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Abstract

Language Models (LMs) pre-trained with self-
supervision on large text corpora have become
the default starting point for developing models
for various NLP tasks. Once the pre-training
corpus has been assembled, all data samples
in the corpus are treated with equal impor-
tance during LM pre-training. However, due
to varying levels of relevance and quality of
data, equal importance to all the data samples
may not be the optimal choice. While data
reweighting has been explored in the context
of task-specific supervised learning and LM
fine-tuning, model-driven reweighting for pre-
training data has not been explored. We fill
this important gap and propose PRESENCE,
a method for jointly reweighting samples by
leveraging self-influence (SI) scores as an in-
dicator of sample importance and pre-training.
PRESENCE promotes novelty and stability for
model pre-training. Through extensive analysis
spanning multiple model sizes, datasets, and
tasks, we present PRESENCE as an important
first step in the research direction of sample
reweighting for pre-training language models.

1 Introduction

Language models (LM), typically pre-trained on
large volumes of unlabeled text data, have become
ubiquitous model choices for various challenging
downstream tasks (Lewkowycz et al., 2022; Driess
et al., 2023). The fundamental direction pursued for
improving language model pre-training involves
increasing the amount of training data or scaling
model size (Scao et al., 2022). The training data
is generally assembled from scraping the web and
filtered using manually crafted heuristics that often
require domain expertise (Xue et al., 2021). A key
similarity in these prior works is the uniform treat-
ment of the data samples available in the assembled
corpora, without any regard for the data quality.

∗Work done while at Google Research India

Prior works for both model-based sample se-
lection (Swayamdipta et al., 2020) and reweight-
ing (Mindermann et al., 2022) use a supervised
learning setup. They often rely on curating special
validation sets (Jain and Shenoy, 2022), proxy mod-
els (Pleiss et al., 2020; Mindermann et al., 2022),
or utilizing loss and prediction uncertainty signals
based on ground-truth labels (Kawaguchi and Lu,
2020; Coleman et al., 2020). Adaptation of these
methods to pre-training is often non-trivial. Per-
formance of a pre-trained model on downstream
tasks cannot be predicted by its pre-training valida-
tion performance. Moreover, offline filtering using
proxy models is quite expensive for the massive
scale of pre-training data (Liu et al., 2022).

In this paper, we attempt to develop an effective
data reweighting framework for language model
pre-training. We use self-influence (SI), the degree
to which a given training sample affects model
training and its own prediction, as an indicator of
sample importance for pre-training. SI scores have
been previously shown to be effective in identify-
ing noisy and outlier samples (Yeh et al., 2018),
but these evaluations have been limited to super-
vised settings. We first verify the ability of SI
scores to predict sample quality of pre-training data,
such as noisy text and domain mismatched samples.
We then probe their effectiveness for pre-training
dataset selection by using them to filter out noisy
samples in the pre-training data derived from the
web.

Based on our analysis which shows that self-
influence scores can be used as an indicator of
sample importance, we propose PRESENCE: Pre-
training data Re-weighting with Self-influence.
PRESENCE is an online and adaptive data re-
weighting method that uses self-influence scores
to weigh samples in a training batch. We note
that during pre-training, the training loss decreases
exponentially in the initial steps, with a minimal de-
crease in loss values in the subsequent stages (Yang
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et al., 2021). Furthermore, well-trained models can
identify noisy samples better when used to cal-
culate SI scores, as compared to models in very
early stages of training (Pruthi et al., 2020). Based
on these observations, we formulate a two stage
reweighting strategy: (i) in the first stage of learn-
ing, data samples with higher SI scores are em-
phasized more to drive learning using influential
samples, while (ii) in the second stage, data sam-
ples with higher SI scores are de-emphasized. This
limits the impact of noisy and unreliable samples
while giving more weight to the higher quality sam-
ples. To the best of our knowledge, this is the first
work that evaluates the use of influence functions
for sample selection and reweighting at the scale
of pre-training. Our contributions are as follows:

• We initiate a study into data reweighting for pre-
training and establish the relationship of self-
influence (SI) scores with sample characteristics
such as noise and domain mismatched informa-
tion in the training data.

• We present sequential data filtering using SI
scores as an effective data selection strategy
for pre-training, and evaluate the performance
of models pre-trained on large-scale filtered
datasets. We call this method PRESENCE-
Sequential.

• Building on our findings, we propose PRESENCE,
a model-driven sample reweighting method using
self-influence scores that jointly weighs samples
and enables learning. PRESENCE promotes nov-
elty and stability for model pre-training.

• Through extensive experiments and analyses
spanning multiple model sizes, datasets, and
tasks, we demonstrate that PRESENCE provides
consistent gains over pre-training using randomly
sampled pre-training corpora or SI score based
filtered data. We believe PRESENCE is an impor-
tant step in the research direction of data sample
weighting for pretraining.

2 Background: TracIn and Self-influence

Though PRESENCE can be used with any influence
function, we use TracIn (Pruthi et al., 2020) based
self-influence score due to its scalability, generaliz-
ability, and effectiveness in identifying outliers.

Self-influence using TracIn: TracIn computes
influence, i.e., how the loss on the test point
changes during the training process whenever the
training sample of interest was utilized by a first-
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Figure 1: Left - Average SI scores across English, Hindi,
and Bengali for clean and noisy (jumbled) text; Right
- Average SI scores for randomly sampled and domain
mismatched information in English. We observe high
SI scores on average for noisy and domain mismatched
text. More discussions in Section 2.1.

order gradient approximation. For a model f with
parameters θ and loss function l(fθ, ·), the gradient
g(θ, ·) for a sample z is g(fθ, z) = ∇l(fθ, z). The
TracIn(fθ, ·, ·) influence of training sample z on
test sample z′ is given by,

TracIn(fθ, z, z′) = g(fθ, z) · g(fθ, z′) (1)

Self-influence score measures the influence a sam-
ple has on itself. This is identical to replacing z′

with z in Equation 1, giving TracInSI(fθ, ·) as,

TracInSI(fθ, z) = g(fθ, z) · g(fθ, z) (2)

2.1 Relationship between Self-Influence and
Sample Quality

We investigate the relationship between self-
influence (SI) scores and sample quality by probing
noisy and domain mismatched samples. We expect
these samples to have high self-influence scores as
they tend to reduce the loss w.r.t. a well-trained
model (Yeh et al., 2018). We use a pre-trained
mT5-base (Xue et al., 2021) model and calculate
self-influence with a span-corruption loss. We ran-
domly sample 10, 000 samples for three languages
in mC4 (Raffel et al., 2020) and calculate the self-
influence scores of clean or original samples and
their corresponding noisy samples, i.e., samples
with a permuted word order. Similarly, we cal-
culate average self-influence scores over domain
mismatched samples and compare them with aver-
age scores over randomly sampled English corpus.

As shown in Figure 1, we observe substantially
high average self-influence scores for noisy sam-
ples across all languages as well as for domain
mismatched text in English. The results indicate
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Figure 2: Overview of PRESENCE-Sequential (top, Section 3) and PRESENCE (bottom, Section 4.1). PRESENCE-
Sequential filters out data in a sequential manner, first training a scoring model and then using it to filter data.
PRESENCE is a joint sample reweighting strategy that leverages SI scores for sample weighting within a minibatch.

that SI scores can be used to distinguish between
correct and noisy text and they can also be used to
detect data from a novel domain.

3 PRESENCE-Sequential: Filtering
Pre-training Data using Self-Influence

Extending TracIn based Self-influence for Pre-
training: As pre-training is computationally ex-
pensive, we leverage the layer agnostic nature
of TracIn and introduce an optimized layer-wise
self-influence calculation. For layers K =
{k1, k2, . . . , kK} of model fθ, let fθ,k denote the
parameters of layer k. Self-influence for any layer
set K ⊂ K is,

TracInSIK(fθ, z) =
∑

k∈K
TracInSI(fθ,k, z) (3)

As shown in Section 2.1, there is a relation be-
tween SI scores and the sample quality. We lever-
age this property to filter large-scale web corpora
in an offline manner to create more suitable pre-
training data. We present an overview of our offline
sequential filtering strategy using self-influence
scores, called PRESENCE-Sequential, in Figure 2.
Assuming that a model requires N training samples
for pre-training, we choose N samples from a set
of N ′ > N samples by filtering out samples with
the highest SI scores using a proxy model trained

Dataset Task # Languages Metric

XQuAD Question Answering 10 F1
MLQA Question Answering 7 F1
TyDi QA Question Answering 11 F1
XNLI Sentence Pair 14 Accuracy
WikiAnn NER Structured Prediction 40 Span-F1

Table 1: Datasets, tasks, # languages and metrics.

on randomly sampled data (SI Scoring Model). To
obtain a relevant pre-training set D (|D| = N),
from the larger corpora D′ (|D′| = N ′), we use
the scoring model Fθ(·) to calculate the SI scores
using Equation 3 for all samples di ∈ D′,

TracInSIK(Fθ, D
′) = {TracInSIK(Fθ, di|di ∈ D′)} (4)

We sort TracInSIK(Fθ, D
′) in increasing order

of SI scores and filter out N ′−N samples with the
highest score. The remaining N samples comprise
the filtered set D used for pre-training,

D = {di|di ∈ D′}
∀i : i ∈ sorted(TracInSIK(Fθ, D

′))[1 : N ]
(5)

Pre-training Setup: We use the mC4 dataset
(Xue et al., 2021) and pre-train an mT5-base model
for 200, 000 steps on randomly shuffled data, and
use this as the ’Scoring Model (Fθ)’ to create the
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Model Question Answering Sentence Pair Structured

XQuAD MLQA TyDi QA-GoldP XNLI WikiAnn NER

Metrics F1 F1 F1 Accuracy Span-F1

Cross-lingual zero-shot transfer (models fine-tuned on English data only)

mt5-base∗ 72.33 61.60 49.09 69.98 41.42
mT5-base+PRESENCE-Sequential-reverse 70.17 59.72 47.92 68.64 37.39
mT5-base+PRESENCE-Sequential 73.40 61.95 51.64 71.22 44.63

Translate-train (models fine-tuned on English data plus translations in target languages)

mt5-base∗ 78.26 65.45 52.75 76.76 80.86
mT5-base+PRESENCE-Sequential-reverse 76.83 64.76 46.01 75.36 79.14
mT5-base+PRESENCE-Sequential 78.96 66.04 57.65 77.74 81.45

Table 2: Performance comparison of using PRESENCE-Sequential to filter out pre-training data. PRESENCE-
Sequential filters out noisy pre-training samples using SI scores and achieves better results than the baselines. Bold
shows the best result (discussions in Section 3). ∗ denotes our reproductions. Discussion in Section 3.1.

filtered dataset. We pre-train an mT5-base model
from scratch on the filtered mC4 set for 200, 000
steps by choosing samples with the least SI scores
that are theoretically more suitable for model learn-
ing. The models are trained with a batch size of
1024, with an input token length of 1024 and output
token length of 229. Following Raffel et al. (2020),
we use a base learning rate of 1.0 with 10000 warm-
up steps, an inverse square root learning rate decay
schedule, and a loss-normalizing factor of 234496.
We use the first layer of the encoder and the first
layer of the decoder in the set K for TracInSIK.

Downstream Tasks and Fine-tuning: Follow-
ing Xue et al. (2021), we utilize datasets across
5 tasks from the XTREME multilingual bench-
mark (Hu et al., 2020), including Question An-
swering, Sentence-Pair, and Structured Prediction.
We evaluate on (i) zero-shot cross-lingual transfer:
where the fine-tuning data is only in English, and
(ii) translate-train: where the fine-tuning data is in
English and translated into the target languages for
all the downstream datasets. We summarize the
datasets used for evaluation in Table 1. We fine-
tune all the models on the downstream tasks using
a batch size of 128, with a learning rate of 0.001,
and a dropout rate of 0.1 for 20, 000 steps.

3.1 Results and Analysis

We compare the performance of the model
pre-trained on filtered web corpora (mT5-
base+PRESENCE-Sequential) with the baseline
model trained on randomly sampled data in Ta-
ble 2. We observe that when we filter out samples
with high SI scores, we obtain consistent gains
over the baseline models. This indicates that SI

scores can be used as an indicator of sample qual-
ity and can be used for pre-training dataset filter-
ing. To further test our hypotheses, we pre-train
a model on data created by removing low SI sam-
ples (reverse ranking). We label this model mT5-
base+PRESENCE-Sequential-reverse. This model
performs significantly worse compared to the base-
line, further validating that SI scores are indeed
an indicator of the sample quality, and are effec-
tive in identifying noisy samples in the large-scale
pre-training corpora.

However, as mentioned, PRESENCE-Sequential
requires different expensive sequential processes:
(i) Pre-train a SI scoring model, and (ii) pre-train
a second model on the filtered dataset. Since pre-
training is computationally expensive, we explore
a joint sample reweighting adaptation next.

4 PRESENCE: Sample Reweighting using
Self-influence

In this approach, we use the SI scores in an on-
line joint setting by reweighting samples at the
minibatch level. We calculate sample SI scores at
each training step and use them to weigh sample
gradients before aggregating them for the gradient
update. To formulate sample reweighting using SI
scores, we consider batch B = {zi| i ∈ [1, n]},
where zi denotes a sample. We calculate SI scores
using Equation 3 for each sample to get array S,
where |S| = n,

S = {si|si = TracInSIK(fθ, zi); i ∈ [1, n]} , (6)

where si denotes the SI score of zi. We normalize
S for numerical stability and uniformity,

S ← normalize(S) = S − µ(S)√
σ2(S) + ϵ

, (7)
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Figure 3: PRESENCE’s two-stage reweighting based on
the training loss. We perform direct weighting in the
initial stage and inverse weighting next (Section 4.1).

where µ(·) and σ2(·) denote the mean and variance,
respectively, and ϵ is a small number. To calculate
relative weights for the samples’ gradients, we use
a softmax function, softmax(·) over each si with
temperature τ to get weights wi,

wi = softmax(si, τ) =
eτ ·si∑

si∈S eτ ·si
(8)

Here, wi gives the weight for the gradient of
sample zi. Using weights wi, the gradient G for
the model update is given by,

G =
∑

zi∈B

wi · g(fθ, zi) (9)

4.1 Two-staged Reweighting for Pre-training
A common concern of pre-training is the redun-
dancy of training data even in massive corpora
mined from the web (Raffel et al., 2020). Evidently,
training loss decreases exponentially early in the
pre-training (Figure 3). Hence, as training pro-
ceeds, it quickly becomes the case that almost all
of the computation involved in training is spent on
concepts the model has already seen many times.

High SI scores indicate high gradient norms,
which are critical for driving model training
(McRae et al., 2022). However, encountering high
SI scores from well-trained models is often a signal
of noise or outlier samples (Pruthi et al., 2020). We
combine the information about the property of SI
scores relative to the ability of the model to calcu-
late them and the nature of the pre-training data
to devise a novel two-stage sample reweighting
strategy. We utilize the temperature term τ when
calculating the softmax weights (Equation 8) to for-
mulate the two stages. In the first stage, which we
call ’direct’ weighting, we choose τ > 0, giving
the data samples with higher SI scores more em-
phasis, driving the model learning and promoting
novelty. In the second stage, or ’inverse’ weight-
ing, where the model has matured, we use τ < 0.
This de-emphasizes the data samples with higher

Algorithm 1 Microbatched Training
B← Batch
G = {} ← Gradient array
G = 0← Gradient initialization

for microbatch bi in minibatch B do
gi = ∇l(fθ, bi)
G ← G ∪ gi

for gi in G do
G← G+ gi

SI scores to limit the impact of noisy and unreliable
samples. Two-staged reweighting ensures that the
model learns novel information early, and is able to
eliminate noise at a later stage with stable learning.
For temperatures τ1 > 0 and τ2 < 0, the softmax
temperature at training step i is given by,

τ =

{
τ1, i ≤ I

τ2, i > I
, (10)

where I denotes the step where we switch stages.
We refer to model-driven online sample reweight-
ing strategy using SI scores as PRESENCE. We now
adapt PRESENCE to the scale of pre-training.

5 Pre-training Adaptation

Pre-training requires a large batch size and is prone
to instability (Krizhevsky et al., 2017). We thus
adapt PRESENCE for pre-training by applying it
at the microbatch level. This provides dual ben-
efits of regularizing the pre-training while being
computationally efficient.

5.1 Reweighting Microbatch Gradients using
Self-Influence

Microbatched Training Microbatched training
enables the use of a larger effective minibatch
size. It involves dividing the full minibatch B
into smaller batches, called microbatches, and indi-
vidually calculating gradients for each microbatch.
These gradients are then aggregated to get the mini-
batch gradient G. We present a standard micro-
batched training algorithm in Algorithm 1, assum-
ing that a minibatch B is divided into n micro-
batches, i.e. B = {bi|i ∈ [1, n]}.

We first calculate the self-influence for a micro-
batch by replacing the individual sample z with a
microbatch b in Equation 3 to calculate the loss.
MicrobatchSIK(fθ, ·) for microbatch b is,

MicrobatchSIK(fθ, b) = TracinSIK(fθ, b) (11)
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Model Question Answering Sentence Pair Structured

XQuAD MLQA TyDi QA-GoldP XNLI WikiAnn NER

Metrics F1 F1 F1 Accuracy Span-F1

Cross-lingual zero-shot transfer (models fine-tuned on English data only)

mt5-base∗ 72.92 64.71 49.23 74.21 43.28
mT5-base+PRESENCE 74.12 65.40 53.17 74.47 43.41
mt5-large∗ 64.15 51.61 58.75 67.96 38.66
mT5-large+PRESENCE 77.78 70.40 62.33 78.54 39.23

Translate-train (models fine-tuned on English data plus translations in target languages)

mt5-base∗ 78.76 64.33 59.95 77.56 79.45
mT5-base+PRESENCE 80.44 65.88 61.75 80.48 80.50
mt5-large∗ 62.78 53.13 66.42 61.80 70.66
mT5-large+PRESENCE 83.15 70.30 69.04 79.72 77.26

Table 3: Performance comparison of mT5-base and mT5-large models pre-trained using PRESENCE with baseline
pre-trained models. PRESENCE gives consistent gains over corresponding baselines. Bold shows the best result. ∗

denotes our reproductions. Note that we use a batch-size of 1024 for pre-training mt5-base and a batch-size of 512
for pre-training mt5-large. Detailed discussion in Section 6.1.

Model Variant XQuAD XNLI

mT5-large 73.52 69.40
mT5-large+PRESENCE 87.44 88.10

Table 4: Results on the En-only subset for the translate-
train setting. Details in Section 6.1.

To formulate microbatch level reweighting using
their self-influence scores, we calculate the self-
influence using Equation 11 for each microbatch to
get array S , where |S| = n,

S = {si|si = MicrobatchSIK(fθ, bi); i ∈ [1, n]} , (12)

where si denotes the SI score of bi. Using the
updated array S in Equation 6 and microbatch train-
ing strategy (Algorithm 1), we obtain the gradient
for the model update G using Algorithm 2 with SI
based reweighting in Algorithm 2.

5.2 Training Setup

We use two different variants of the T5 architec-
ture (Raffel et al., 2020), namely mT5-base and
mT5-large for comparisons and pre-train on the
mC4 dataset (Xue et al., 2021). We refer to our
corresponding reweighted variants as mT5-base-
PRESENCE and mT5-large-PRESENCE respectively.
We pre-train the models with an input length 1024
and output length 229, using batch sizes of 1024
for mT5-base and 512 for mT5-large. We use loss-
normalization during training with a loss normaliza-
tion factor of 234496 for mT5-base and 117248 for
mT5-large. For mT5-base-PRESENCE, we divide

Algorithm 2 Weighted Microbatched Training
B← Batch
G = {} ← Gradient array
S = {} ← Self-influence array
G = 0← Gradient initialization
τ ← weighting temperature

for microbatch bi in minibatch B do
gi = ∇l(fθ, bi)
si = gi · gi
G ← G ∪ gi
S ← S ∪ si

S ← normalize(S)
W = {softmax(si, τ)|si ∈ S}
for gi, wi in G,W do

G← G+ gi · wi

the minibatch into n = 8 microbatches and for
mT5-large-PRESENCE, we divide the minibatch
into n = 4 microbatches. We select τ1 = 1,
τ2 = −1, and I = 100, 000 for the two-staged
learning. We use the first layer of the encoder and
first layer of the decoder as the layer set K. We use
a base learning rate of 1.0 with 10, 000 warm-up
steps and an inverse square root decay schedule,
pre-training for 1 million steps.

6 Results and Analysis

6.1 Effectiveness of PRESENCE

We compare the performance of using PRESENCE

with mT5-base (mT5-base+PRESENCE) and mT5-
large (mT5-large+PRESENCE) with random pre-
training in Table 3. We observe that for both vari-
ants, using PRESENCE helps improve performance
on all the datasets considered. This validates the
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Figure 4: Performance comparison of PRESENCE-
Sequential and PRESENCE with mT5-base on translate-
train versions of QA and sentence pair tasks. PRESENCE
is comparable or even better than PRESENCE-Sequential
that uses sequential dataset filtering (Section 6.2).

effectiveness of PRESENCE, indicating that generat-
ing SI scores at microbatch level offers a smoother
and more stable scoring approach as opposed to
sample-level SI scoring. The average improvement
with the PRESENCE framework is more for the
large mT5 variants. A larger model (mT5-large)
potentially generates more reliable SI scores when
used for reweighting compared to the mT5-base
model. We hypothesize these two factors as the key
reasons for the significant improvements observed
for the PRESENCE approach, particularly for the
mT5-large model.

We also make some interesting observations
for zero-shot and translate-train dataset variants.
For both mT5-base and mT5-large, we observe
more significant gains for PRESENCE when the
training data is available in the target languages
(translate-train). This indicates that reweighting
might be beneficial for the model to adapt better
across languages as compared to unweighted train-
ing. For instance, we consider the English subset
from XQuAD and XNLI for translate-train settings.
We observe that PRESENCE improves performance
significantly for mt5-large experiments (Table 4).

6.2 Comparison with PRESENCE-Sequential

We compare PRESENCE with the multi-step PRES-
ENCE-Sequential explained in Section 3. For a fair
comparison, we pre-train mT5-base-PRESENCE

for 200, 000 steps on randomly sampled data and
present the results in Figure 4. We observe that
even though PRESENCE does not look at the com-
plete data at once and operates in a joint online
setting, it performs comparably, and in some cases,
outperforms PRESENCE-Sequential. This indicates

Variant MLQA TyDi QA XNLI

Cross-lingual zero-shot transfer

mT5-base 61.60 49.09 69.98
mT5-base+PRESENCE-D 61.01 45.84 68.78
mT5-base+PRESENCE-I 61.88 42.94 68.37
mT5-base+PRESENCE-I-D 60.94 45.61 67.62
mT5-base+PRESENCE 61.68 46.47 70.12

Translate-train

mT5-base 65.45 52.75 76.76
mT5-base+PRESENCE-D 64.98 55.84 78.80
mT5-base+PRESENCE-I 64.88 58.10 79.06
mT5-base+PRESENCE-I-D 64.65 55.06 78.96
mT5-base+PRESENCE 66.32 56.90 79.48

Table 5: Effect of two-staged reweighting compared
to only direct(PRESENCE-D) or inverse(PRESENCE-
I) weighting and inverted two-staged reweighting
(PRESENCE-I-D) over mT5-base. Bold shows the best
result. Discussions in Section 6.3.

that our online adaptation of microbatch reweight-
ing using SI scores is competitive for model pre-
training relative to sequential offline dataset fil-
tering. One possible reason might be that the
online reweighting relies upon the most recent
model weights for calculating influence of training
samples, providing more suitable signals for data
reweighting as compared to the offline setting. Fur-
ther, the joint online version forms an elegant and
computationally efficient alternative to the sequen-
tial offline approach, providing an opportunity for
scaling reweighting to larger models and datasets.

6.3 Impact of Two-staged Learning

We analyze the impact of using our two stage
reweighting strategy by comparing its performance
with models pre-trained purely with direct, i.e.,
τ = 1 (PRESENCE-D) and inverse, i.e., τ = −1
(PRESENCE-I) weighting. We train all the vari-
ants for 200, 000 steps and compare their perfor-
mance in Table 5. As shown, we observe supe-
rior performance of PRESENCE compared to the
other reweighting strategies. This supports our
hypothesis that pre-training probably happens in
two parts: the model quickly learns new infor-
mation in the first stage, after which all new in-
formation seems redundant. The second stage is
important to stabilize the pre-training. To further
test this, we perform reweighting in the reverse
order, first performing inverse weighting and then
direct weighting (PRESENCE-I-D). This strategy
causes a degradation in the performance, as the
inverse weighting initially may slow down training,
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Discussions in Section 6.4.

while the direct weighting in later stages leads to
increased use of noisy samples. However, there
are certain datasets where either purely direct or
inverse weighting perform better than PRESENCE.
We believe that self-influence scores develop corre-
lations with multilingual data based on their quan-
tity in the corpora, which may cause varied trends
in downstream tasks.

6.4 Scaling Microbatch Gradient Weights

Since our method currently uses two discrete val-
ues of temperature τ in Equation 8, we probe its ef-
fect on single-stage reweighting during model pre-
training. These findings can be used to formulate a
more granular and automated reweighting strategy
using temperature scaling or continuous temper-
ature scheduling, which we leave as future work.
We pre-train models with τ = {−2,−1, 1, 2} for
200, 000 steps and evaluate them on the down-
stream tasks in Figure 5. We observe that increas-
ing the magnitude of τ both positively and nega-
tively affects the model performance. A possible
reason might be that high positive τ leads to a large
variance in the microbatch gradient weights, lead-
ing to unstable training, whereas high negative τ
results in much slower convergence compared to
the baselines.

7 Related Work

Datasets for Pre-training LMs Language mod-
els are generally pre-trained on large-scale corpora
scraped from the web (Devlin et al., 2019; Liu et al.,
2019; Baevski et al., 2019). The most common
source of obtaining large-scale data is Common

Crawl1, a publicly-available web archive that pro-
vides “web extracted text”. Raffel et al. (2020)
use various heuristics such as retaining lines that
end in terminal punctuations, retaining lines and
pages based on a minimum number of words, etc
to clean Common Crawl. Wenzek et al. (2020)
use a Kneser-Ney language model (Heafield, 2011)
and calculate the perplexity over training data and
a high quality target domain to extract high qual-
ity documents. Multilingual pre-training has also
known to depend on language and domain distri-
butions in the corpora (Conneau et al., 2020; Du
et al., 2022; Hoffmann et al., 2022). Multilingual
pre-training involves an additional step of boosting
low-resource language data in the corpora using
temperature sampling (Conneau et al., 2020; Ari-
vazhagan et al., 2019; Xue et al., 2021). DoReMi
(Xie et al., 2023) uses a smaller proxy model to
calculate domain weights of different sources com-
prising the mixture of the pre-training data to pre-
train larger models. These works either rely on
expertly crafted heuristics or require training addi-
tional models for dataset selection and filtering.

Influence Functions and Training Data Attribu-
tion Influence functions help to trace a model’s
prediction through the learning algorithm and back
to its training data, a practice commonly known as
Training Data Attribution (TDA) (Guu et al., 2023).
Influence functions have been extensively used in
deep learning as a means of model interpretability
and explainability (Linardatos et al., 2020; Arri-
eta et al., 2020; Guidotti et al., 2018), adversarial
learning (Yuan et al., 2019; Salman et al., 2020),
federated learning (Kairouz et al., 2021; Geiping
et al., 2020), and identifying outliers or mislabeled
samples (Koh and Liang, 2017; Yeh et al., 2018).
TracIn (Pruthi et al., 2020) introduces a scalable
and general first-order approximation to calculate
gradient based influence, and extends it to the mini-
batch level. Bejan et al. (2023) formulates an auto-
mated curricular strategy using SI scores for data
cleaning and filtering for NLP tasks. Influence
functions have mostly been applied for supervised
learning with ground truth labels for the data and
have generally been explored in an offline setting.

Data selection and online adaptation in super-
vised learning Selection functions for supervised
learning often leverage training dynamics such
as high loss (Jiang et al., 2019; Kawaguchi and

1https://commoncrawl.org/about/
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Lu, 2020) or high prediction uncertainty (Coleman
et al., 2020) to select "hard" points. Swayamdipta
et al. (2020) use the change in loss over the course
of training rather than each step to also eliminate
noisy samples. Removing noisy training samples
using offline methods is another direction for se-
lecting training data for supervised learning (Chen
et al., 2019; Pleiss et al., 2020). Paul et al. (2021)
use norm of the gradient or self-influence to iden-
tify important samples early in the training to heav-
ily prune datasets. RHO-loss (Mindermann et al.,
2022) calculates a heldout loss using a proxy model
and uses a combination of model loss and heldout
loss to select non-noisy, non-redundant, and task-
relevant samples. Ahn et al. (2023) uses per-sample
gradient norm to assign importance probabilities,
and trains a biased model to formulate a debiased
model training strategy. Ren et al. (2018) and (Jain
and Shenoy, 2022) use meta-learning for reweight-
ing training samples within a batch for increas-
ing robustness and selective prediction respectively.
These works operate in supervised settings, requir-
ing controlled validation sets or proxy models and
adapting them to pre-training is non-trivial.

8 Conclusion and Future Work

We introduce PRESENCE - a method for jointly
reweighting samples using self-influence (SI)
scores and pre-training. We conduct an in-depth
analysis of the relationship between SI scores and
sample quality from a pre-training perspective and
use them as a filtering objective for pre-training
data selection. As sequential filtering is expensive
at the scale of pre-training, we formulate PRES-
ENCE as a joint adaptation for sample reweighting.
PRESENCE outperforms baselines trained on ran-
domly sampled and SI-filtered data on 5 datasets
across 3 tasks. We believe that PRESENCE is an
important first step in the research direction of data
sample weighting for pre-training.

As future work, we plan to explore relationships
between samples in the pre-training corpora and
influence functions across languages, data sources,
and domains. We also plan to formulate automated
reweighting strategies using temperature scaling
schedules based on the training step, training loss,
and sample influence scores.

Limitations

As a pre-training strategy, PRESENCE is computa-
tionally expensive for finding the optimal hyper-

parameters, particularly for the two-staged learn-
ing. Calculation of self-influence score is only
done using the first layers of the encoder and de-
coder for computational optimization, however, us-
ing more layers might lead to more representative
weighting information. Even though we believe
the training overhead of PRESENCE is significantly
lesser compared to the overhead of existing meth-
ods such as sequential offline filtering, our imple-
mentation on microbatches requires a training time
higher by 30% compared to training the models on
randomly sampled data without any reweighting.
Since the gradients across microbatches are inde-
pendent, there can be ways to parallelize the com-
putation. Our two stage training strategy currently
switches at a training step which is chosen based
on the total training steps, looking at the loss curve,
and following how warm-up steps for learning rate
schedules are decided for LM pre-training, which
is ad-hoc. This can be formalized based on training
loss, microbatch self-influence scores, or anchored
to the dataset itself, and may lead to more suitable
sample reweighting using temperature scaling.
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A Two-staged Reweighting and Learning
Rate Schedulers

We create an analogy between our two stage
reweighting and the transformer learning rate
scheduler (Vaswani et al., 2017a). The learning
rate lr at step step for a model with input and
output dimensionality dmodel and warm-up steps
warmup is given by,

lr = d−0.5
model ·min(step−0.5, step.warmup−1.5) (13)

This corresponds to increasing the learning rate
linearly for the first warmup training steps, and de-
creasing it thereafter proportionally to the inverse

Figure 6: The learning rate scheduler as described in
the Transformers (Vaswani et al., 2017b) paper. The
learning rate first increases linearly for warmup steps
and then decreases exponentially.

square root of the step number. We contrast these
types of learning rate schedulers with our two stage
reweighting strategy. Increasing the learning rate
for a given number of steps warms up the model
more by boosting the gradients, and thereafter a de-
cay is used to enable the model to reach a minima
better. Intuitively, we also aim to achieve similar
learning dynamics using our two stage learning: in
the first stage of learning, data samples with higher
SI scores are emphasized more to drive more learn-
ing, while in the subsequent second stage, the data
samples with higher SI scores are de-emphasized
to limit the impact of noisy and unreliable samples
while giving more weight to better quality sam-
ples and for more stable training. We believe that
as future work, we can use temperature scaling
schedulers inspired from learning rate schedulers
to automate reweighting curricula.

B Infrastructure

We use seqio and T5X (Roberts et al., 2022) to
train our models. We use 64 TPU (Kumar et al.,
2019) chips for pre-training all the models and use
8 TPU chips for fine-tuning the base variant and 16
TPU chips for fine-tuning the large variant.

C Maturity of Models and SI Scores

Self-influence (SI) scores are calculated using the
model gradients for a given objective. Their relia-
bility, thus depends on the maturity of the model,
i.e. how well the model is trained, which is being
used to calculate them. Since SI scores are gen-
erally used for relative analyses, the models need
not be trained till convergence. This characteristic
relationship between the model’s ability to predict
correct labels and the reliability of SI scores be-
comes an important consideration when adapting
SI scores for online adaptations. We have observed
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that models trained for about 20% of training steps
give decently reliable SI scores, however, better
strategies such as choosing checkpoints where the
loss decreases the most and averaging scores of
multiple checkpoints have been proposed in related
works (Pruthi et al., 2020). We believe that the
direct weighting stage of PRESENCE that drives
more learning also acts as an added warmup for
the model’s ability to predict noisy samples for the
subsequent inverse weighting stage, enabling it to
stabilize the training further. We leave the deeper
analyses of SI scores on training samples early in
the pre-training and in later stages as future work.
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