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Abstract

Information extraction, e.g., attribute value ex-
traction, has been extensively studied and for-
mulated based only on text. However, many
attributes can benefit from image-based extrac-
tion, like color, shape, pattern, among others.
The visual modality has long been underuti-
lized, mainly due to multimodal annotation dif-
ficulty. In this paper, we aim to patch the visual
modality to the textual-established attribute in-
formation extractor. The cross-modality inte-
gration faces several unique challenges: (C1)
images and textual descriptions are loosely
paired intra-sample and inter-samples; (C2)
images usually contain rich backgrounds that
can mislead the prediction; (C3) weakly su-
pervised labels from textual-established ex-
tractors are biased for multimodal training.
We present PV2TEA, an encoder-decoder ar-
chitecture equipped with three bias reduction
schemes: (S1) Augmented label-smoothed
contrast to improve the cross-modality align-
ment for loosely-paired image and text; (S2)
Attention-pruning that adaptively distinguishes
the visual foreground; (S3) Two-level neigh-
borhood regularization that mitigates the label
textual bias via reliability estimation. Empiri-
cal results on real-world e-Commerce datasets1

demonstrate up to 11.74% absolute (20.97%
relatively) F1 increase over unimodal baselines.

1 Introduction

Information extraction, e.g., attribute value extrac-
tion, aims to extract structured knowledge triples,
i.e., (sample_id, attribute, value), from the unstruc-
tured information. As shown in Figure 1, the in-
puts include text descriptions and images (optional)
along with the queried attribute, and the output is
the extracted value. In practice, textual description
has played as the main or only input in mainstream

∗Work was done when Hejie was an intern at Amazon.
1The code and the human-annotated datasets with fine-

grained source modality labels of gold values are available at
https://github.com/HennyJie/PV2TEA.

Textual Descriptions: “Best Price Mattress 12 Inch 
Memory Foam Mattress, Calming Green Tea-Infused
Foam, Pressure Relieving, Bed-in-a-Box, Queen”
Question: What is the color of the mattress?
Weakly Supervised Label: green True Value: whiteImage

⋯Challenge Explanations:
C1 Loosely-aligned image and textual descriptions:
• intra-sample: weakly related across modalities and difficult to ground
• inter-samples: images of other samples can also pair with this text
C2 Visual bias: noisy contextual backgrounds, e.g., pillow, bed frame, etc.
C3 Textual bias: the training label is misled/biased by ‘green tea’ in text

Figure 1: Illustration of multimodal attribute extraction
and the challenges in cross-modality integration.

approaches for automatic attribute value extraction
(Zheng et al., 2018; Xu et al., 2019; Wang et al.,
2020; Karamanolakis et al., 2020; Yan et al., 2021;
Ding et al., 2022). Such models perform well when
the prediction targets are inferrable from the text.

As the datasets evolve, interest in incorporat-
ing visual modality naturally arises, especially for
image-driven attributes, e.g., Color, Pattern, Item
Shape. Such extraction tasks rely heavily on visual
information to obtain the correct attribute values.
The complementary information contained in the
images can improve recall in cases where the target
values are not mentioned in the texts. In the mean-
time, the cross-modality information can help with
ambiguous cases and improve precision.

However, extending a single-modality task to
multi-modality can be very challenging, especially
due to the lack of annotations in the new modal-
ity. Performing accurate labeling based on mul-
tiple modalities requires the annotator to refer to
multiple information resources, leading to a high
cost of human labor. Although there are some
initial explorations on multimodal attribute value
extraction (Zhu et al., 2020; Lin et al., 2021; De la
Comble et al., 2022), all of them are fully super-
vised and overlook the resource-constrained setting
of building a multimodal attribute extraction frame-
work based on the previous textual-established
models. In this paper, we aim to patch the visual
modality to attribute value extraction by leveraging
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textual-based models for weak supervision, thus
reducing the manual labeling effort.

Challenges. Several unique challenges exist in
visual modality patching: C1. Images and their tex-
tual descriptions are usually loosely aligned in two
aspects: From the intra-sample aspect, they are usu-
ally weakly related considering the rich characteris-
tics, making it difficult to ground the language frag-
ments to the corresponding image regions; From
the inter-samples aspect, it is commonly observed
that the text description of one sample may also
partially match the image of another. As illustrated
in Figure 1, the textual description of the mattress
product is fragmented and can also correspond to
other images in the training data. Therefore, tradi-
tional training objectives for multimodal learning
such as binary matching (Kim et al., 2021) or con-
trastive loss (Radford et al., 2021) that only treat
the text and image of the same sample as positive
pairs may not be appropriate. C2. Bias can be
brought by the visual input from the noisy con-
textual background. The images usually not only
contain the interested object itself but also demon-
strate a complex background scene. Although the
backgrounds are helpful for scene understanding,
they may also introduce spurious correlation in a
fine-grained task such as attribute value extraction,
which leads to imprecise prediction (Xiao et al.,
2021; Kan et al., 2021). C3. Bias also exists in
language perspective regarding the biased weak
labels from textual-based models. As illustrated in
Figure 1, the color label of mattress is misled by
‘green tea infused’ in the text. These noisy labels
can be more catastrophic for a multimodal model
due to their incorrect grounding in images. Directly
training the model with these biased labels can lead
to gaps between the stronger language modality
and the weaker vision modality (Yu et al., 2021).

Solutions. We propose PV2TEA, a sequence-to-
sequence backbone composed of three modules:
visual encoding, cross-modality fusion and ground-
ing, and attribute value generation, each with a
bias-reduction scheme dedicated to the above chal-
lenges: S1. To better integrate the loosely-aligned
texts and images, we design an augmented label-
smoothed contrast schema for cross-modality fu-
sion and grounding, which considers both the intra-
sample weak correlation and the inter-sample po-
tential alignment, encouraging knowledge transfer
from the strong textual modality to the weak vi-
sual one. S2. During the visual encoding, we equip

PV2TEA with an attention-pruning mechanism that
adaptively distinguishes the distracting background
and attends to the most relevant regions given the
entire input image, aiming to improve precision in
the fine-grained task of attribute extraction. S3. To
mitigate the bias from textual-biased weak labels, a
two-level neighborhood regularization based on vi-
sual features and previous predictions, is designed
to emphasize trustworthy training samples while
mitigating the influence of textual-biased labels. In
this way, the model learns to generate more bal-
anced results rather than being dominated by one
modality of information. In summary, the main
contributions of PV2TEA are three-fold:
• We propose PV2TEA, an encoder-decoder frame-

work effectively patching up visual modality to
textual-established attribute value extraction.

• We identify three unique challenges in patch-
ing visual modality for information extraction,
with solutions for intra-sample and inter-samples
loose alignment and bias from complex visual
background and textual-biased labels.

• We release three human-annotated datasets with
modality source labels of the gold values to fa-
cilitate fine-grained evaluation. Extensive results
validate the effectiveness of PV2TEA.

2 Preliminaries

2.1 Problem Definition

We consider the task of automatic attribute ex-
traction from multimodal input, i.e., textual de-
scriptions and images. Formally, the input is a
query attribute R and a text-image pairs dataset
D = {Xn}Nn=1 = {(In, Tn, cn)}Nn=1 consisting of
N samples (e.g., products), where In represents
the profile image of Xn, Tn represents the textual
description and cn is the sample category (e.g.,
product type). The model is expected to infer at-
tribute value yn of the query attribute R for sam-
ple Xn. We consider the challenging setting with
open-vocabulary attributes, where the number of
candidate values is extensive and yn can contain
either single or multiple values.

2.2 Motivating Analysis on the Textual Bias of
Attribute Information Extraction

Existing textual-based models or multimodal mod-
els directly trained with weak labels suffer from
a strong bias toward the texts. As illustrated in
Figure 1, the training label for the color attribute
of the mattress is misled by ‘green tea infused’
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Figure 2: Source-aware evaluation of existing unimodal
and multimodal models on the textual-biased issue.

from the textual profile. Models trained with such
textual-shifted labels will result in a learning ability
gap between modalities, where the model learns
better from the textual than the visual modality.
To quantitatively study the learning bias, we con-
duct fine-grained source-aware evaluations on a
real-world e-Commerce dataset with representa-
tive unimodal and multimodal methods, namely
OpenTag (Zheng et al., 2018) with the classifica-
tion setup and PAM (Lin et al., 2021). Specifically,
for each sample in the test set, we collect the source
of the gold value (i.e., text or image). Experiment
results are shown in Figure 2, where label Source:
Text indicates the gold value is present in the text,
while label Source: Image indicates the gold value
is absent from the text and must be inferred from
the image. It is shown that both the text-based uni-
modal extractor and multimodal extractor achieve
impressive results when the gold value is contained
in the text. However, when the gold value is not
contained in the text and must be derived from
visual input, the performance of all three metrics
drops dramatically, indicating a strong textual bias
and dependence of existing models.

3 PV2TEA

We present the backbone architecture and three bias
reduction designs of PV2TEA, shown in Figure 3.
The backbone is formulated based on visual ques-
tion answering (VQA) composed of three modules:
(1) Visual Encoding. We adopt the Vision Trans-
former (ViT) (Dosovitskiy et al., 2021) as the vi-
sual encoder. The given image In is divided into
patches and featured as a sequence of tokens, with
a special token [CLS-I]appended at the head of
the sequence, whose representation vcls

n stands for
the whole input image In.
(2) Cross-Modality Fusion and Grounding. Fol-
lowing the VQA paradigm, we define the question
prompt as “What is the R of the cn?", with a spe-
cial token [CLS-Q] appended at the beginning.
A unimodal BERT (Devlin et al., 2019) encoder

is adopted to produce token-wise textual represen-
tation from sample profiles (title, bullets, and de-
scriptions). The visual representations of P im-
age patches vn = [vcls

n ,v1
n, . . . ,v

P
n] are concate-

nated with the textual representation of T tokens
tn = [tcls

n , t1n, . . . , t
T
n], which is further used to

perform cross-modality fusion and grounding with
the question prompt through cross-attention. The
output qn = [qcls

n , q1n, . . . , q
Q
n ] is then used as the

grounded representation for the answer decoder.
(3) Attribute Value Generation. We follow the
design from (Li et al., 2022a), where each block of
the decoder is composed of a causal self-attention
layer, a cross-attention layer, and a feed-forward
network. The decoder takes the grounded mul-
timodal representation as input and predicts the
attribute value ŷn in a generative manner2.
Training Objectives. The overall training objec-
tive of PV2TEA is formulated as

L = Lsc + Lct + Lr-mlm, (1)

where the three loss terms, namely augmented
label-smoothed contrastive loss Lsc (Section 3.1),
category aware ViT loss Lct (Section 3.2), and
neighborhood-regularized mask language model-
ing loss Lr-mlm (Section 3.3) correspond to each of
the three prementioned modules respectively.

3.1 Augmented Label-Smoothed Contrast for
Multi-modality Loose Alignment (S1)

Contrastive objectives have been proven effective
in multimodal pre-training (Radford et al., 2021)
by minimizing the representation distance between
different modalities of the same data point while
keeping those of different samples away (Yu et al.,
2022). However, for attribute value extraction, the
image and textual descriptions are typically loosely
aligned from two perspectives: (1) Intra-sample
weak alignment: The text description may not nec-
essarily form a coherent and complete sentence,
but a set of semantic fragments describing multi-
ple facets. Thus, grounding the language to corre-
sponding visual regions is difficult. (2) Potential
inter-samples alignment: Due to the commonality
of samples, the textual description of one sample
may also correspond to the image of another. Thus,
traditional binary matching and contrastive objec-
tives become suboptimal for these loosely-aligned
texts and images.

To handle the looseness of images and texts, we

2We compared the settings of generation and classification
for the attribute value extractor. See results in Section 5.2.
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Figure 3: The overview of PV2TEA model architecture with three modules, where each of them is equipped with a
bias reduction scheme corresponding to the discussed challenges in Figure 1.

augment the contrast to include sample compari-
son outside the batch with two queues storing the
most recent M (M ≫ batch size B ) visual and
textual representations, inspired by the momentum
contrast in MoCo (He et al., 2020) and ALBEF (Li
et al., 2021). For the intra-sample weak alignment
of each given sample Xn, instead of using the one-
hot pairing label pi2t

n , we smooth the pairing target
with the pseudo-similarity qi2t

n ,
p̃i2t
n = (1− α)pi2t

n + αqi2t
n , (2)

where α is a hyper-parameter and qi2t
n is calculated

by softmax over the representation multiplication
of the [CLS] tokens, v

′cls
n and t

′cls
n , from momen-

tum unimodal encoders F ′
v and F ′

t,

qi2t
n = σ

(
F ′

v (In)
⊤F ′

t (Tn)
)
= σ

(
v

′cls
n

⊤
t
′cls
n

)
. (3)

For potential inter-samples pairing relations, the
visual representation v

′cls
n is compared with all tex-

tual representations T ′ in the queue to augment
contrastive loss. Formally, the predicted image-to-
text matching probability of Xn is

di2t
n =

exp
(
v

′cls
n

⊤
T ′

m/τ
)

∑M
m=1 exp

(
v′cls
n

⊤
T ′

m/τ
) . (4)

With the smoothed targets from Equation (2), the
image-to-text contrastive loss Li2t is calculated as
the cross-entropy between the smoothed targets
p̃i2t
n and contrast-augmented predictions di2t

n ,

Li2t = − 1

N

(
N∑

n=1

p̃i2t
n · log

(
di2t
n

))
, (5)

and vise versa for the text-to-image contrastive loss
Lt2i. Finally, the augmented label-smoothed con-
trastive loss Lsc is the average of these two terms,

Lsc = (Li2t + Lt2i) /2. (6)

3.2 Visual Attention Pruning (S2)

Images usually contain not only the visual fore-
ground of the concerned category but also rich
background contexts. Although previous studies
indicate context can serve as an effective cue for
visual understanding (Doersch et al., 2015; Zhang
et al., 2020; Xiao et al., 2021), it has been found
that the output of ViT is often based on support-
ive signals in the background rather than the ac-
tual object (Chefer et al., 2022). Especially in a
fine-grained task such as attribute value extraction,
the associated backgrounds could distract the vi-
sual model and harm the prediction precision. For
example, when predicting the color of birthday
balloons, commonly co-occurring contexts such
as flowers could mislead the model and result in
wrongly predicted values.

To encourage the ViT encoder F focus on task-
relevant foregrounds given the input image In, we
add a category-aware attention pruning schema,
supervised with category classification,

Lct = − 1

N

(
N∑

n=1

cn · log (F(In))

)
. (7)

In real-world information extraction tasks, ‘cate-
gory’ denote classification schemas for organizing
and structuring diverse data, exemplified by the
broad range of product types in e-commerce, such
as electronics, clothing, or books. These categories
not only display vast diversity but also have distinct
data distributions and properties, adding layers of
complexity to the information extraction scenarios.

The learned attention mask M in ViT can gradu-
ally resemble the object boundary of the interested
category and distinguishes the most important task-
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related regions from backgrounds by assigning dif-
ferent attention weights to the image patches (Sel-
varaju et al., 2017). The learned M is then applied
on the visual representation sequences vn of the
whole image,

vpt
n = vn ⊙ σ(M), (8)

to screen out noisy background and task-irrelevant
patches before concatenating with the textual rep-
resentation tn for further cross-modal grounding.

3.3 Two-level Neighborhood-regularized
Sample Weight Adjustment (S3)

Weak labels from established models can be noisy
and biased toward the textual input. Directly train-
ing the models with these labels leads to a learning
gap across modalities. Prior work on self-training
shows that embedding similarity can help to mit-
igate the label errors issue (Xu et al., 2023; Lang
et al., 2022). Inspired by this line of work, we
design a two-level neighborhood-regularized sam-
ple weight adjustment. In each iteration, sample
weight s (Xn) is updated based on its label reliabil-
ity, which is then applied to the training objective
of attribute value generation in the next iteration,

Lr-mlm = − 1

N

(
N∑

n=1

s (Xn) · g (yn, ŷn)
)
, (9)

where g measures the element-wise cross entropy
between the training label yn and the prediction ŷn.
As illustrated by the right example in Figure 33,
where green arrows point to samples with the same
training label as yn, and red arrows point to either
visual or prediction neighbors, a higher consistency
between the two sets indicates a higher reliability
of yn, formally explained as below:
(1) Visual Neighbor Regularization. The first
level of regularization is based on the consistency
between the sample set with the same training label
yn and visual feature neighbors of Xn. For each
sample Xn with visual representation vn, we adopt
the K-nearest neighbors (KNN) algorithm to find
its neighbor samples in the visual feature space:

Nn = {Xn ∪ Xk ∈ KNN(vn,D,K)} , (10)

where KNN(vn,D,K) demotes K samples in D
with visual representation nearest to vn. Simulta-
neously, we obtain the set of samples in D with the
same training label yj as that of the sample Xn,

Yn =
{
Xn ∪ Xj ∈ Dyj=yn

}
. (11)

The reliability of sample Xn based on the visual

3See Appendix G for additional demo examples.

Attr # PT Value Type # Valid # Train & Val # Test

Item Form 14 Single 142 42,911 4,165
Color 255 Multiple 24 106,176 3,777

Pattern 31 Single 30 119,622 2,093

Table 1: Statistics of the attribute extraction datasets.

neighborhood regularization is
sv(Xn) = |Nn ∩ Yn| /K. (12)

(2) Prediction Neighbor Regularization. The sec-
ond level of regularization is based on the consis-
tency between the sample set with the same training
label and the prediction neighbors from the previ-
ous iteration, which represents the learned multi-
modal representation. Prediction regularization is
further added after E epochs when the model can
give relatively confident predictions, ensuring the
predicted values are qualified for correcting poten-
tial noise. Formally, we obtain the set of samples
in D whose predicted attribute value pj from the
last iteration is the same as that of the sample Xn,

Ŷn =
{
Xn ∪ Xj ∈ Dŷj=ŷn

}
. (13)

With the truth-value consensus set Yn from Equa-
tion (11), the reliability based on previous predic-
tion neighbor regularization of the sample Xn is

sp (Xn) =
∣∣∣Ŷn ∩ Yn

∣∣∣ /
∣∣∣Ŷn ∪ Yn

∣∣∣ . (14)

Overall, s(Xn) is initially regularized with visual
neighbors and jointly with prediction neighbors
after E epochs when the model predicts credibly,

s (Xn) =

{
sv (Xn) e < E,

AVG (sv (Xn) , sp (Xn)) e ≥ E.
(15)

4 Experimental Setup

4.1 Dataset and Implementation Details

We build three multimodal attribute value extrac-
tion datasets by collecting profiles (title, bullets,
and descriptions) and images from the public
amazon.com web pages, where each dataset cor-
responds to one attribute R. The dataset informa-
tion is summarized in Table 1, where Attr is the
attribute R, # PT represents the number of unique
categories (i.e., product types), Value Type indi-
cates whether yn contain single or multiple values,
and # Valid represents the number of valid val-
ues. To better reflect real-world scenarios, we use
the attribute-value pairs from the product informa-
tion section on web pages as weak training labels
instead of highly processed data. We follow the
same filtering strategy from prior text established
work (Zalmout and Li, 2022) to denoise training
data. For the testing, we manually annotate gold
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Type Method
Dataset: Item Form Dataset: Color Dataset: Pattern

Precision Recall F1 Precision Recall F1 Precision Recall F1

Unimodal
OpenTagseq 91.37 44.97 60.27 83.94 24.73 38.20 79.65 19.83 31.75
OpenTagcls 89.40 51.67 65.49 81.13 28.61 42.30 78.10 24.41 37.19

TEA 82.71 60.98 70.20 67.58 47.80 55.99 60.87 37.40 46.33

Multimodal

ViLBERT 75.97 65.67 70.45 60.22 51.12 55.30 60.10 40.52 48.40
LXMERT 75.79 68.72 72.08 60.20 54.26 57.08 60.33 42.28 49.72
UNITER 76.75 69.10 72.72 61.30 54.69 57.81 62.45 43.38 51.20

BLIP 78.21 69.25 73.46 62.70 58.23 60.38 58.74 44.01 50.32
PAM 78.83 74.35 76.52 63.34 60.43 61.85 61.80 44.29 51.60

Ours

PV2TEA w/o S1 80.03 72.49 76.07 71.00 58.41 64.09 60.03 45.59 51.82
PV2TEA w/o S2 80.48 75.32 77.81 73.77 59.37 65.79 59.01 46.74 52.16
PV2TEA w/o S3 80.87 72.71 76.57 74.29 59.04 65.79 59.92 44.92 51.35

PV2TEA 82.46 75.40 78.77 77.44 60.19 67.73 62.10 46.84 53.40

Table 2: Performance comparison with different baselines (%). The performance gains over the baselines have
passed the t-test with a p-value<0.05. The best performance is in bold, and the second runner baseline is underlined.

labels on the benchmark dataset to ensure precise-
ness. Besides, the label sources are marked down,
indicating whether the attribute value is present or
absent in the text, to facilitate fine-grained source-
aware evaluation. The human-annotated bench-
mark datasets will be released to encourage the fu-
ture development of modality-balanced multimodal
extraction models. See Appendix A for the imple-
mentation and computation details of PV2TEA.

4.2 Evaluation Protocol
We use Precision, Recall, and F1 score based on
synonym normalized exact string matching. For
single value type, an extracted value ŷn is consid-
ered correct when it exactly matches the gold value
string yn. For multiple value type where the gold
values for the query attribute R can contain mul-
tiple answers yn ∈

{
y1n, . . . , y

m
n

}
, the extraction

is considered correct when all the gold values are
matched in the prediction. Macro-aggregation is
performed across attribute values to avoid the in-
fluence of class imbalance. All reported results are
the average of three runs under the best settings.

4.3 Baselines
We compare our proposed model with a series
of baselines, spanning unimodal-based methods
and multimodal-based ones. For unimodal base-
lines, OpenTag (Zheng et al., 2018) is considered
a strong text-based model for attribute extraction.
OpenTagseq formulates the task as sequence tag-
ging and uses the BiLSTM-CRF architecture with
self-attention. OpenTagcls replaces the BiLSTM
encoder with a transformer encoder and tackles the
task as classification. TEA is another text-only uni-

Method Gold Value Source Precision Recall F1

OpenTagcls

Text ✓ 89.78 52.13 65.96
Text ✗ Image ✓ 78.95 31.25 44.78

GAP ↓ 10.83 20.88 21.18

PAM
Text ✓ 79.16 74.53 76.78

Text ✗ Image ✓ 66.67 58.33 62.22
GAP ↓ 12.50 16.20 14.56

PV2TEA
Text ✓ 82.64 75.71 79.02

Text ✗ Image ✓ 75.00 62.50 68.18
GAP ↓ 7.64 13.21 10.84

Table 3: Fine-grained source-aware evaluation of differ-
ent methods. The gold value source indicates whether
the gold value is contained in the text, or is not con-
tained in the text and must be inferred from the image.

modal generative model with the same architecture
as PV2TEA but without the image patching, which
is included to demonstrate the influence of the gen-
eration setting. For multimodal baselines, we con-
sider discriminative encoder models, including ViL-
BERT (Lu et al., 2019), LXMERT (Tan and Bansal,
2019) with dual encoders, and UNITER (Chen
et al., 2020) with a joint encoder. We also add gen-
erative encoder-decoder models for comparisons.
BLIP (Li et al., 2022a) adopts dual encoders and
an image-grounded text decoder. PAM (Lin et al.,
2021) uses a shared encoder and decoder separated
by a prefix causal mask.

5 Experimental Results

5.1 Overall Comparison

Table 2 shows the performance comparison of dif-
ferent types of extraction methods. It is shown
that PV2TEA achieves the best F1 performance,
especially compared to unimodal baselines, demon-
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strating the advantages of patching visual modal-
ity to this text-established task. Comparing the
unimodal methods with multimodal ones, textual-
only models achieve impressive results on preci-
sion while greatly suffering from low recall, which
indicates potential information loss when the gold
value is not contained in the input text. With the
generative setting, TEA sort of mitigates the in-
formation loss and improves recall over OpenTag
under the tagging and classification settings. Be-
sides, adding visual information can further im-
prove recall, especially for the multi-value attribute
Color, where multimodal models can even double
that of text-only ones. However, the lower preci-
sion performance of the multimodal models implies
the challenges beneath cross-modality integration.
With the three proposed bias-reduction schemes,
PV2TEA improves on all three metrics over multi-
modal baselines and balances precision and recall
to a great extent compared with unimodal mod-
els. Besides the full PV2TEA, we also include
three variants that remove one proposed schema at
a time. It shows that the visual attention pruning
module mainly helps with precision while the other
two benefit both precision and recall, leading to
the best F1 performance when all three schemes
are equipped. We include several case studies in
Section 5.3 for qualitative observation.
Source-Aware Evaluation. To investigate how the
modality learning bias is addressed, we conduct
fine-grained source-aware evaluation similarly to
Section 2.2, as shown in Table 34. The performance
gap between when the gold value is present or ab-
sent in the text is significantly reduced by PV2TEA
when compared to both unimodal and multimodal
representative methods, which suggests a more
balanced and generalized capacity of PV2TEA to
learn from different modalities. When the gold
value is absent in the text, our method outperforms
OpenTagcls by more than twice as much on recall,
and also outperforms on precision under various
scenarios compared to the multimodal PAM.

5.2 Ablation Studies

Augmented Label-Smoothed Contrast. We look
into the impact of label-smoothed contrast on both
single- and multiple-value type datasets 5. Table

4We demonstrate results on the Item Form dataset due to
limited space. For more results, please refer to Appendix B.

5For ablation analysis, we select Item Form as the repre-
sentative for single-value and Color for multiple-value type
dataset. More ablation results can be referred in Appendix C.

Method
Single Value Dataset Multiple Value Dataset

P R F1 P R F1

w/o Lsc 80.03 72.49 76.07 71.00 58.41 64.09
w/o Smooth 81.42 74.41 77.76 75.06 59.99 66.68

PV2TEA 82.46 75.40 78.77 77.44 60.19 67.73

Table 4: Ablation study on the augmented label-
smoothed contrast for cross-modality alignment (%).

Figure 4: The influence study of alignment objectives,
i.e., binary matching v.s. contrastive loss, and the in-
fluence of softness α via the task of image-to-text and
text-to-image retrieval. The metric T/I@1 is the recall of
text/image retrieval at rank 1, T/I@M means the rank av-
erage, and R@Mean further averages T@M and I@M.

4 shows that removing the contrastive objective
leads to a drop in both precision and recall. For the
multiple-value dataset, adding the contrastive ob-
jective significantly benefits precision, suggesting
it encourages cross-modal validation when there
are multiple valid answers in the visual input. With
label smoothing, the recall can be further improved.
This indicates that the augmented and smoothed
contrast can effectively leverage the cross-modality
alignment inter-samples, hence improving the cov-
erage rate when making predictions.

In addition, we conduct cross-modality retrieval
to study the efficacy of aligning objectives, i.e.,
binary matching and contrastive loss, for cross-
modality alignment and the influence of the soft-
ness α, as shown in Figure 4. Across differ-
ent datasets and metrics, the contrastive loss con-
sistently outperforms the binary matching loss.
This consolidates our choice of contrasting objec-
tives and highlights the potential benefits of label-
smoothing and contrast augmentation, given that
both are neglected in a binary matching objective.
Retrieval performance under different smoothness
values shows a trend of first rising and then falling.
We simply take 0.4 for α in our experiments.
Category Aware Attention Pruning. We study

Method
Single Value Dataset Multiple Value Dataset

P R F1 P R F1

w/o Lct 80.48 75.32 77.81 73.77 59.37 65.79
w/o Attn Prun 80.61 75.49 77.97 74.60 59.42 66.15

PV2TEA 82.46 75.40 78.77 77.44 60.19 67.73

Table 5: Ablation study on the category supervised
visual attention pruning (%).
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Product Type (𝑐!): storage bag

Product Type (𝑐!): curtainProduct Type (𝑐!): vest

Product Type (𝑐!): bottom

Figure 5: Visualization of learned attention mask with
category (e.g., product type) aware ViT classification.

Method
Single Value Dataset Multiple Value Dataset

P R F1 P R F1

w/o NR 80.87 72.71 76.57 74.29 59.04 65.79
w/o Vis-NR 81.87 73.54 77.48 77.07 59.99 67.47

w/o Pred-NR 81.81 73.18 77.25 76.71 59.44 66.98
PV2TEA 82.46 75.40 78.77 77.44 60.19 67.73

Table 6: Ablation study on the two-level neighborhood-
regularized sample weight adjustment (%).

the influence of the category aware attention prun-
ing, as shown in Table 5. The results imply that
adding the category classification helps to improve
precision performance without harming recall, and
the learned attention mask can effectively highlight
the foreground regions of the queried sample. Fig-
ure 5 presents several visualizations of the learned
attention mask.
Neighborhood Regularization. We consider the
influence of the two-level neighborhood regular-
ization by removing the visual neighborhood regu-
larization (Vis-NR), prediction neighborhood reg-
ularization (Pred-NR), or both (NR) from the full
model. Results in Table 6 show all the metrics de-
crease when both regularizations are removed, in-
dicating the validity of the proposed neighborhood
regularized sample weight adjustment in mitigat-
ing the influence of hard, noisy samples. Besides,
since the second-level prediction-based neighbor
regularization is independent of the multimodal ex-
traction framework, it can be incorporated flexibly
into other frameworks as well for future usage.
Classification vs. Generation To determine
which architecture is better for multimodal attribute
value extraction, we compare the generation and
classification settings for the module of the attribute

Setting
D: Item Form D: Color D: Pattern

P R F1 P R F1 P R F1

Classification 79.93 70.47 74.90 72.21 50.18 59.21 59.08 42.16 49.21
Generation 82.46 75.40 78.77 77.44 60.19 67.73 62.10 46.84 53.40

Table 7: Attribute extraction performance comparison
between the settings of classification and generation.

information extractor. The results are demonstrated
in Table 7. It is shown that the setting of genera-
tion achieves significant advantages over classifi-
cation. Especially on the recall performance for
multi-value type attribute Color, where the gold
value can be multiple, the improvement of recall
can be up to 20% relatively. This indicates that the
generation setting can extract more complete re-
sults from the multimodal input, leading to a higher
coverage rate. Therefore, we choose the generation
setting in the attribute value extraction module in
the final architecture design of PV2TEA.

5.3 Case Study

Milumia Women Casual 2 Piece Outfits Tie Back Cami Crop Top Belted Pants 
Sets Navy Medium Material: 100% Polyester. Fabric is Non-stretch. Feature: 
Cami Crop Top with Pants Sets, Tie Hem, Bow, Spaghetti Strap, Sleeveless, 
Knot, Belted Pants, Striped Occasion: Perfect for Summer Beach, Vacation, 
Traveling, Holiday, Party, Weekend Casual, Going Out, Weekend Daily, 
Shopping and Dating wear. Season: Suitable for Spring, Summer

Q: what is the pattern of the one-piece outfit? PV2TEA Prediction: striped

WSERE 3 Pack Plastic Flip Top Bird Small Poultry Feeder for Pigeon Quails 
Ducklings Birds, No Mess No Waste Multihole Birds Feeding Dish Dispenser 
Chick Feeder

Q: what is the color of the wildlife feeder?
PV2TEA Prediction: red,
yellow, green

URATOT Glittered Christmas Tree Topper Metal Christmas Treetop Hallow 
Wire Star Topper for Christmas Home Decoration; Product material: this 
Christmas tree topper is made of quality plastic

Q: what is the color of the decoration? PV2TEA Prediction: silver

Sugar in the raw 500 packets 4 lbs 15 4 ounces cooking raw sugar. A natural 
unrefined sugar made from sugar cane grown in each packet holds 
approximately one teaspoon and has five grams of carbohydrates and 20 
calories flavor: original; packing type: packets; premeasured: yes; capacity 
weight : 0 18 oz

Q: what is the item form of the sugar? PV2TEA Prediction: crystal

Figure 6: Qualitatively case studies.

To qualitatively observe the extraction perfor-
mance, we attach several case studies in Figure 6.
It shows that even when the attribute value is not
contained in the text, PV2TEA can still perform the
extraction reliably from images. In multiple value
datasets such as Color, PV2TEA can effectively
differentiate related regions and extract multiple
values with comprehensive coverage.

6 Related Work

Attribute Information Extraction. Attribute ex-
traction has been extensively studied in the lit-
erature primarily based on textual input. Open-
Tag (Zheng et al., 2018) formalizes it as a sequence
tagging task and proposes a combined model lever-
aging bi-LSTM-CRF, and attention to perform
end-to-end tagging. Xu et al. (2019) scales the
sequence-tagging-based model with a global set
of BIO tags. AVEQA (Wang et al., 2020) devel-
ops a question-answering model by treating each
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attribute as a question and extracting the best an-
swer span from the text. TXtract (Karamanolakis
et al., 2020) uses a hierarchical taxonomy of cate-
gories and improves value extraction through multi-
task learning. AdaTag (Yan et al., 2021) exploits
an adaptive CRF-based decoder to handle multi-
attribute value extractions. Additionally, there have
been a few attempts at multimodal attribute value
extraction. M-JAVE (Zhu et al., 2020) introduces a
gated attention layer to combine information from
the image and text. PAM (Lin et al., 2021) pro-
poses a transformer-based sequence-to-sequence
generation model for multimodal attribute value
extraction. Although the latter two use both visual
and textual input, they fail to account for possible
modality bias and are fully supervised.
Multi-modality Alignment and Fusion. The goal
of multimodal learning is to process and relate in-
formation from diverse modalities. CLIP (Rad-
ford et al., 2021) makes a gigantic leap forward
in bridging embedding spaces of image and text
with contrastive language-image pretraining. AL-
BEF (Li et al., 2021) applies a contrastive loss to
align the image and text representation before merg-
ing with cross-modal attention, which fits loosely-
aligned sample image and text. Using noisy pic-
ture alt-text data, ALIGN (Jia et al., 2021) jointly
learns representations applicable to either vision-
only or vision-language tasks. The novel Vision-
Language Pre-training (VLP) framework estab-
lished by BLIP (Li et al., 2022a) is flexibly applied
to both vision-language understanding and genera-
tion tasks. GLIP (Li et al., 2022b) offers a grounded
language-image paradigm for learning semantically
rich visual representations. FLAVA (Singh et al.,
2022) creates a foundational alignment that simul-
taneously addresses vision, language, and their in-
terconnected multimodality. Flamingo (Alayrac
et al., 2022) equips the model with in-context few-
shot learning capabilities. SimVLM (Wang et al.,
2022b) is trained end-to-end with a single pre-
fix language modeling and investigates large-scale
weak supervision. Multi-way Transformers are in-
troduced in BEIT-3 (Wang et al., 2022a) for generic
modeling and modality-specific encoding.

7 Conclusion

In this work, we propose PV2TEA, a bias-mitigated
visual modality patching-up model for multi-
modal information extraction. Specifically, we
take attribution value extraction as an example

for illustration. Results on our released source-
aware benchmarks demonstrate remarkable im-
provements: the augmented label-smoothed con-
trast promotes a more accurate and complete align-
ment for loosely related images and texts; the visual
attention pruning improves precision by masking
out task-irrelevant regions; and the neighborhood-
regularized sample weight adjustment reduces tex-
tual bias by lowering the influence of noisy samples.
We anticipate the investigated challenges and pro-
posed solutions will inspire future scenarios where
the task is first established on the text and then
expanded to multiple modalities.

Limitations

There are several limitations that can be considered
for future improvements: (1) In multimodal align-
ment and fusion, we only consider a single image
for each sample, whereas multiple images can be
available. A more flexible visual encoding architec-
ture that can digest an indefinite number of input
images can improve the visual information cover-
age; 2) The empirical results in this work focus on
three attribute extraction datasets (i.e., item form,
color, and pattern) that can clearly benefit from
visual perspectives, while there are also various
attribute types that rely more on the textual input.
Different traits of attributes may influence the pre-
ferred modalities during the modeling, which is
out of scope for this work but serves as a natural
extension of this study; 3) Currently there is no spe-
cific design to improve the efficiency based on the
visual question answering architecture. It can be
not scalable as the number of attributes increases.

There could be a dual-use regarding the attention-
pruning mechanism, which can be a potential risk
of this work that could arise and harm the result.
The attention-pruning mechanism encourages the
model to focus on the task-relevant foreground on
the given image selected with category supervision,
which can improve the prediction precision given
the input image is visually rich and contains noisy
context background. While for some types of im-
ages, such as infographics, there may be helpful
text information on the images or intentionally at-
tached by providers. These additional texts may be
overlooked by the attention-pruning mechanism, re-
sulting in potential information losses. A possible
mitigation strategy is to add an OCR component
along with the visual encoder to extract potential
text information from given images.
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Ethics Statement

We believe this work has a broader impact outside
the task and datasets in the discussion. The stud-
ied textual bias problem in our motivating anal-
ysis and the potential of training a multimodal
model with weakly-supervised labels from text-
established models are not restricted to a specific
task. Also, it becomes common in the NLP domain
that some tasks first established based on pure text
input are expected to further include the consid-
eration multimodal input. The discussion in this
work can be generalized to a lot of other application
scenarios. The proposed solutions for multimodal
integration and modality bias mitigation are inde-
pendent of model architecture, which we expect
can be applied to other downstream tasks or inspire
designs with similar needs.

Regarding the human annotation involved in this
work, we create three benchmark datasets that are
manually labeled by human laborers to facilitate the
source-aware evaluation. The annotation includes
both gold attribute value as well as label sources,
i.e., image or text. The profiles and images are all
collected based on the publicly accessible Amazon
shopping website. We depend on internal quality-
assured annotators with balanced demographic and
geographic characteristics, who consent and are
paid adequately based in the US. The data collec-
tion protocol is approved by the ethics review board.
We attach detailed human annotation instructions
and usage explanations provided to the annotators
in Appendix F for reference.
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A Implementation Details

Our models are implemented with PyTorch (Paszke
et al., 2019) and Huggingface Transformer library
and trained on an 8 Tesla V100 GPU node. The
model is trained for 10 epochs, where the Item
Form dataset takes around 12 hours, the Color
dataset takes about 32 hours, and the Pattern dataset
needs around 35 hours to run on a single GPU. The
overall architecture of PV2TEA consists of 361M
trainable parameters, where a ViTbase (Dosovitskiy
et al., 2021) is used as the image encoder and ini-
tialized with the pre-trained model on ImageNet of
85M parameters, and the text encoder is initialized
from BERTbase (Devlin et al., 2019) of 123M pa-
rameters. We use AdamW (Loshchilov and Hutter,
2019) as the optimizer with a weight decay of 0.05.
The learning rate of each parameter group is set
using a cosine annealing schedule (Loshchilov and
Hutter, 2016) with the initial value of 1e-5. The
model is trained for 10 epochs, with both training
and testing batch sizes of 8. The memory queue
size M is set as 57600 and the temperature τ of
in Equation 4 is set as 0.07. We performed a grid
search for the softness α from [0, 0.2, 0.4, 0.6, 0.8]
and used the best-performed 0.4 for reporting the
final results. The K for two-level neighborhood
regularization is set at 10. The input textual descrip-
tion is cropped to a maximum of 100 words. The
input image is divided into 30 by 30 patches. The
hidden dimension of both the visual and textual en-
coders is set to 768 to produce the representations
of patches, tokens, or the whole image/sequence.
The epoch E for adding the second-level prediction
neighbor regularization to reliability score s (Xn)
is set as 2.

B More Source-Aware Evaluation

Method Gold Value Source
D: Color D: Pattern

P R F1 P R F1

OpenTagcls

Text ✓ 85.06 43.28 57.37 85.00 42.96 57.07
Text ✗ Image ✓ 66.28 10.24 17.74 66.23 12.02 20.35

GAP ↓ 18.78 33.04 39.63 18.77 30.94 36.72

PAM
Text ✓ 73.20 71.88 72.53 75.00 57.04 64.80

Text ✗ Image ✓ 50.30 45.45 47.75 51.82 36.23 42.64
GAP ↓ 22.90 26.43 24.78 23.18 20.81 22.16

PV2TEA
Text ✓ 81.74 74.25 77.82 71.19 61.25 65.85

Text ✗ Image ✓ 71.89 47.19 56.98 54.48 37.26 44.25
GAP ↓ 9.85 27.06 20.84 16.71 23.99 21.59

Table 8: Fine-grained source-aware evaluation for the
Color and Pattern datasets.

The source-aware evaluation of the Color and Pat-
tern datasets is shown in Table 8. We can observe
that similarly to the discussions in Section 5.1, com-

pared with the baselines, the proposed PV2TEA
effectively mitigates the performance gap of F1

when the gold value is not contained in the text.
More specifically, we observed that compared with
the unimodal method, PV2TEA mainly reduces the
recall performance gap across modalities, while
compared with the multimodal method, the reduc-
tion happens mainly in precision, which all cor-
responds to the weaker metrics for each type of
method. This indicates the stronger generalizabil-
ity and more balanced learning ability of PV2TEA.

C Ablation Studies on Pattern Dataset

We further include the ablation results on the single-
value type dataset Pattern for each proposed mech-
anism in Table 9, Table 10, and Table 11, respec-
tively. The observations are mostly consistent with
the discussion in section 5.2, where all three pro-
posed mechanisms support improvements in the
overall performance of F1. It is noted that the
recall performance with attention-pruning drops
a bit compared with that without. This may indi-
cate potential information losses on the challenging
dataset such as Pattern with only the selected fore-
ground. We discuss this potential risk in detail in
the Limitation section.

Method
Single Value Dataset: Pattern

Precision Recall F1

PV2TEA w/o Lsc 60.03 45.59 51.82
PV2TEA w/o smooth 61.87 45.72 52.58

PV2TEA 62.10 46.84 53.40

Table 9: Ablations on the augmented label-smoothed
contrast for cross-modality alignment (%).

Method
Single Value Dataset: Pattern

Precision Recall F1

PV2TEA w/o Lct & Attn Prun 59.01 46.74 52.16
PV2TEA w/o Attn Prun 60.14 46.98 52.75

PV2TEA 62.10 46.84 53.40

Table 10: Ablation study on the category supervised
visual attention pruning (%).

Method
Single Value Dataset: Pattern

Precision Recall F1

PV2TEA w/o NR 59.92 44.92 51.35
PV2TEA w/o Vis-NR 61.59 46.24 52.82

PV2TEA w/o Pred-NR 60.77 45.11 51.78
PV2TEA 62.10 46.84 53.40

Table 11: Ablations on the two-level neighborhood-
regularized sample weight adjustment (%).
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Product Type (𝑐!): makeup Product Type (𝑐!): makeup Product Type (𝑐!): steak Product Type (𝑐!): grain

Product Type (𝑐!): mattress Product Type (𝑐!): chair Product Type (𝑐!): Mug Product Type (𝑐!):
decoration

Product Type (𝑐!): shirtProduct Type (𝑐!): scarf Product Type (𝑐!): tights Product Type (𝑐!): shirt

Figure 7: Visualization examples of the learned category aware attention pruning mask.

Figure 8: The influence study of alignment objectives,
i.e., binary matching v.s. contrastive, and softness α
study via cross-modality retrieval on the Pattern dataset.

D Retrieval Ablation on Pattern Dataset

Similar to Figure 4, we also demonstrate the cross-
modality retrieval results on the pattern dataset in
Figure 8. The conclusion is consistent with our
observations mentioned in Section 5.2, where the
contrastive objective demonstrates advantages in
cross-modal alignment and fusion, and the best
smoothness choice peaks at 0.4.

E Visualizations of Attention Pruning

Examples of visualization on the learned attention
mask are demonstrated in Figure 7. It is observed
that the visual foreground is highlighted under the
supervision of category classification, which po-
tentially encourages a higher prediction precision
for fine-grained tasks like attribute extraction, as
proved by the experimental results.

F Human Annotation Instruction

We create source-aware fine-grained datasets with
internal human annotators. Below are the instruc-
tion texts provided to annotators:

The annotated attribute values are used for re-
search model development of multimodal attribute
information extraction and fine-grained error anal-

ysis. The datasets are named source-aware multi-
modal attribute extraction evaluation benchmarks
and will be released to facilitate public testing and
future studies in bias-reduced multimodal attribute
value extraction model designs. All the given sam-
ple profiles (title, bullets, and descriptions) and im-
ages are collected from the public amazon.com
web pages, so there is no potential legal or ethical
risk for annotators. Specifically, the annotation re-
quirements compose two tasks in order: (1) Firstly,
for each given sample_id in the given ASINs set,
first determine the category of the sample by refer-
ring to ID2Category.csv mapping file, then label
the gold value for the queried attribute by select-
ing from the candidates given the category. The
annotation answer candidates for the Item Form
dataset can be referred to in Table 12. Note that
this gold value annotation step requires reference to
both sample textual titles, descriptions, and images;
(2) For each annotated ASIN, mark down which
modality implies the gold value with an additional
source label, with different meanings as below:
• 0: the gold attribute value can be found in text.
• 1: the gold attribute value cannot be inferred

from the text but can be found in the image.
The annotated attribute values and source labels are
assembled in fine-grained source-aware evaluation.

G Neighborhood Regularization Demos

We provide two more demo examples for illustrat-
ing the two-level neighborhood-regularized sample
weight adjustment in Figure 9. The example on the
left demonstrates a higher consistency between the
green arrows (which point to samples with the same
training label as yn) and red arrows (which point
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Category (Product Type) Candidate Attribute Values Given the Category

cereal grain, flake, seed, liquid, powder, ground
dishwasher detergent gel, capsule, pac, liquid, tablet, pod, powder
face shaping makeup powder, pencil, cream, liquid, stick, oil, spray, gel, cushion, blush, drop, balm, gloss
fish fillet, chunk, steak, solid, stick, whole, slice, ground
herb powder, root, leaf, thread, flake, seed, tea bag, stick, oil, slice, pod, ground, bean, paste
honey jelly, capsule, lozenge, candy, cream, powder, granule, flake, liquid, stick, oil, crystal, butter, drop, syrup, comb
insect repellent wipe, spray, band, granular, liquid, stick, candle, coil, oil, lotion, gel, capsule, tablet, powder, balm, patch, roll on
jerky strip, slab, shredded, bite, bar, slice, stick, ground
sauce puree, jelly, paste, seed, liquid, gravy, ground, oil, powder, cream
skin cleaning agent powder, capsule, toothpaste, wipe, cream, spray, mousse, bar, flake, liquid, lotion, gel, serum, mask, ground, balm, paste, foam
skin foundation concealer powder, pencil, cream, mousse, liquid, stick, oil, lotion, spray, cushion, gel, drop, serum, balm, airbrush
sugar granule, crystal, pearl, liquid, powder, cube, ground
sunscreen wipe, cream, spray, mousse, liquid, ointment, stick, fluid, oil, lotion, milk, compact, gel, drop, serum, powder, balm, foam, mist
tea leaf, powder, granule, tea bag, liquid, pod, ground, brick

Table 12: The annotation candidates provided to annotators given each sample type on the Item Form dataset.

…

Visual/Prediction Neighbor

…

Training Label Neighbor
Query: What is the itemform (ℛ) of the 𝑐! ?

𝑦!: tablet

𝑦!: tablet

𝑦!: tablet

𝑦!: liquid

𝑦!: liquid 𝑦!: liquid

𝑦!: liquid

𝒄𝒏: dishwasher detergent

high consistency High 𝒔(𝓧𝒏)

𝒄𝒏: face makeup

Low 𝒔(𝓧𝒏)

𝑦!: cream

𝑦!: powder

𝑦!: powder 𝑦!: powder

𝑦!: cream

𝑦!: stick

𝑦!: stick

𝒚𝒏: liquid
𝒚𝒏: cream

low consistency

Figure 9: Demo examples for illustrating S3: two-level
neighborhood-regularized sample weight adjustment.

to k-nearest neighbor samples in visual feature and
previous prediction space), indicating a higher re-
liability of yn. Thus the sample weight of Xn will
be increased in the next training epoch. In contrast,
the training label neighbors and visual/prediction
neighbors of the right example show a large incon-
sistency, which implies a relatively lower reliability
of yn. Therefore, the sample weight s (Xn) of the
right Xn will be degraded in the next epoch. This
regularization process adjusts the sample weights
of all the training samples in each epoch.
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