbyul Jeong, Raehyun Kim, Jaewoo
Kang, and Hyunwoo J Kim. 2019. Graph transformer
networks. In Advances in Neural Information Pro-
cessing Systems, volume 32. Curran Associates, Inc.

A Experimental Details

A.1 Pre-experiment
A.2 Details for Data
For each question and passage pair, we feed it in
the generator in such a format “Question: <ques-
tion>. Title: <Passage Title>. Context: <Passage

2093

https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
https://doi.org/10.18653/v1/D16-1264
https://doi.org/10.18653/v1/D16-1264
https://doi.org/10.18653/v1/2021.emnlp-main.351
https://doi.org/10.18653/v1/2021.emnlp-main.351
https://openreview.net/forum?id=OAdGsaptOXy
https://openreview.net/forum?id=OAdGsaptOXy
https://doi.org/10.18653/v1/2022.findings-acl.244
https://doi.org/10.18653/v1/2022.findings-acl.244
https://doi.org/10.18653/v1/2022.findings-acl.244
http://arxiv.org/abs/2305.12421
http://arxiv.org/abs/2305.12421
https://doi.org/10.18653/v1/2021.acl-long.251
https://doi.org/10.18653/v1/2021.acl-long.251
https://doi.org/10.18653/v1/2021.acl-long.251
http://arxiv.org/abs/2012.15856
http://arxiv.org/abs/2012.15856
https://doi.org/10.18653/v1/2022.acl-long.340
https://doi.org/10.18653/v1/2022.acl-long.340
https://doi.org/10.18653/v1/2022.acl-long.340
https://proceedings.neurips.cc/paper/2019/file/9d63484abb477c97640154d40595a3bb-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/9d63484abb477c97640154d40595a3bb-Paper.pdf

Top5 Top10 MRR MH@10

w/o reranker 73.7/74.6 79.5/80.3 20.2/18.0 37.9/34.6

BERT 76.5/75.7 81.5/81.4 23.7/20.9 45.5/41.5

RoBERTa 77.1/76.6 82.3/82.3 24.7/21.5 47.7/43.3

ELECTRA 77.3/77.8 82.4/82.5 25.1/22.5 47.9/43.9

BART 78.7/78.6 83.0/83.3 25.7/23.3 49.3/45.8
A: On the Natural Questions dataset.

Top5 Top10 MRR MH@10

w/o reranker 78.0/78.1 81.5/81.8 12.1/12.3 25.5/25.9

BERT 82.0/82.3 84.5/84.7 16.0/16.2 35.6/35.9

RoBERTa 82.8/82.9 85.0/85.0 16.8/16.8 37.2/37.4

ELECTRA 82.4/82.6 84.8/82.6 16.3/16.4 36.2/36.4

BART 83.2/83.1 85.2/85.1 16.9/17.0 37.7/38.0
B: On the TriviaQA dataset.

Table 8: Pre-experiments of four PLMs’ reranking per-
formance on NQ and TQ. In each cell, the left is on the
dev while the right is on the test. Among four PLMs,
BART performs best.

Train Set Dev Set Test Set

Natural Questions 79168 8757 3610

TriviaQA 78785 8837 11313

Table 9: Details of each dataset.

Context>”. Additionally, we link the nodes, which
are recognized as entities such as person name and
date and have same surfaces, with the “:same” re-
lation because it helps performance. For nodes in
one AMR graph, we remove their ‘-XX’, where X
is a 0-9 number.

A.3 Hyper-parameters

We set other model-related hyper-parameters in
Table 10.

A.4 Cost Increase

We conduct an experiment of the increase of time
and GPU memory cost on our GST compared with
the baseline. For inference, while keeping other
parameters as the same, the time costs of FiD-GST-
M, FiD-GST-A are 1.29x and 1.40x, respectively,
and the GPU memory costs are 1.11x and 1.40x,
respectively, compared with FiD, as shown in Table
11.

A.5 Metrics

MRR =
1

|Q|
∑

i∈Q
((

∑

j∈Pos

1

t(j)
)

1

numPos(i)
)

Reranking Reading

Leaning Rate 3e-5 1e-4

Training Epoch 10 5

Node MaxLength 145 145

Edge MaxLength 165 165

Text Maxlength 200 200

Eval Step/Epoch 10k steps 1 epoch

Table 10: Hyper-parameters Setting

Time cost GPU Memory Cost

FiD 1.00 1.00

FiD-GST-M 1.29 1.11

FiD-GST-M 1.40 1.40

Table 11: The results of time and GPU memory cost
comparing our GST method and the baseline. The ex-
periment is inference on the NQ test set. We take the
baseline FiD model cost as 1.00.

where Q is the evaluating dataset; t(j) is the rank
of passage j; Pos is the set of positive passages.

MHits@10 =
1

|Q|
∑

i∈Q
(

∑

j∈pos,t(j)<11

1

numPos(i)
)

where Q is the evaluating dataset; t(j) is the rank
of passage j; Pos is the set of positive passages.

2094

ACL 2023 Responsible NLP Checklist

A For every submission:
�3 A1. Did you describe the limitations of your work?

Limitations section

�3 A2. Did you discuss any potential risks of your work?
No potential risks

�3 A3. Do the abstract and introduction summarize the paper’s main claims?
Abstract and Introduction sections

�7 A4. Have you used AI writing assistants when working on this paper?
Left blank.

B �3 Did you use or create scientific artifacts?
Section 4

�3 B1. Did you cite the creators of artifacts you used?
Section 4

�3 B2. Did you discuss the license or terms for use and / or distribution of any artifacts?
Section 4

�3 B3. Did you discuss if your use of existing artifact(s) was consistent with their intended use, provided
that it was specified? For the artifacts you create, do you specify intended use and whether that is
compatible with the original access conditions (in particular, derivatives of data accessed for research
purposes should not be used outside of research contexts)?
Section 4

� B4. Did you discuss the steps taken to check whether the data that was collected / used contains any
information that names or uniquely identifies individual people or offensive content, and the steps
taken to protect / anonymize it?
Not applicable. Left blank.

� B5. Did you provide documentation of the artifacts, e.g., coverage of domains, languages, and
linguistic phenomena, demographic groups represented, etc.?
Not applicable. Left blank.

�3 B6. Did you report relevant statistics like the number of examples, details of train / test / dev splits,
etc. for the data that you used / created? Even for commonly-used benchmark datasets, include the
number of examples in train / validation / test splits, as these provide necessary context for a reader
to understand experimental results. For example, small differences in accuracy on large test sets may
be significant, while on small test sets they may not be.
Section 4

C �3 Did you run computational experiments?
Section 4

�3 C1. Did you report the number of parameters in the models used, the total computational budget
(e.g., GPU hours), and computing infrastructure used?
Section 4

The Responsible NLP Checklist used at ACL 2023 is adopted from NAACL 2022, with the addition of a question on AI writing
assistance.

2095

https://2023.aclweb.org/
https://2022.naacl.org/blog/responsible-nlp-research-checklist/
https://2023.aclweb.org/blog/ACL-2023-policy/
https://2023.aclweb.org/blog/ACL-2023-policy/

�3 C2. Did you discuss the experimental setup, including hyperparameter search and best-found
hyperparameter values?
Section 4 and appendix

�3 C3. Did you report descriptive statistics about your results (e.g., error bars around results, summary
statistics from sets of experiments), and is it transparent whether you are reporting the max, mean,
etc. or just a single run?
Section 4

� C4. If you used existing packages (e.g., for preprocessing, for normalization, or for evaluation), did
you report the implementation, model, and parameter settings used (e.g., NLTK, Spacy, ROUGE,
etc.)?
Not applicable. Left blank.

D �7 Did you use human annotators (e.g., crowdworkers) or research with human participants?
Left blank.

� D1. Did you report the full text of instructions given to participants, including e.g., screenshots,
disclaimers of any risks to participants or annotators, etc.?
No response.

� D2. Did you report information about how you recruited (e.g., crowdsourcing platform, students)
and paid participants, and discuss if such payment is adequate given the participants’ demographic
(e.g., country of residence)?
No response.

� D3. Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? For example, if you collected data via crowdsourcing, did your instructions to
crowdworkers explain how the data would be used?
No response.

� D4. Was the data collection protocol approved (or determined exempt) by an ethics review board?
No response.

� D5. Did you report the basic demographic and geographic characteristics of the annotator population
that is the source of the data?
No response.

2096

