MarkQA: A large scale KBQA dataset with numerical reasoning

Xiang Huang, Sitao Cheng, Yuheng Bao, Shanshan Huang, Yuzhong Qu
State Key Laboratory for Novel Software Technology, Nanjing University, China
{xianghuang, stcheng, yhbao, shanshan_huang} @smail.nju.edu.cn, yzqu@nju.edu.cn

Abstract

While question answering over knowledge
bases (KBQA) has shown progress in address-
ing factoid questions, KBQA with numerical
reasoning remains relatively unexplored. In
this paper, we focus on the complex numer-
ical reasoning in KBQA and propose a new
task, NR-KBQA, which necessitates the abil-
ity to perform both multi-hop reasoning and
numerical reasoning. We design a logic form
in Python format called PyQL to represent
the reasoning process of numerical reasoning
questions. To facilitate the development of
NR-KBQA, we present a large dataset called
MarkQA, which is automatically constructed
from a small set of seeds. Each question in
MarkQA is equipped with its corresponding
SPARQL query, alongside the step-by-step rea-
soning process in the QDMR format and PyQL
program. Experimental results of some state-
of-the-art QA methods on the MarkQA show
that complex numerical reasoning in KBQA
faces great challenges.

1 Introduction

Knowledge-based question answering (KBQA)
aims to answer a question over a knowledge base
(KB). It has emerged as a user-friendly solution to
access the massive structured knowledge in KBs
(Lan et al., 2021; Shu et al., 2022). Among the ex-
tensive knowledge stored in KBs, the quantitative
property is the 3rd most popular property on Wiki-
data (only less than Wikibaseltem and ExternallD),
and there are more than 95M facts with quantitive
properties. Given the large amount of quantitative
facts stored in KB and the ability to perform precise
symbolic reasoning through query languages, it is
natural to use KBQA as a solution to real-world
problems that require numerical reasoning.
However, it is shown that existing KBQA
datasets are insufficient for numerical reasoning.
We find that only 10% and 16.2% of questions
in ComplexWebQuestions(CWQ) (Talmor and Be-

rant, 2018) and GrailQA (Gu et al., 2021), respec-
tively, require numerical reasoning, but this part
of the questions just focuses on some aggregation
operations and lacks complex multi-step numerical
reasoning. The remaining only need to match a
graph pattern on KB (multi-hop reasoning), with-
out the need to perform numerical reasoning. As
a result, the questions that require complex numer-
ical reasoning has not been covered by previous
datasets (e.g. “How much more VAT do you have
to pay to buy the most expensive iPhone 13 in Rus-
sia than in Japan?” or “How many times longer is
the longest aircraft carrier than the shortest?”).

In this paper, we propose a new challenging task,
NR-KBQA (Knowledge-based Question Answer-
ing with Numerical Reasoning). Different from tra-
ditional KBQA which mainly focuses on multi-hop
reasoning, NR-KBQA focuses on numerical rea-
soning and its combination with multi-hop reason-
ing. As shown in the left part of Figure 1, multi-hop
reasoning needs to match a graph pattern in the KB,
the difficulty of which comes from the composition
of KB items (entities, relations, and classes). On
the other hand, the difficulty of numerical reason-
ing comes from the composition of mathematical
operators. It is worth noting that computational
tasks entail the involvement of multiple operands,
while each operand may be obtained by match-
ing a graph pattern on the KB. Consequently, the
combination of multi-hop reasoning and numerical
reasoning will lead to a combinatorial explosion of
the number of logical form structures, which poses
a huge obstacle to semantic parsing models.

To support the study of this task, we construct
a large-scale dataset called MarkQA (CoMplex
NumericAl Reasoning over Knowledge Base
Question Answering Dataset) which starts from
1K questions posed by humans and automati-
cally scales to 32K examples. Each question in
MarkQA is equipped with a question decomposi-
tion in the widely used QDMR format and our pro-

10241

Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing, pages 10241-10259
December 6-10, 2023 ©2023 Association for Computational Linguistics

What is the 2021 asset of the company founded by
Bill Gates and Paul G. Allen

NR-KBQA
Multi-hop Reasoning

Bill Gates —founcxed by value 333,779M Numerical Reasoning
Bill Gates
total assets O <
ot G. Al — Microsoft ssoatail [
Paul G. Allen founded by point in time—{ 2021 @
L Bill Gates 533,779N1 |
O
What is the 2021 asset of the company whose founder Paul G. Allen w
was born in Chappaqua and educated at Hamilton College @ @
-
A
~bi 2017
Chappagqua-birth plfoe value—{(44.585M Chappaqua e - 0
Randolph
Ranaoion —founded by- Netflix -total assets He ~ @
Hamilton | | P I _ ch 44,584M 1|
College educated at point in time-{ 2021 appaqua Marc Hrers - \
L HC Randolph
(Legend
Entity node Number node O Function node During 2017 to 2021, how{ much more annual increase in total assets is the
. company founded by Bill Gates and Paul G. Allen than
—— Constrain —— Compute O Blank node 2

Figure 1: An example shows multi-hop reasoning, numerical reasoning, and their combination.

posed corresponding logic form in Python, namely
PyQL. The QDMR can be seen as an explicit rea-
soning path and regarded as a question decomposi-
tion resource. Meanwhile, PyQL not only acts as a
reasoning step but can also be directly transformed
into a SPARQL query. It offers a more human-
readable alternative to SPARQL and can easily be
extended for further developments. We believe that
MarkQA will serve as a valuable resource to foster
further development of KBQA. !

The remainder of this paper is organized as fol-
lows: Section 2 reviews related work. Section 3
defines the NR-KBQA and introduces PyQL. The
construction and analysis of MarkQA are demon-
strated in Section 4. Section 5 presents experi-
mental results. We conclude our contributions and
future work in Section 6.

2 Related work

2.1 Knowledge-based question answering

KBQA refers to QA systems that take KB as the
underlying knowledge source. The primary focus
of KBQA research is on identifying graph patterns
in the KB that satisfy the constraints (multi-hop rea-
soning), leaving numerical reasoning uncovered.
This influences the construction of KBQA
datasets. Most KBQA datasets (Trivedi et al., 2017,
Talmor and Berant, 2018; Gu et al., 2021) are es-
sentially built through the OVERNIGHT (Wang
et al., 2015) method or its extensions, consisting
of three steps: sample logic forms(LF), convert LF
to canonical questions, and paraphrase them into
natural language questions (NLQ) through crowd-

"ttps://github.com/cdhx/MarkQA

sourcing. We refer to this manner as LF-to-NLQ.
Though efficient, they only consider sampling LFs
from a single connected sub-graph in KB. Conse-
quently, the generated question is mostly a factoid
question aiming to find an entity or entity set that
meets the specific conditions, thereby only real-
izing multi-hop reasoning. However, many real-
world questions require the introduction of com-
plex numerical reasoning over multiple connected
subgraphs, which can not be covered by the previ-
ous construction methods. When multi-hop reason-
ing and numerical reasoning intertwine, it is insur-
mountable to choose reasonable query patterns by
enumerating all possible ones, given that the search
space can comprise millions of patterns, of which
only a minuscule fraction is deemed reasonable.

To ease this problem, we collect some questions
as seeds in an NLQ-to-LF manner, making sure the
questions are reasonable. Meanwhile, we propose
a general framework called Seeds-to- Forest (SoF)
to automatically scale the dataset.

2.2 Numerical Reasoning

There are several types of QA tasks involving nu-
merical reasoning:

1) Some KBQA datasets (Talmor and Berant,
2018; Gu et al., 2021) consider counting, superla-
tives (argmax, argmin), and comparatives (>, >=,
<, <=). But their questions only perform the calcu-
lation at most once, and the types of operator are
limited to just comparison and some aggregations.

2) The most famous Machine Reading Compre-
hension (MRC) dataset with numerical reasoning
is DROP (Dua et al., 2019). It also lacks com-
plex numerical reasoning. As a result, a large por-

10242

https://github.com/cdhx/MarkQA

tion of methods of DROP follow a Multi-predictor-
based manner (Dua et al., 2019; Hu et al., 2019)
which employs multiple predictors to derive dif-
ferent types of answers. For example, they use a
multi-classifier to find the answer to a counting
question as the answer is restricted to integers from
0 to 10. This is a far cry from actually solving a
numerical reasoning problem.

3) Math Word Problem (MWP), such as
MATHQA (Amini et al., 2019), ASDiv (Miao et al.,
2020), and LILA (Mishra et al., 2022), require in-
tricate complex numerical reasoning. However,
MWP is based on a virtual scenario, while real-
world problems often require to access accurate
knowledge. MWP model does not require the abil-
ity to query knowledge from knowledge sources,
but just the ability to correctly understand the ques-
tion itself and reason numerically.

4) Table QA, such as FinQA (Chen et al., 2021),
may involve multi-step numerical reasoning. Com-
pared to FinQA, we focus on KBQA tasks in gen-
eral rather than the financial domain. Besides, com-
pared to Table QA, KBQA has some inherent supe-
riority in terms of the amount of knowledge, aggre-
gation for large search space, and ease of multi-hop
multi-domain querying.

To alleviate the above problems, our dataset re-
quires not only the ability to interact with underly-
ing knowledge sources but also the ability to per-
form complex numerical reasoning.

2.3 Interpretable Reasoning Path

When it comes to complex reasoning (e.g., multi-
hop, numerical, or logical reasoning), it is cru-
cial to examine whether a model really deeply un-
derstands the underlying problem-solving process
rather than merely producing the answers.

There are mainly two common representations
of reasoning path: question decomposition in natu-
ral language, and formal representation in symbolic
language. QDMR (Wolfson et al., 2020) is a widely
used question decomposition format. It decom-
poses a question into a sequence of reasoning steps,
and each step is an intermediate question phrased
in natural language. Some works instead choose
a more formal symbolic language representation.
LILA (Mishra et al., 2022) and Binder (Cheng et al.,
2023) adopt Python to showcase the process of
reaching the answer. (Cao et al., 2022) develops a
Knowledge oriented Programing Language (KoPL).
Different from KoPL, our proposed PyQL consid-

ers more comprehensively the support of numerical
reasoning and more complex SPARQL grammars.
Moreover, while KoPL requires the development
of a specific execution engine and can only execute
on a JSON format KB, PyQL can directly be com-
piled to executable SPARQL queries, without the
burdensome design of an additional executor and
supporting native KB format.

In MarkQA, we provide each question with a
QDMR and a PyQL to present the reasoning pro-
cess. We believe it would be a valuable resource to
improve the interpretability of the Al system.

3 NR-KBQA

In this section, we present the formal definition of a
question with numerical reasoning (NRQ), which is
the base of NR-KBQA. Then, we introduce PyQL
to showcase the reasoning steps of NRQ.

3.1 Numerical Reasoning Question

An NRQ is any question, requiring mathemati-
cal calculations, such as arithmetic calculation,
aggregation, or comparison, to reach the answer.
An NRQ essentially consists of the descriptions
of value and the computation process. The con-
notation of NRQ can be defined recursively in
Backus—Naur form:

<NRQ> ::= <Func> <Arg> { <Arg> } (1)
<Arg> ::= Num | <NRQ> | <Des> 2)
<Des> ::= Rel <Var> | <Des> <Des> (3)
<Var>::=Ent | Num | <Des> | <NRQ> (4)

In this grammar, <NRQ> represents the intrin-
sic meaning of NRQ, which can be regarded as
the outermost function (<Func>) applied to one
or more <Arg>. <Arg> corresponds to a constant
value (Num), a description of an entity’s numeri-
cal attribute (<Des>), or another <NRQ>. <Des>
describes the relationship (Rel) between a vari-
able (<Var>) and the entity being described, while
the <Var> corresponds to an entity (Ent), a Num,
a <Des> or a <NRQ>. Equation 2 and 4 allow for
the nesting of numerical and multi-hop reasoning,
thereby enabling the representation of complex
NRQ.

Based on this recursive nature, the query graph
of an NRQ can be modeled as a tree and that of
a sub-question is a sub-tree. For the example in
Figure 1, the right part (in red) is a computational
tree where each intermediate node is a function

10243

node and each leaf is a constant value or an attribute
value (green node). The attribute value node is
acquired by matching a graph pattern in the KB,
which the previous datasets focus on and can be
seen as a description of a value.

32 PyQL

We propose PyQL (Pythonic Query Language for
SPARQL), a logical form written in Python as a
reasoning step representation for NRQ. A PyQL is
a sequence of commands: {cy, ¢, ..., c, }, where ¢;
either initializes a PyQL object or calls a function
on the object. As shown in the top left of Figure
2, the user should first initialize a PyQL object and
sequentially add functions to construct the whole
query. Each function represents a reasoning step
such as stating the relation between two entities or
computing the average. A valid PyQL can directly
generate an executable SPARQL query. In detail,
PyQL encapsulates various SPARQL syntax ele-
ments, such as Basic Graph Patterns, Assignments,
Filters, Aggregations, and Subqueries. The detailed
function list of PyQL can be found in Appendix H.
The main features of PyQL can be summarized as
follows:

 User-friendly and conciseness. PyQL offers
an intuitive and concise approach for query-
ing KB by shielding users from unreadable
and lengthy database query language. It al-
leviates the burden of learning and writing
SPARQL and effectively reduces the entry bar-
rier for the community in utilizing SPARQL.
It also makes sure that the generated SPARQL
is grammatically correct and uniformly for-
matted. Specifically, in MarkQA, the aver-
age token length of PyQL is only 60.6% of
SPARQL, and the grammar errors when using
PyQL as output is half of those of SPARQL.

* Step-by-Step reasoning path. PyQL, in a
symbolic manner, shows the transparent rea-
soning pathway of a question. Compared to
SPARQL or S-expression, which is presented
as a whole query and is difficult to parse or
decompose, PyQL exhibits how to construct a
query step by step. PyQL also serves as an ef-
ficient supervision signal, with our experiment
showing up to a 19% performance improve-
ment. With the prevalence of the Large Lan-
guage Model (LLM) and Chain-of-Thought
(CoT) (Wei et al., 2023), it is feasible to use

PyQL as a structural CoT. Besides, the code-
style format also benefits LLMs in understand-
ing due to their pre-training on code resources.

4 MarkQA

4.1 Dataset Construction

Our construction comprises 4 steps: Seeds collec-
tion, Paraphrasing, Generalization, and Composi-
tion, detailed in Figure 2. We extract this process
into a general framework and name it Seeds-to-
Forest (SoF).

4.1.1 Seeds Collection

As mentioned in 2.1, we collect seed questions in
an NLQ-to-LF manner. This allows for a greater
diversity of questions, providing the possibility to
reach questions with longer reasoning paths while
ensuring the meaningfulness of each seed question.
Besides, the question is more natural, as they are
posed directly by humans, instead of transformed
from randomly searched logic forms.

We invite 10 graduate students familiar with
KBQA to annotate seed questions. We instruct
them to focus on exploring patterns specific to cer-
tain relations, thus enhancing the variety and orig-
inality of the questions. Annotators are required
to annotate at least three questions for each quanti-
tative property and each question must involve at
least one computational operation. Furthermore,
for different questions related to the same rela-
tion, their computational structure must be differ-
ent, which means that the differences between the
two questions can not be merely the replacement
of entities. In addition, all the entities and rela-
tions in the questions are recorded for logic form
annotation purposes.

We then invite six graduate students familiar
with QDMR, PyQL, and SPARQL to annotate the
QDMR and PyQL for each seed question. We in-
struct annotators to first write down the QDMR
(some sub-questions) of each question, then anno-
tate the PyQL for each sub-question. The SPARQL
of each question is automatically generated from
PyQL and the annotators need to make sure that
each SPARQL is executable with a unique answer.
An annotated example and an auxiliary annotation
system page can be found in Appendix D and E.

For each seed question, we ask another three
annotators to check if it is meaningful and can be
posed in the real world. We only keep the questions
receiving over 2 approvals, resulting in 10.19%

10244

Seed example(Question and Logic Form)
VDuring 2017 to 2021, how much more annual increase\
in total assets is [Microsoft] than
a =PyQL()
a.add_quantity("Q2283","P2403","Ms_2017",2017)
a.add_quantity("Q2283","P2403","Ms_2021",2021)
a.add_quantity(" " "P2403" "Nf_2017",2017)

Generate
more
examples

Paraphasing

S

u

@ During 2017 to 2021, how much more annual increase in total assets is [Microsoft] than
(@From 2017 to 2021, how much more does [Microsofi]'s total assets increase on average per year than

=

Composition

Pick a paraphrase, replace entities

with vars for generalization

@ Generalization

a.add_quantity(" ","P2403","Nf_2021",2021) ————— = ~N
a.add_bind(sub("Ms_2021","Ms_2017"),"MS_increase") a-add_quantity("Q22637,'P2403","Ms_2017",2017) a.add_quantity("02263",P2408" "Ms_2017",2017)
a.add_bind(sub("Nf_2021","Nf_2017"),"NF_increase") @sub-graph sampling a.add_quantity("Q ,"P2403","Ms_2021",2021)
a.add_bind(sub(2021,2017),"year_gap") omt in time value 250,312M radquantty V0o s Ny
a.add_bind(div("MS_increase","year_gap"),"MS_annual") ; W, 4 a.add_quantity(\"P2403","Nf_2021",2021)
. é : g s A o total assets
a.add_bind(div("NF_increase", "year_gap"), "NF_annual") Bill Paul G.
L a.add_bind(sub("MS_annual","NF_annual"),"answer") Y WS o Sample
— @ some Candidates:
Final example(Question and Logic Form) o add wl_fact(cormpl " "P112" Q528" Ca"dt':a'es 02283 | Q38076 | Q248 | Qa12
a.add_wdt_fact("complI","P112","Q162005" 4
Guring 2017 to 2021, how much more annual increase in _ _wdfaci() A P Q248 Qsess | Qars214
total assets is the company founded by Bill Gates and N\ 2016 2015 2017
Paul G. Allen than a.add_quantity(" " "P2403""Nf_2017",2017) <[— 2021 2020 2020 2021
a=PyQL() i, G sub-graph sampling
a.add_fact("compM","P112","Q5284" "wdt") Sample (@—pomtmhm?()—value 19.013)
a.add_fact("compM","P112","Q162005","wdt") total assets
_ Chappaqua a.add quantity(" "P2403","assets1 2017",)
| || Nethix<founded by— Rxg{f‘ph place of birth fa.add_quantity(" "P2403""assets1_2015",2015)
Q sducsted ot /f "?T“‘O" fa.add_quantity("P2403" "assets1_2016"
ollege i 202
a.add_quantity("compM","P2403","M_assets_2017",2017) g a.add_quantity("
7 ~ 77 a.add_wdt_fact(" * "P112" "founder’) a-ag}quant'{yﬁu
------ /4 4 o/ / a.add_wdt_fact(*founder”,"P19",'Q2957569') (@.add_quantity
a.add_quantity("compN","P2403","N_assets_2017",2017) a.add_wdt_fact("founder”,"P69",/Q3113011") L
e \

Figure 2: The Seeds-to-Forest (SoF) data construction framework. We first collect some seed questions and
corresponding logic forms. And then generate more examples by paraphrasing, generalization, and composition.

dropped. For QDMR and PyQL, we ask another
two annotators to check the correctness indepen-
dently and correct all error cases. In the end, we
collect a total of 950 seed questions for 318 quanti-
tative properties.

4.1.2 Paraphrasing

We perform question paraphrasing through GPT-
3.5-turbo to increase the surface-level diversity of
the questions. The prompts and a paraphrased re-
sult can be found in Appendix F. Given a question,
we enclose the mentioned entities in parentheses
and anonymize them as A/B/C. Then, we ask the
model to paraphrase the anonymized question, but
when outputting, it should restore the specific en-
tity labels based on the correspondence between
A/B/C and the entity labels. In this way, we can
obtain question paraphrases in a more controlled
manner, and the model’s output is directly usable.
For each question, we instruct GPT-3.5-turbo to
generate 10 paraphrases that preserve the original
question’s semantics.

We sample 1000 paraphrases of 100 questions
and find only 4.3% with minor problems, so we
consider the quality to be basically acceptable and
obtain 9,366 paraphrases.

4.1.3 Generalization

In this step, we extract the logic form templates for
each seed question by masking entities with vari-
ables. We execute the templates to acquire more
entities that satisfy the SPARQL to generate more
examples. In addition, for numerical literals in the

seed questions, we introduce some perturbations
to avoid the model learning the bias from literals.
We also collect the alias of the entity through the
skos:altLabel. To ensure the quality and unambigu-
ous nature of aliases, we have removed aliases that
can be associated with multiple entities simultane-
ously, as well as aliases that are identical to the
labels of other entities.

For each seed question, we sample up to 30 gen-
eralized questions. We employ the new entity’s
label or alias and its QID to replace the original
in the question and logic form, respectively. As a
consequence, we obtain about 20k examples.

4.1.4 Composition

So far, our emphasis has primarily been on explor-
ing numerical reasoning. In real-world scenarios,
numerical and multi-hop reasoning often arise to-
gether. In this step, we incorporate multi-hop rea-
soning into MarkQA by converting entities in the
questions into descriptions. This is done through
two steps: Sub-graph Sampling and Naturalization.

The aim of Sub-graph Sampling is to sample a
sub-graph centering around the target entity for de-
scription. We consider structures within two hops,
where each variable can be restricted by at most two
triple patterns, resulting in six types of structures
(detailed in Appendix J). These structures cover
most structure patterns of previous complex KBQA
datasets (e.g. LC-QuAD, CWQ, GrailQA). During
sampling, we ensure that the sub-graph is suffi-
cient (able to uniquely identify the entity) and non-

10245

Dataset Size NRQ Canonical LF Struct SPT-OP Avg NS
CWQ (Talmor and Berant, 2018) 34,689 10.0% 6236 56 7 0.30
LC-QuAD 2.0 (Dubey et al., 2019) 30,226 8.9% 200 20 6 0.09
GrailQA (Gu et al., 2021) 51,100 16.2% 4330 22 8 0.16
KQA Pro (Cao et al., 2022) 117,970 45.1% 45563 418 6 0.57
MarkQA 31,902 100.0% 12410 1054 15 2.51

Table 1: Detail statistics of MarkQA with other datasets. NRQ represents the percentage of questions that require
numerical reasoning. Canonical LF means the number of distinct SPARQL templates, which is done by masking
all entities, and types. Struct means the number of distinct skeleton structures of SPARQL, acquired by masking
all entities, types, variables, and relations. We also took into consideration that different query graphs may be
isomorphic heterogeneous graphs due to the different ordering of triples. SPT-OP refers to the number of numerical
operations supported. Avg NS means the average number of computational operations.

redundant (without extra triple patterns). To guaran-
tee the meaningfulness of the sub-graph, we collect
high-quality relations from existing datasets, in-
cluding SimpleQuestions, CWQ, and GrailQA. For
Freebase relations, we transform them into wiki-
datalDs using Wikidata’s official mapping page.
We calculate their distribution as a base to select
triple patterns and incorporate some smoothing
techniques to balance the sampling probability and
alleviate the long-tail phenomena.

For Naturalization, we prompt GPT-3.5-turbo
to transform the sub-graphs into natural language
descriptions. To prevent information leakage, we
mask the target entity and the inner entity as a spe-
cial token and instruct GPT-3.5-turbo which one to
describe. In other words, it should not output the
label of the target entity or the internal entity as a
variable. Otherwise, it is not a real two-hop prob-
lem, since the internal variable is already leaked.
The prompt we use can be found in Appendix G.

With our well-designed prompt, GPT-3.5-turbo
excels at the task of converting sub-graphs into nat-
ural language descriptions. We sample 100 (sub-
graph, description) pairs and find 93 acceptable. In
this step, 50% of questions from 4.1.3 have one or
two entities replaced with descriptions. Each ques-
tion can generate at most 2 new questions through
this step. Finally, we obtain 31,902 examples.

4.2 Dataset Analysis

4.2.1 Statistics

Our MarkQA consists of 31,902 examples. A de-
tailed comparison with existing datasets is shown
in Table 1. Compared with existing datasets,
MarkQA has quite a lot more questions that require
numerical reasoning (NRQ). In addition to being
more numerous, MarkQA is superior in terms of

the difficulty of numerical reasoning (Avg NS) and
supports more comprehensive operators (SPT-OP).
Combined with multi-hop reasoning, the template
of our query far exceeds others (Canonical LF).
This results in more diverse questions that have not
been included in previous datasets. Considering
the query structure (Struc), MarkQA shows a great
diversity compared to others. This is intuitive, as
the combination of KB graph patterns and compu-
tational graphs produces a combinatorial explosion.
We provide other detailed statistics in Appendix B.

4.2.2 Operators Analysis

The question of MarkQA considers 15 types of
operators, including 5 arithmetic operations (addi-
tion, subtraction, multiply, divide, absolute value),
5 aggregation operations (count, argmin, argmax,
average, summation), and 5 comparative opera-
tions(>, <, >=, <=, =). With their combination,
MarkQA supports most of the questions that re-
quire numerical reasoning. The percentage of ques-
tions that have at least one arithmetic, aggregation,
or comparative operation are 88.1%, 24.8%, and
34.6%, respectively. There are 71.20% of questions
with different operators and the average number of
operators per question is 2.51.

4.2.3 Answer Analysis

The answers of MarkQA are all unique, which
may manifest as a numerical value, an entity, or a
boolean value. When presented with questions that
produce collections of entities, we transform them
into ones with unique answers (such as the size
of the entity set or the maximum value of one of
their attributes). The percentage of answers in the
dataset that are a number, an entity, and a boolean
value are 72.9%, 17.9%, and 9.1%, respectively.

10246

Methods Output Overall LLD Compositional Zero-shot
SPARQL 3424 70.05 53.71 6.32
TS-base “pooL 4070 7832 63.10 10.39
GMT SPARQL 38.68 78.32 63.58 6.07
PyQL 43.63 82.10 68.33 11.71
SPARQL 37.19 76.82 57.37 7.01
QDTQA PyQL 4257 84.59 70.89 7.01

Table 2: QA performance (%) on test set of MarkQA.

4.24 Quality

We invited three workers to evaluate the final
dataset. Each example can be accepted if it receives
over 2 approvals. In detail, we randomly sample
100 examples from the test set of MarkQA to ex-
amine their questions, QDMR, and PyQL. We find
that all samples have fluent questions. 5 questions
are ambiguous or not meaningful, which means
they are not expected in real-world questions. The
QDMR or PyQL of 8 questions is problematic. In
total, 89 out of 100 examples are acceptable.

5 Experiment

5.1 Experimental Setup

Our training/validation/test sets contain about
70%/20%/10% of the data, corresponding to
22,352, 6,334 and 3,216 instances, respectively.
Following (Gu et al., 2021), we evaluate the gen-
eralizability of MarkQA by three levels (i.e. I.I.D,
Compositional, and Zero-shot). For the validation
and test set, the proportion of the three levels of
generalization remains the same as in the origi-
nal paper (50% for Zero-shot, 25% for Composi-
tional, 25% for 1.1.D). Given that the answer of
MarkQA are unique, we consider accuracy (ACC)
as the evaluation metric.

5.2 Baselines

There are mainly two mainstream methods in
KBQA, namely Information Retrieval (IR) meth-
ods and Semantic Parsing (SP) methods. IR meth-
ods retrieve a subgraph from KB and rank candi-
date entities in the subgraph to reach the answer.
They can only handle questions whose answer
is the entity in the sub-graph, unable to answer
questions that require further reasoning (computa-
tion) of the nodes in multiple connected subgraphs.
Therefore, we only consider SP methods, which
parse natural language questions into executable

logic forms, as our baseline models. Concretely,
we adapt T5-base and two representative SP meth-
ods to MarkQA: (1) T5-base (Raffel et al., 2020)
is a language model, and we model the QA task
as a sequence-to-sequence task. We concat ques-
tion, entity linking, and relation linking results as
input. (2) GMT (Hu et al., 2022) uses a multi-task
learning framework to refine the retrieved linking
results along with generating target logical forms.
(3) QDTQA (Huang et al., 2023) improves KBQA
performance by incorporating question decomposi-
tion information. For each model, we report the per-
formance of two formats as output, i.e. SPARQL
and PyQL.

5.3 Main Results

Table 2 summarizes the evaluation results on
MarkQA. Compared with existing complex KBQA
datasets, MarkQA is more challenging given that
the performance of the state-of-the-art method
drops dramatically. After involving PyQL, the over-
all performance improves significantly, where the
relative increase ranges from 12.80% to 18.87%. It
is easy to grasp since PyQL is a more concise repre-
sentation and the average token length of PyQL is
only 60.6% of SPARQL. Besides, the grammar of
PyQL is simpler than SPARQL, resulting in fewer
grammar errors. For 95% of the questions, the top 1
generated results are grammarly-valid when adopt-
ing PyQL as output, while this metric drops to 90%
with SPARQL as the output, which indicates the
superiority of PyQL.

The result also shows that Compositional and
Zero-shot settings are challenging. We observe a
maximum of 19.4% relative performance gap be-
tween the I.I.D and Compositional setting. Mean-
while, the Zero-shot setting is the most challenging
among the three levels. It not only includes unseen
schema items but also naturally contains unseen
combinations of schema items which the Composi-

10247

Methods Over. LLD Comp. Zero.

TS-base 40.7 783 63.1 10.4
w/ gold E 46.5 883 727 12.1
w/ gold R 479 792 655 23.1
w/goldER 57.6 89.8 76.1 31.9

Table 3: Detailed analysis of T5-base with PyQL as
output. w/ gold E or R means we use golden entity or
relation linking results. Over., Comp., and Zero. stands
for Overall, Compositional, and Zero-shot, respectively.

tional level focuses on. Moreover, some relations
may have an entirely new query structure (masking
all entities, types, variables, and relations) even
after masking the relations. We also analyze the av-
erage PyQL length of the three settings and find no
obvious differences among the three levels (from
7.4 to 7.8), indicating that the difficulty is not pri-
marily brought about by the longer reasoning path.

5.4 Analysis

Performance with golden linking We perform an
oracle experiment to find out why all models fail
to achieve a satisfying performance and give an up-
per bound of these models on MarkQA. As shown
in Table 3, given the golden linking results, the
performance increases significantly on all settings,
especially the Zero-shot setting with a 21-point in-
crease. This meets the expectation as the Zero-shot
setting additionally has unseen relations. However,
even with golden linking results, the performance
of all models is still poor. In specific, the perfor-
mance of the Zero-shot setting is far behind the
Compositional setting. It demonstrates that linking
is indeed a challenge, but not the only challenge.
Performance of different types of questions
Table 4 shows the performance of different types of
questions. Row 1 represents the performance of all
questions. Row 2 showcases the performance of a
subset of questions that only requires numerical rea-
soning. By excluding newly generated questions
in the Composition stage, this subset provides a
measure of the inherent difficulty of numerical rea-
soning itself. The performance only sees a slight
increase of 1.3%, indicating that numerical rea-
soning is indeed challenging and that the dataset’s
primary difficulty stems from this aspect. Row 3
displays the performance of questions that require
both numerical and multi-hop reasoning. This sub-
set of data is complementary to the data in Row
2. The performance drops by 2.2%, suggesting

Type Over. LLD Comp. Zero.
All 40.7 783 63.1 104
NR 420 854 643 129
NR and MR 385 655 61.8 5.1
NR and MR(1) 433 70.1 70.2 6.5
NR and MR(2) 287 55.6 44.8 2.3

Table 4: Performance of different types of questions on
TS (PyQL). NR and MR mean numerical reasoning and
multi-hop reasoning, respectively. MR(1) and MR(2)
mean one-hop and two-hop reasoning, respectively.

that the inclusion of multi-hop reasoning further in-
creases the question’s difficulty. Rows 4/5 presents
the performance of questions that require numeri-
cal reasoning and one-hop/two-hop reasoning, re-
spectively. The questions with two-hop reasoning
exhibit a significantly lower performance than the
ones with one-hop reasoning.

6 Conclusion

In summary, our contributions are as follows:

1. We propose a new task NR-KBQA which ne-
cessitates the ability to perform both multi-
hop reasoning and numerical reasoning.

2. We devise PyQL, a domain-specific language
to portray the step-by-step reasoning process.
Aside from providing convenience for annota-
tion, it also has superiority when serving as a
supervised signal for complex reasoning.

3. We construct a large-scale dataset, namely
MarkQA, with 31,902 examples which is auto-
matically scaled from 1K real questions. Each
question is equipped with a QDMR, a PyQL,
and a SPARQL.

4. We migrate two state-of-the-art baselines from
Freebase to Wikidata. Experimental results
show that NR-KBQA faces great challenges.

Overall, we for the first time explore and discuss
numerical reasoning in KBQA from task formula-
tion, reasoning paths representation, dataset con-
struction, and baseline implementation. We believe
this work should prompt the research in this area.

Limitations

The major limitations of the work include: (a)
The seed question is manually annotated. It
would be more efficient to automatically collect

10248

human-asked questions for constructing a large-
scale dataset. (b) Our dataset construction process
includes some synthetic steps, such as replacing the
entity with a description, which may have resulted
in some rigid expressions. (C) PyQL, for now, is
SPARQL-oriented. It will be more universal after
being generalized to other query languages, such
as SQL, Lambda-DCS, and others.

Acknowledgements

This work is supported by the National Natural
Science Foundation of China (NSFC) under Grant
No. 62072224. The authors would like to thank
all the participants of this work and anonymous
reviewers.

References

Aida Amini, Saadia Gabriel, Shanchuan Lin, Rik
Koncel-Kedziorski, Yejin Choi, and Hannaneh Ha-
jishirzi. 2019. MathQA: Towards interpretable math
word problem solving with operation-based for-
malisms. In Proceedings of the 2019 Conference
of the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
2357-2367, Minneapolis, Minnesota. Association for
Computational Linguistics.

Shulin Cao, Jiaxin Shi, Liangming Pan, Lunyiu Nie,
Yutong Xiang, Lei Hou, Juanzi Li, Bin He, and Han-
wang Zhang. 2022. KQA pro: A dataset with explicit
compositional programs for complex question an-
swering over knowledge base. In Proceedings of the
60th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
6101-6119, Dublin, Ireland. Association for Compu-
tational Linguistics.

Zhiyu Chen, Wenhu Chen, Charese Smiley, Sameena
Shah, Tana Borova, Dylan Langdon, Reema Moussa,
Matt Beane, Ting-Hao Huang, Bryan Routledge, and
William Yang Wang. 2021. Finqga: A dataset of nu-
merical reasoning over financial data. Proceedings
of EMNLP 2021.

Zhoujun Cheng, Tianbao Xie, Peng Shi, Chengzu
Li, Rahul Nadkarni, Yushi Hu, Caiming Xiong,
Dragomir Radev, Mari Ostendorf, Luke Zettlemoyer,
Noah A. Smith, and Tao Yu. 2023. Binding Lan-
guage Models in Symbolic Languages. ICLR, pages
1-27.

Dheeru Dua, Yizhong Wang, Pradeep Dasigi, Gabriel
Stanovsky, Sameer Singh, and Matt Gardner. 2019.
Drop: A reading comprehension benchmark requir-
ing discrete reasoning over paragraphs. NAACL HLT
2019 - 2019 Conference of the North American Chap-
ter of the Association for Computational Linguistics:

Human Language Technologies - Proceedings of the

Conference, 1:2368-2378.

Mohnish Dubey, Debayan Banerjee, Abdelrahman Ab-
delkawi, and Jens Lehmann. 2019. Lc-quad 2.0: A
large dataset for complex question answering over
wikidata and dbpedia. In The Semantic Web — ISWC
2019, pages 6978, Cham. Springer International
Publishing.

Yu Gu, Sue Kase, Michelle Vanni, Brian Sadler, Percy
Liang, Xifeng Yan, and Yu Su. 2021. Beyond L.I.D.:
Three levels of generalization for question answer-
ing on knowledge bases. The Web Conference 2021
- Proceedings of the World Wide Web Conference,
WWW 2021, 2021:3477-3488.

Minghao Hu, Yuxing Peng, Zhen Huang, and Dong-
sheng Li. 2019. A multi-type multi-span network
for reading comprehension that requires discrete rea-
soning. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
1596-1606, Hong Kong, China. Association for Com-
putational Linguistics.

Xixin Hu, Xuan Wu, Yiheng Shu, and Yuzhong Qu.
2022. Logical form generation via multi-task learn-
ing for complex question answering over knowledge
bases. In Proceedings of the 29th International Con-
ference on Computational Linguistics, pages 1687—
1696, Gyeongju, Republic of Korea. International
Committee on Computational Linguistics.

Xiang Huang, Sitao Cheng, Yiheng Shu, Yuheng Bao,
and Yuzhong Qu. 2023. Question decomposition
tree for answering complex questions over knowl-
edge bases. Proceedings of the AAAI Conference on
Artificial Intelligence, 37(11):12924—-12932.

Yunshi Lan, Gaole He, Jinhao Jiang, Jing Jiang,
Wayne Xin Zhao, and Ji-Rong Wen. 2021. A sur-
vey on complex knowledge base question answering:
Methods, challenges and solutions. In Proceedings
of the Thirtieth International Joint Conference on
Artificial Intelligence, IJCAI-21, pages 4483—-4491.
International Joint Conferences on Artificial Intelli-
gence Organization. Survey Track.

Shen-yun Miao, Chao-Chun Liang, and Keh-Yih Su.
2020. A diverse corpus for evaluating and developing
English math word problem solvers. In Proceedings
of the 58th Annual Meeting of the Association for
Computational Linguistics, pages 975-984, Online.
Association for Computational Linguistics.

Swaroop Mishra, Matthew Finlayson, Pan Lu, Leonard
Tang, Sean Welleck, Chitta Baral, Tanmay Rajpuro-
hit, Oyvind Tafjord, Ashish Sabharwal, Peter Clark,
and Ashwin Kalyan. 2022. LILA: A unified bench-
mark for mathematical reasoning. In Proceedings of
the 2022 Conference on Empirical Methods in Nat-
ural Language Processing, pages 5807-5832, Abu
Dhabi, United Arab Emirates. Association for Com-
putational Linguistics.

10249

https://doi.org/10.18653/v1/N19-1245
https://doi.org/10.18653/v1/N19-1245
https://doi.org/10.18653/v1/N19-1245
https://doi.org/10.18653/v1/2022.acl-long.422
https://doi.org/10.18653/v1/2022.acl-long.422
https://doi.org/10.18653/v1/2022.acl-long.422
http://arxiv.org/abs/2210.02875
http://arxiv.org/abs/2210.02875
http://arxiv.org/abs/1903.00161
http://arxiv.org/abs/1903.00161
https://doi.org/10.1007/978-3-030-30796-7_5
https://doi.org/10.1007/978-3-030-30796-7_5
https://doi.org/10.1007/978-3-030-30796-7_5
https://doi.org/10.1145/3442381.3449992
https://doi.org/10.1145/3442381.3449992
https://doi.org/10.1145/3442381.3449992
https://doi.org/10.18653/v1/D19-1170
https://doi.org/10.18653/v1/D19-1170
https://doi.org/10.18653/v1/D19-1170
https://aclanthology.org/2022.coling-1.145
https://aclanthology.org/2022.coling-1.145
https://aclanthology.org/2022.coling-1.145
https://doi.org/10.1609/aaai.v37i11.26519
https://doi.org/10.1609/aaai.v37i11.26519
https://doi.org/10.1609/aaai.v37i11.26519
https://doi.org/10.24963/ijcai.2021/611
https://doi.org/10.24963/ijcai.2021/611
https://doi.org/10.24963/ijcai.2021/611
https://doi.org/10.18653/v1/2020.acl-main.92
https://doi.org/10.18653/v1/2020.acl-main.92
https://aclanthology.org/2022.emnlp-main.392
https://aclanthology.org/2022.emnlp-main.392

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J. Liu. 2020. TS: Exploring the
limits of transfer learning with a unified text-to-text
transformer. Journal of Machine Learning Research,
21:1-67.

Ahmad Sakor, Kuldeep Singh, Anery Patel, and Maria-
Esther Vidal. 2020. Falcon 2.0: An entity and rela-
tion linking tool over wikidata. In Proceedings of
the 29th ACM International Conference on Informa-
tion amp; Knowledge Management, CIKM 20, page
3141-3148, New York, NY, USA. Association for
Computing Machinery.

Yiheng Shu, Zhiwei Yu, Yuhan Li, Borje Karlsson,
Tingting Ma, Yuzhong Qu, and Chin-Yew Lin. 2022.
TIARA: Multi-grained retrieval for robust question
answering over large knowledge base. In Proceed-
ings of the 2022 Conference on Empirical Methods
in Natural Language Processing, pages 8108-8121,
Abu Dhabi, United Arab Emirates. Association for
Computational Linguistics.

Alon Talmor and Jonathan Berant. 2018. The web as
a knowledge-base for answering complex questions.
In Proceedings of the 2018 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
Volume 1 (Long Papers), pages 641-651, New Or-
leans, Louisiana. Association for Computational Lin-
guistics.

Priyansh Trivedi, Gaurav Maheshwari, Mohnish Dubey,
and Jens Lehmann. 2017. Lc-quad: A corpus for
complex question answering over knowledge graphs.
In International Semantic Web Conference, pages
210-218. Springer.

Yushi Wang, Jonathan Berant, and Percy Liang. 2015.
Building a semantic parser overnight. In Proceedings
of the 53rd Annual Meeting of the Association for
Computational Linguistics and the 7th International
Joint Conference on Natural Language Processing
(Volume 1: Long Papers), pages 1332-1342, Beijing,
China. Association for Computational Linguistics.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc Le, and
Denny Zhou. 2023. Chain-of-thought prompting elic-
its reasoning in large language models.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander Rush. 2020. Trans-
formers: State-of-the-art natural language processing.
In Proceedings of the EMNLP: System Demonstra-
tions, pages 38—45, Online. Association for Compu-
tational Linguistics.

Tomer Wolfson, Mor Geva, Ankit Gupta, Matt Gardner,
Yoav Goldberg, Daniel Deutch, and Jonathan Berant.

10250

2020. BREAK it down: A question understanding
benchmark. TACL.

http://arxiv.org/abs/1910.10683
http://arxiv.org/abs/1910.10683
http://arxiv.org/abs/1910.10683
https://doi.org/10.1145/3340531.3412777
https://doi.org/10.1145/3340531.3412777
https://aclanthology.org/2022.emnlp-main.555
https://aclanthology.org/2022.emnlp-main.555
https://doi.org/10.18653/v1/N18-1059
https://doi.org/10.18653/v1/N18-1059
https://doi.org/10.3115/v1/P15-1129
http://arxiv.org/abs/2201.11903
http://arxiv.org/abs/2201.11903
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.1162/tacl_a_00309
https://doi.org/10.1162/tacl_a_00309

A Numerical Properties Selection

We first select the Numerical Properties(num_p)
with more than 100 statements or qualifiers
recorded in Wikidata (of January 23, 2023). This
leaves us with 377 num_p. This is to avoid se-
lecting rare or long-tail numerical attributes since
they are likely to be uncommon and difficult to
comprehend. Additionally, if a numerical attribute
has too few records, it becomes challenging to gen-
erate a sufficient number of questions during the
generalization process, leading to data imbalance
issues. Then, we manually remove some num_p re-
quiring high-level domain knowledge (e.g. redshit,
pKa, longitude of ascending node). Each removed
num_p is checked by two annotators. If both anno-
tators agree that it is hard to ask meaningful NRQ
for this num_p, then this num_pis dropped. Finally,
we retain 318 num_p.

B Data Analysis

Here we provide more statistical details of
MarkQA. Tabel 5 shows the number of distinct en-
tities, properties, and answers covered by MarkQA,
along with the average PyQL and question length.
Table 6 presents the distribution of different numer-
ical reasoning types among the three generalization
levels. Tabel 8 shows the distribution of questions
with different levels of the combination of numeri-
cal reasoning and multi-hop reasoning.

Measurement value
distinct entity 19,342
distinct property 582
distinct quantitative property 318
distinct answer 9,677
Avg PyQL len 7.39
Avg question length(tokens) 25.6

Table 5: Key statistics for MarkQA

Type LLD Comp. Zero. Over.
Arithmetic 244 252 504 100.0
Aggregation 22.3 239 537 100.0
Comparison 27.8 339 38.3 100.0

Table 6: Distribution(%) of different levels with dif-
ferent numerical reasoning types. Note that there are
overlaps among the three reasoning types (the sum of
the percentages may not equal to 1).

Reasoning type Prop
Arithmetic 88.1
Aggregation 24.8
Comparison 34.6
Arithmetic and Aggregation 14.3
Arithmetic and Comparison 28.6

Aggregation and Comparison 7.9
Arithmetic and Aggregation and Comparison 3.1

Table 7: Propertion(%) of questions with different nu-
merical reasoning type and their combination.

Type Number of NRQ Proportion
NR 20,745 64.4%
NR and MR 11,468 35.6%
NR and MR(1) 7,606 23.6%
NR and MR(2) 3,862 12.0%

Table 8: Distribution of different types of question. NR
and MR mean numerical reasoning and multi-hop rea-
soning, respectively. MR(1) and MR(2) mean one-hop
and two-hop reasoning, respectively.

C Experimental Details

C.1 Knowledge Base

We utilize Wikidata-2023-01-23 dump as the
knowledge base. This dump consists of 21 bil-
lion facts and takes 1.8TB uncompressed on disk,
which is far larger than another popular used KB,
i.e. Freebase with 8 billion facts. To lower the bar-
rier of using Wikidata for KBQA, we elaborately
tailor the Wikidata dump to get a subset that con-
tains only QA-related facts. We remove the facts
that include but are not limited to articles, refer-
ences, multilingual, multimedia, tables, and others
useless for QA. This leaves us with about 5 bil-
lion facts which is the same order of magnitude as
Freebase.

C.2 Implementation Details

For all baselines, we use the same linking results.
For entity linking, we use open-source linking tools
ELQ, to retrieve candidate entities, the correspond-
ing scores, and the mentions. For relation linking,
we use Falcon 2 (Sakor et al., 2020).

For GMT and QDTQA, we keep their original
training settings. For T5-base, we adopt the im-
plementation based on Hugging Face (Wolf et al.,
2020), with Adafactor optimizer. The learning rates
of all three models are set to Se-5. All models are
trained for 30 epochs. For evaluation, the beam
size is 25. All models are trained and evaluated on

10251

an Nvidia RTX3090 GPU.

C.3 Error Analysis

We sample 100 error cases from GMT model in
PyQL format and summarize the errors into the
following categories: (1) Wrong reasoning path
(28%): We manually analyze the percentage of
questions that predicate a wrong reasoning path
regardless of the linking result. (2) Entity linking
error (42%) and Relation linking error (26%): We
compare the KB item in the predicted PyQL with
the golden ones and find that 68% of questions
have at least one wrong item. (3) Grammar error
(4%): This means the generated PyQL is grammat-
ically incorrect and cannot be compiled to generate
executable SPARQL.

10252

D Annotation Example

Question Content Among all [radio telescope|Q184356]s, how many times is the maximum focal length compared to the average?
Question ID 4145351889
Numerical relations P2151
Non-numerical relations P31 P279
Entities Q184356

SPARQL SELECT ?answer {

{
SELECT DISTINCT * {
?radio_telescope_1 wdt:P31/wdt:P279* wd:Q184356.
?radio_telescope_1 p:P2151 ?statement_radio_telescope_focal_1.
?statement_radio_telescope_focal_1 psv:P2151 ?value st radio_telescope_focal_1.
?value_st_radio_telescope_focal_1 wikibase:quantityAmount ?radio_telescope_focal_1.
}
ORDER BY DESC(?radio_telescope_focal_1)
LIMIT 1
}
{

SELECT (AVG(?radio_telescope_focal_2) AS ?avg_radio_telescope_focal) {
?radio_telescope_2 wdt:P31/wdt:P279* wd:Q184356.

?radio_telescope_2 p:P2151 ?statement_radio_telescope_focal_2.
?statement_radio_telescope_focal_2 psv:P2151 ?value_st_radio_telescope_focal_2.
?value_st_radio_telescope_focal_2 wikibase:quantityAmount ?radio_telescope_focal_2.

}

BIND((?radio_telescope_focal_1/ ?avg_radio_telescope_focal) AS ?answer)

Reasoning steps # All radio telescopes
a = PyQL(
a.add_type_constrain('Q184356', 'radio_telescope_1')

What is the focal length of #1
a.add_quantity(‘radio_telescope_1', 'P2151", 'radio_telescope_focal_1")

What is the maximum value in #2
a.add_max(‘radio_telescope_focal_1')

All radio telescopes
b = PyQL()
b.add_type_constrain('Q184356', 'radio_telescope_2")

What is the focal length of #4
b.add_quantity('radio_telescope_2', 'P2151', 'radio_telescope_focal_2')

What is the average of #5
b.add_avg('radio_telescope_focal_2', ‘avg_radio_telescope_focal’)

What is the result of #3 divided by #6

c = PyQL(

c.add_bind(div('radio_telescope_focal_1', 'avg_radio_telescope_focal'), 'answer’)
c.add_sub_query(a, b)

print(c.sparql)

submit cancel

Figure 3: An annotation example of a seed question in our annotation system. Annotators are required to annotate
the question, the ID of KB item (entities, numeral properties, non-numeral properties), SPARQL, and reasoning
steps (QDMR and PyQL).

10253

E Auxiliary Annotation System

Property information

nput o

Basic information

ID Label Description Also known as As As
property qualifier
P1872 minimum number minimum numbers of minimum players, number of players, 1029 93
of players players of a game minimum, players, minimum number

Distribution of subject types

Entity type Number Top example .
Q7889(video game), 367 Among Us, Factorio, Minecraft, The Battle For Wesnoth, Super Smash Bros. Ultimate
Q131436(board game), 348 chess, Monopoly, Thurn and Taxis, backgammon, Unlock! Escape adventures
Q142714(card game) 70 contract bridge, Secret Hitler, Uno, 7 Wonders, skat

Distribution of unit

Unit Number Top example

1 1248 Among Us, Factorio, Minecraft, The Battle For Wesnoth, Super Smash Bros. Ultimate
player 2 Das Bohnenspiel

human 1 Totopoly
filters

filter by entity type filter by unit only one statement

Q7889(video game) 1 1
Q131436(board game) player 2
< » < » < » < »
Examples
Subject ID Subject label Subject Subject type Statement other statements
statements
number
Q96417649 Among Us 736 e esports discipline q ity unit time * P2664(units sold) o
fink P1114(quantity)
4 ! 0 dlies S ~ P2047(duration),
< »
Q104223925 Back 4 Blood 184 e video game ity unit time statement ~ P8687(social
link media followers)
1 1 0 click . P3575(data size)
4 ’ P2284(price)
< »
Q55004330 Dying Light 2 Stay 182 e video game ity unit| time © P2664(units sold) m
Human k - link

P2047(duration),

— ~ P3575(data size)

« 3

Figure 4: An example of our auxiliary annotation system. Given a quantitive property, the system provides
comprehensive information including its label, aliases, description, subject type distributions, unit distributions of
attribute values, and at most 2000 entities that have this property. Each entity is also provided with other quantitive
properties the entity has to help the annotator ask questions with multiple quantity properties.

10254

F Prompt Used in paraphrasing

Prompt used in paraphrasing

Give 10 rewrites with the same meaning for each sentence following. Try to keep ALL the content within
[] with the [] symbol in your output.

[1’s corresponding content is marked after the sentence. Use their meanings, but do not show them in
rewrites.

For example: { [A]:[McDonald’s] } . You know that [A] stands for McDonald’s, but use [A] instead
of McDonald’s in rewrites.

So DO NOT contain []’s corresponding content in your output.

for example:

Among [A], [B] and [C1], is the one with the largest load capacity also the most expensive to build? {
[A1:MS Allure of the Seas [B]:Wonder of the Seas [C]:MS Oasis of the Seas }

a possible rewrite: Which of the three ships, [A], [B1], or [C], has the highest cost of construction, and
is also the one with the largest load capacity?

DO NOT contain []1’s corresponding content in your rewrites!!
Output the output corresponding to each sentence in strict accordance with the following sample format:
sentence 1:

rewrite 1:

rewrite 2:

rewrite 3:

rewrite 4:

rewrite 5:

rewrite 6:

rewrite 7:

rewrite 8:

rewrite 9:

rewrite 10:

Table 9: Prompt used in paraphrasing. We request the model to perform a paraphrasing task and provide an example.
Given a question, we enclose the mentioned entities in parentheses and anonymize them as A/B/C. This step is taken
to prevent the model from omitting or tampering with the entity labels during the paraphrasing process. Then, we
ask the model to paraphrase the anonymized question, but when outputting, it should restore the specific entity labels
based on the correspondence between A/B/C and the entity labels. In this way, we can obtain question paraphrases
in a more controlled manner, and the model’s output is directly usable.

10255

G Prompt Used in Composition

Prompt used in composition
Given some wikidata subgraphs centering on a center wikidata entity called [topic_entity], you need to
get descriptions for each [topic_entity] base on their subgraph.

The input contains some subgraphs denoted by *subgraphi*, with meanings of
properties(*Property Meanings*) in the end.

each *subgraph_i* contains:

[topic_entity]: the name of topic entity.

[type]: the most frequent wikidata type of topic entity.(some abstact entity may not have a type, then
there is no [type] field.)

[triples]: some triples centered on [topic_entity]. A triples looks like <subject, property, object>.

The solution to this task is:

For each *subgraph_i*, use the semantics of its [triples] to get the description [topic entity]. You need to
include the meaning of all triples in the description.

A description is an appositive sentence of [topic_entity], but not contain the label of the topic entity.

To generate a desCription............ccceecvereennene

[describing how to write a description]

ATTENTION:

1. PAY SPECIAL attention to directional properties ends with prepositions or has inverse property.......
2. The descriptions should be as short as possible(less than 6 tokens disregarding the entity label), but
also need to be as diverse and fluid as possible. You may rewrite the meaning of properties.

..... [other attentions]

Examples of input and your output:

<input>

subgraph_0:{ [topic_entity]: Resurrection [type]:literary work [triples]:(<[topic_entity], writer, Leo
Tolstoy>, <[topic_entity], genre, political fiction) }

Property_Meanings: (author:main creator(s) of a written work) (genre:creative work’s genre or an artist’s
field of work (P101))

<endofinput>

[other 3 examples]

<output>

Solvel:

subgraph_0 is a subgraph about Resurrection. Base on the meaning of triples,
Answer: [*subgraph 0*:[the @political fiction@ book written by @Leo Tolstoy @]|

[other 3 Solutions]
<endofoutput>

<endofprompt>

Now process following questions with subgraphs. Output strictly follows the example format.

Table 10: Prompt used in composition.

10256

H Function List of PyQL

PyQL function Brief description
Basic graph pattern
add_fact Add a triple pattern.

add_quatity

add_quatity_with_qualifier
add_quatity_by_qualifier

add_type_constrain

add_filter
add_bind
add_assignment
add_sub_query

Add a triple pattern with quantity relation.

Add a triple pattern with quantity relation which is constrained by
a qualifier.

Add a qualifier with a quantity relation which is a constraint of a
triple pattern.

Add a triple pattern with type constrain.

Add a comparative constrain (>, <, =, etc).

Bind the result of an expression to a variable

Bind some variables/entities to a variable

Add a sub_query into current query

Arithmetic

add Addition of some numbers/variables. We also provide ceil and
floor versions for add, sub, mul, and div.

sub The difference between two numbers/variables.

mul The product of two numbers/variables.

div The division of two numbers/variables.

abs The absolute value of a number/variable.

Aggreggation

add_max Calculate the maximum value of a given variable. Support to
return the m-th latest to n-th largest item.

add_min Calculate the minimum value of a given variable.

add_avg Calculate the average value of a given variable.

add_sum Calculate the summation value of a given variable.

add_count Count the occurrences of matching triples or variables.

add_rank Calculating the ranking of a variable in a list of variables.

Boolean

add_compare Whether two arguments meet a condition (>, <, =, etc).

Other

add_sub_query

Add sub-queries to the outer query.

Table 11: A brief introduction of PyQL’s functions.

10257

I PyQL API implementation example

class PyQL():
def __init__(self):
self.triple_pattern=[]
self.aggregation=[]
self.sub_query=[]
self.head=""
self.answer=""

def add_type_constrain(self, type_id:str, new_var:str):
self.add_triple_pattern(ent + " wdt:P31/wdt:P279% wd:" + type_id + ".")

def add_count(self,count_obj:str,new_var:str, group_obj=None):
if group_obj!=None:
self.aggregation.append('GROUP BY '+group_obj)
self.set_head('SELECT (COUNT(DISTINCT '+count_obj+') AS '+new_var+') '+' '+group_obj)
else:
self.set_head('SELECT (COUNT(DISTINCT '+count_obj+') AS '+new_var+') ')

def add_max(self, max_obj:str, return_obj='*"',offset=0,limit=1):
self.aggregation.append("ORDER BY DESC(" + max_obj + ")")
if limit!=None:
self.aggregation.append("LIMIT "+str(limit))
if offset!=0:
self.aggregation.append("OFFSET "+str(offset))
self.set_answer(return_obj)

def add_bind(self, equation:str, var_name:str):
self.add_triple_pattern('BIND((' + equation + ') AS ' + var_name + ')')
self.set_answer(var_name)

def add_filter(self, compare_obj1:Union[str,float], operator:str, compare_obj2:Union[str,float]):
self.add_triple_pattern("FILTER(" + str(compare_objl) +' '+ operator +' '+ str(compare_obj2)
+.)

def add_assignment(self,var_list:list,new_var:str):
self.add_triple_pattern('Values '+new_var+' {'+' '. join(var_list)+'}")

def add_compare(self, objl:Union[str,float], op:str, obj2:Union[str,float]):
self.add_bind("IF(” + obj1 + " " + op + " " + obj2 + ', "TRUE"”, "FALSE")', "?answer”)
self.set_head("SELECT ?answer")

def add_sub_query(self,*sub_query:PyQL):
for sub_g in sub_query:
sub_g = sub_g.sparql
self.sub_query.append(sub_q)

@property

def sparqgl(self):
self.triple_pattern_text = self.__construct_triple_pattern()
self.sub_query_text = self.__construct_sub_query()
self.aggregation_text = self.__construct_aggregation()

if not self.head_already_set:
self.head="SELECT DISTINCT '+self.answer

sparql_temp = self.head + ' {\n' +
self.sub_query_text + self.triple_pattern_text + '\n}\n'+ self.aggregation_text
return sparql_temp

Figure 5: The implementation of some PyQL APIs. For the sake of brevity and better understanding, we have
omitted some technical details.

10258

J Six Structure Considered in Composition

One triple constrain target entity

Description: the birthplace of Rudolf Riedlbauch

Subgraph: <Rudolf Riedlbauch, place of birth, [target_entity]>
([target_entity] is DySina)

Two triple constrain target entity
Description: the house located in Turtle Bay and designed by Perkins Eastman
Subgraph: <[target_entity], architect, Perkins Eastman>,
<[target_entity], location, Turtle Bay>
([target_entity] is Turkish House)

One triple constrain target entity, one triple constrain inner variable
Description: the place where the child of Llewelyn Lloyd died
Subgraph: <[target_entity], child, [inner_variable]>,
<[inner_variable], place of death, [target_entity]>
([target_entity] is Llewelyn Lloyd, [inner_variable] is Charles John Andersson)

Two triple constrain target entity, one triple constrain inner variable
Description:
the video game publisher whose founder was educated at Shanghai Jiao Tong University
Subgraph: <miHoYo, instance of, video game publisher>

<miHoYo, founded by, [inner_variable]>

<[inner variable], educated at ,Shanghai Jiao Tong University>
([target_entity] is miHoYo, [inner_variable] is Cai Haoyu)

One triple constrain target entity, two triple constrain inner variable
Description:
the director of the film received Academy Award for Best Picture and composed by Kris Bowers
Subgraph:<[inner_variable], director,[target_entity]>
<[inner_variable], award received, film received Academy Award for Best Picture>
<[inner_variable], composer, Kris Bowers>
([target_entity] is Peter Farrelly, [inner_variable] is Green Book)

Two triple constrain target entity, two triple constrain inner variable
Description: the World Cup Golden Ball winner who participated in the World Cup in Qatar
Subgraph: <[target_entity], award received, World Cup Golden Ball>

< [target_entity], participant in, [inner_variable]>

<[inner_variable], country, Qatar>

<[inner_variable], sports season of league or competition, FIFA World Cup>
([target_entity] is Lionel Messi, [inner_variable] is 2022 FIFA World Cup)

Table 12: Six structures considered in composition.

10259

