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Abstract

Knowledge distillation (KD) is a well-
known method for compressing neural
models. However, works focusing on dis-
tilling knowledge from large multilingual
neural machine translation (MNMT) mod-
els into smaller ones are practically nonex-
istent, despite the popularity and superior-
ity of MNMT. This paper bridges this gap
by presenting an empirical investigation
of knowledge distillation for compressing
MNMT models. We take Indic to English
translation as a case study and demonstrate
that commonly used language-agnostic
and language-aware KD approaches yield
models that are 4-5× smaller but also suf-
fer from performance drops of up to 3.5
BLEU. To mitigate this, we then experi-
ment with design considerations such as
shallower versus deeper models, heavy pa-
rameter sharing, multi-stage training, and
adapters. We observe that deeper compact
models tend to be as good as shallower
non-compact ones, and that fine-tuning a
distilled model on a High-Quality subset
slightly boosts translation quality. Over-
all, we conclude that compressing MNMT
models via KD is challenging, indicating
immense scope for further research.

1 Introduction

Neural Machine Translation (NMT) (Bahdanau et
al., 2015; Vaswani et al., 2017) is a state-of-the-
art approach to machine translation that has gained
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Figure 1: A comparison of the major distillation techniques
and models we experimented with. Note that the red incre-
ments in the bar plots denote the improvements due to HQ
fine-tuning for those models.

significant attention in recent years. With the avail-
ability of large corpora and compute, Multilingual
NMT (MNMT) (Zhang et al., 2019; Firat et al.,
2016; Aharoni et al., 2019) has gained popularity
since it enables a single model to translate between
multiple languages. Large MNMT models trained
on substantial data have shown higher levels of
performance. However, these models are impracti-
cal for deployment on a commercial or production
scale due to their size, which contains millions, if
not billions, of parameters. Therefore, they need
to be compressed into smaller models for efficient
and convenient usage.

In practice, models are compressed via two
methods: Firstly, by stripping unnecessary and re-
dundant parameters from the existing model (Bu-
ciluǎ et al., 2006), and secondly, by transferring
knowledge from the larger “teacher” model to a
smaller “student” model using distillation (Hin-
ton et al., 2015). This study focuses on the lat-
ter, as the former can be done post-hoc (Diddee
et al., 2022). Although existing literature mainly
discusses bilingual-to-multilingual or bilingual-to-



bilingual distillation, to the best of our knowledge,
there is no work in end-to-end multilingual-to-
multilingual knowledge distillation for compres-
sion in a setting with a mix of low, medium, and
high resource languages. Therefore, we aim to
distill a large MNMT model into a smaller one
taking Indic to English language translation as a
case study and perform an empirical investigation
of prominent techniques such as language agnostic
and language-wise word-level and sequence-level
distillation. We also look into architectural varia-
tions, multi-stage training, and High-Quality data
filtering to improve our performance.
Our contributions can be summarized as follows:
1. We investigate the effect of existing distillation
techniques for compressing MNMT models and
find that all of them produce comparable results,
indicating that the simplest methods are sufficient.
2. We explore the outcome of language-specific
architectures such as Adapters and Language-
Queues and conclude that they failed to sufficiently
specialize the models for significant gains.
3. We analyze the performance gains due to multi-
stage training and find that High-Quality fine-
tuning boosts performance in a noisy scenario.
4. We analyze the trade-off between width and
height for Transformers (Vaswani et al., 2017) and
determine that thinner but deeper models comprise
fewer parameters but perform comparably to wider
but shallower models.

2 Related works

This paper focuses on Knowledge Distillation
(KD) for compressing Multilingual Neural Ma-
chine Translation (MNMT) models.
Multilingual Neural Machine Translation
(Zhang et al., 2019; Firat et al., 2016; Aharoni et
al., 2019) is the favored approach for developing
machine translation systems that can handle
multiple languages. MNMT systems incorporate
language-specific information through the use
of shared encoder and decoder architecture and
language-specific embeddings. MNMT systems
often require less training data than separate
bilingual models for each language, making it an
attractive area of research. A detailed analysis
of MNMT can be found in the survey paper by
(Dabre et al., 2020).
Model compression, which involves pruning or
reparameterizing large models to reduce their
sizes, has been explored in previous studies

(Buciluǎ et al., 2006; Wang et al., 2020; Behnke
and Heafield, 2020; Behnke et al., 2021). Or-
thogonally, compression can be achieved by
heavy parameter sharing, especially across lay-
ers (Dabre and Fujita, 2019). (Dabre et al.,
2022) have investigated this in their IndicBART
work, demonstrating that a significant parameter
reduction leads to decreased performance, but
knowledge distillation can help overcome this
gap. We also explore this parameter sharing across
layers, noting that we focus on compressing larger
models in higher resource settings.
Knowledge Distillation (Hinton et al., 2015;
Kim and Rush, 2016) is yet another orthogonal
approach for model compression, to extract
essential information from a larger model and
transfer it to a smaller model while minimizing
the drop in performance. (Dabre and Fujita, 2020)
present an approach leveraging Sequence-Level
Distillation (Kim and Rush, 2016) with Transfer
Learning for efficiently training NMT models in
a highly low-resource scenario. However, their
setup focused on relatively minor data scales,
whereas we mainly operate in a medium to high
resource scenario with multilingualism. (Do and
Lee, 2022) propose a multilingual distillation
technique but use multiple multilingual strong
teacher models of similar languages, similar to the
method of (Tan et al., 2019) where they employ
bilingual teacher models to distill into a single
multilingual student. Our work differs from both
in two aspects: (a) we do not use multiple bilin-
gual/multilingual models as teachers, but instead
focus on distilling one single robust multilingual
model into another multilingual model end-to-end
(b) we aim to compress where they do not. We do
not use their techniques because our preliminary
investigations showed that our teacher model was
better than individual bilingual or multilingual
models of similar languages.

To the best of our knowledge, previous research
on distillation has focused on distilling bilingual
networks or training an equally sized student
model from multiple strong bilingual/multilingual
teacher models. Therefore, we believe our work
is a first-of-its-kind introductory investigation in
the domain of end-to-end distillation of MNMT
models for compression.



3 Methodology

This section describes the KD approaches and de-
sign considerations we focused on in this paper.

3.1 KD Approaches

We describe the fundamental language-agnostic
KD approaches, such as word and Sequence-Level
KD and a language-aware KD approach using
queues.
Word-Level Distillation (WLD): Following (Hin-
ton et al., 2015), (Kim and Rush, 2016) pro-
posed Word-Level Distillation, which aims to min-
imize the KL-Divergence/Cross-Entropy between
the student and teacher models at each time-step.
However, we did not test this method because
(Kim and Rush, 2016) showed that it is not a good
approximation of the sequential learning task, as it
focuses on the current timestep only and not on the
entire sequence.
Sequence-Level Distillation (SLD): (Kim and
Rush, 2016) argued that the student model should
capture the Sequence-Level distribution of the
teacher model rather than the individual word-level
distribution at each timestep. Therefore, they pro-
posed that capturing the best beam search output
of the teacher, which can approximate the distribu-
tion, can be used as hard pseudo-labels for the stu-
dent. These hard pseudo-labels are called the dis-
tilled targets. We extensively used this Sequence-
Level Distillation technique to train all our stu-
dent models because it is easy to implement and
has been proven to give better results than regular
word-level distribution.
Word + Sequence-Level Distillation (W+S LD):
(Kim and Rush, 2016) further proposed that Word-
Level Distillation can be carried out in congruence
with Sequence-Level Distillation to aid the student
model in capturing both the word-level distribu-
tion at each timestep and the overall Sequence-
Level distribution. This allows the student model
to mimic the generalization of the teacher better.
Hence, we applied this technique to determine if
there were any improvements in performance over
vanilla Sequence-Level Distillation.
Selective Distillation: (Wang et al., 2021) showed
that some samples are “hard” to distill and require
additional distillation signals to train, while others
are “easy” and do not. Therefore, they proposed
the idea of identifying “hard” samples from a batch
and applying a word-level distillation loss specif-
ically to them. They further extended the Batch-

Level selection to Global-Level selection, where
they select “hard” samples from a large queue
comparable in size to the entire dataset to better
approximate the negative log-likelihood loss dis-
tribution used to identify “hard” samples. Since
we operate with a mix of low, medium, and high-
resource languages, we chose to investigate both
their Batch-Level (BL) and Global-Level (GL)
selection strategies to promote low-resource lan-
guages, which might be challenging to distill due
to their scarcity during training.
Global-Language-wise Distillation (GLwD):
The selection strategy proposed by (Wang et al.,
2021) at the global level is designed for bilingual
settings. However, in multilingual settings with
mixtures of languages with varying levels of
abundance, a single global queue may not be
suitable because it may become populated with
samples mainly from high-resource languages. As
a result, the selection algorithm may be biased
toward resource-rich languages. Therefore, we
propose a novel modification to this technique
involving a language-wise selection strategy.
Specifically, we propose to push samples from
each language into their respective global queues,
remove the oldest samples to maintain the queue
size, and apply an additional distillation loss to the
“harder” samples from each queue, similar to the
Global-Level selection.

3.2 Design Considerations

Apart from the core distillation approaches above,
we also explore the impact of several architectural
and training pipeline design considerations. In par-
ticular, we focus on the impact of variable depth,
extreme parameter-sharing, dataset filtering and
multi-stage training, and language-specific distil-
lation via adapters.
Width vs. Height: Based on the findings of
(Tay et al., 2022), we opted to analyze thinner but
deeper models, as we found these models to have
fewer parameters than wider but shallower models.
Recurrent-Stacking: We also train models on the
distilled data with recurrently stacked layers, fol-
lowing the idea of (Dabre and Fujita, 2019) in
which layer parameters are tied across layers. This
limited the number of parameters to 207M but gave
the effect of a model with multiple layers.
Multi-stage Training with High-Quality Data:
We observed that the distilled data contained a
few noisy samples that hindered training. To ad-



Figure 2: A flow chart depicting our set of experiments

dress this issue, we experimented with a multi-
stage training setup. First, we trained a smaller
model on the complete dataset, and then we fine-
tuned it on the High-Quality data filtered from the
complete dataset. We filtered the data based on
the LaBSE1 (Feng et al., 2022) cosine similarity
scores, selecting only those translation pairs whose
similarity score was greater than µL+kσL for each
language, where uL and σL denote the mean and
standard deviation of the translation scores for lan-
guage L. We empirically chose k to limit the High-
Quality data size to approximately 20% of the to-
tal, with a uniform sampling of data from each lan-
guage.
Adapters: Adapters are small feed-forward mod-
ules introduced in pre-trained models and fine-
tuned on a downstream task while freezing the
trained model’s parameters (Houlsby et al., 2019;
Bapna and Firat, 2019). They add only a tiny frac-
tion of parameters to the model but provide addi-
tional parameterization for the model to adapt to
additional languages/domains independently with-
out requiring complete fine-tuning. Adapters are
particularly useful for distillation, as they should
help recover any loss in performance due to com-
pression via fewer additional parameters. Further-
more, they should help the model adjust to var-
ious languages’ specifics during translation. To
investigate the effects of language similarity and
cross-lingual inference on distillation, we have ex-

1https://huggingface.co/
sentence-transformers/LaBSE

perimented with fine-tuning distilled models with
adapters for individual languages and language
families (Chronopoulou et al., 2022).

4 Experiments

We now focus on Indic-to-English translation as a
case study and describe experiments we conducted
to compress IndicTrans, a 474M parameter model.

4.1 Datasets

We use or create the following datasets:
Original data: We use Samanantar (Ramesh et
al., 2022) as the original (undistilled) dataset, the
statistics for which are in Table-1 in the column
#Pairs. This dataset was used to train IndicTrans,
our teacher model, and we use it for generating the
distilled data and conducting comparative studies.
Distilled data: The distilled data used for train-
ing student models was generated by performing
beam search (with a beam size of 5) over Samanan-
tar in the Indic-En direction with IndicTrans., i.e.,
using the Sequence-Level distillation technique of
(Kim and Rush, 2016). The best beam output was
then utilized as the hard pseudo-labels for train-
ing smaller models. Following Section 3.2, we
filter this data to obtain a smaller, higher quality
version, the statistics for which are in the column
#HQ-Pairs in Table-1.
Evaluation data: We use Flores101 (Goyal et al.,
2022) for evaluation, where the dev set (997 pairs
per language) is used for validation and the test set
(1012 pairs) for testing.

https://huggingface.co/sentence-transformers/LaBSE
https://huggingface.co/sentence-transformers/LaBSE


Lang ISO code #Pairs #HQ Pairs

Assamese as 0.1 0.02
Odia or 1.0 0.2

Punjabi pa 3.0 0.6
Gujarati gu 3.1 0.6
Marathi mr 3.6 0.8
Kannada kn 4.1 0.9
Telugu te 4.9 1.1
Tamil ta 5.3 1.0
Malayalam ml 5.9 1.3

Bengali bn 8.6 1.7
Hindi hi 10.1 2.0

Total - 49.8 10.3

Table 1: The number of original (#pairs) sentence pairs per
language (in millions) in the distilled (and original). #HQ-
Pairs indicates High-Quality distilled pairs. The languages
are categorized into low, medium, and high-resource groups.

4.2 Pre-Processing and Vocabulary

We follow (Ramesh et al., 2022) and transliterate
all the Indic source sentences into Devanagari us-
ing the Indic-NLP-Library2 before training, to take
advantage of the script-similarity between vari-
ous Indian languages. The dev-test set is likewise
transliterated, and language tags are added before
evaluation. For consistency, we use the same vo-
cabulary as IndicTrans, which contains 32K sub-
words for all 11 Indic languages and separate 32K
subwords for English.

4.3 Evaluation Metrics

We use BLEU (Papineni et al., 2002) as the pri-
mary evaluation metric. We also report Chrf++
scores (Popović, 2017) in the Appendix.

4.4 Training setup

We train our models using fairseq3 (Ott et al.,
2019). We obtained the implementation for KD
from LeslieOverfitting4. The Transformer archi-
tecture (Vaswani et al., 2017) is used throughout
our experiments. The hyperparameters used for
training are presented in Appendix-A Table-9.

Unlike IndicTrans, we use GELU activation
(Hendrycks and Gimpel, 2016) instead of ReLU
activation. Additionally, pre-normalization is ap-
plied to all modules, and layer normalization (Ba
et al., 2016) is applied to the embedding. These
modifications led to more stable training. Where

2https://github.com/anoopkunchukuttan/
indic_nlp_library
3https://github.com/VarunGumma/fairseq
4https://github.com/LeslieOverfitting/
selective_distillation

early stopping for IndicTrans was done using loss
on the development set, we used BLEU score.

4.5 Model Configurations
We trained models with various configurations (as
listed in Table-2). The smallest model is “base”,
the same as Transformer-base in (Vaswani et al.,
2017). The largest is “huge” which is the same
size as IndicTrans, and “hugeRS” is its equivalent
where all layers have the same parameters.

Model P dM dFF L H

base 95.4 512 2048 6 8
base12L 139.5 512 2048 12 8
base18L 183.7 512 2048 18 8
base24L 227.8 512 2048 24 8
big 278.9 1024 4096 6 16
hugeRS 207.3 1536 4096 1 16
huge 474.9 1536 4096 6 16

Table 2: The table presents the architectural description
of various Transformer models that were tested. Here, the
columns represent the number of parameters (P) in millions,
the dimension of the model (dM ), the dimension of the feed-
forward network (dFF ), the number of layers (L) and the
number of attention heads (H). It is worth noting that the
hugeRS model contains only one unique layer, but it is recur-
rently stacked 6 times. This means the other 5 layers in the
encoder/decoder are simply references to the original layer.

5 Results

This section presents the results of applying
Knowledge Distillation (KD) approaches to com-
press the IndicTrans Indic-to-English teacher
model.

5.1 Main Results
Table-3 compares various distillation approaches
using a student model with the base configura-
tion. As compared to a base model trained on
the original data, which is around 3.6 BLEU be-
low the IndicTrans model, we can observe im-
provements for both low and high-resource lan-
guages through the use of conventional distillation
methods. The simplest among these, Sequence-
Level distillation (SLD), shows an improvement of
0.3 BLEU on average compared to its undistilled
equivalent. Significantly, low-resource languages
such as Assamese and Odia and a few medium-
resource languages like Kannada benefit the most.
In contrast, resource-rich languages like Hindi and
Bengali have comparable or a slight drop in perfor-
mance. The Batch-Level selection approach (BL)
was the best among all distillation approaches and
showed the best results for 6 out of 11 languages.

https://github.com/anoopkunchukuttan/indic_nlp_library
https://github.com/anoopkunchukuttan/indic_nlp_library
https://github.com/VarunGumma/fairseq
https://github.com/LeslieOverfitting/selective_distillation
https://github.com/LeslieOverfitting/selective_distillation


Lang OG base IT SLD W+S LD BL GL GLwD

as 18.4 23.3 19.7 19.8 20.5 20.3 20.5
bn 28.9 31.8 28.8 28.9 29.1 28.3 28.7
gu 30.6 34.1 30.6 31.5 31.7 31.3 30.9
hi 34.3 37.5 34.1 34.2 34.7 34.4 34.6
kn 25.2 28.7 26.1 25.8 25.9 26.0 25.8
ml 27.7 31.4 28.2 27.9 28.2 27.6 28.0
mr 27.4 31.0 28.1 28.0 27.8 27.5 27.8
or 26.3 29.8 26.8 27.0 27.0 27.1 26.5
pa 31.0 35.8 31.2 31.4 31.3 31.4 31.1
ta 25.3 28.4 25.1 25.1 25.4 25.2 25.2
te 30.4 33.4 30.4 30.6 30.2 30.6 30.4

Avg 27.8 31.4 28.1 28.2 28.3 28.2 28.1

Table 3: BLEU scores of base model distilled with various
distillation techniques. Note that the scores of the base model
trained on the Original Samanantar data (OG base) and In-
dicTrans (IT; huge) in the first and second columns are for
reference. The best scores of distilled models are bolded.

On the other hand, Global-Level selection (GL)
did not perform as well, indicating that adaptation
is best done per batch since Global-Level selec-
tion may update similar examples whereas Batch-
Level adaptation would choose diverse examples.
Further, we observed that the queue size should be
meticulously tuned in case of a mix of languages.

To our surprise, active distillation (W+S LD)
failed to significantly improve despite leverag-
ing distilled data and the parent model’s soft la-
bels. Also, or adaptation of Global-Level selection
to Global-Language-wise Distillation (GLwD) re-
sulted in only minor variations when compared
to the base model that was trained using regu-
lar Sequence-Level distillation and Global-Level
distillation. Interested readers can check Chrf++
scores in Appendix-B, Table-11, and observe that
they follow the same trend.

No matter the approach, however, the distilled
model consistently underperforms the teacher, in-
dicating the high difficulty of distilling MNMT
models. Indeed, where the base model trained
without distilled data was behind by 3.6 BLEU,
the best-distilled model is behind by 3.1 BLEU on
average. Going forward, for the ease of rapidly
conducting large-scale experiments, we only re-
port and discuss the results of remaining models
trained using Sequence-Level distillation, i.e., by
directly training them on the distilled dataset.

5.2 Analyses and Further Investigation

We now investigate factors that influence distil-
lation. We analyze the quality of the distillation
data, the impact of different model architectures,
and multi-stage training using High-Quality data

for further training models or with adapters with-
out High-Quality data. These experiments can help
us ascertain whether the poor performance of dis-
tilled models can be remedied.
Distilled Dataset Analysis: LaBSE cosine-
similarity scores were used to assess the quality
of translation pairs in the distilled data. The dis-
tilled dataset was significantly better, as evidenced
by higher mean and lower standard deviation of the
LaBSE scores, as shown in Table-4.

OG Distilled

Lang pair mean std dev mean std dev

en-as 0.6460 0.2773 0.7850 0.1297
en-bn 0.7974 0.1286 0.8446 0.0726
en-gu 0.8007 0.1515 0.8487 0.0699
en-hi 0.7988 0.1159 0.8524 0.0737
en-kn 0.8129 0.1240 0.8469 0.0680
en-ml 0.8018 0.1310 0.8432 0.0743
en-mr 0.7886 0.1471 0.8472 0.0672
en-or 0.8283 0.0877 0.8474 0.0666
en-pa 0.7958 0.1383 0.8579 0.0726
en-ta 0.7762 0.1691 0.8415 0.0771
en-te 0.8152 0.1089 0.8448 0.0685

Table 4: LaBSE cosine similarity scores between translation
pairs of Original and Distilled data

Impact of Deeper vs. Shallower Models on Per-
formance and Inference Time: Table-5 shows
that thinner but deeper networks perform compa-
rably with the wider but shallower models while
having fewer parameters. However, Table-6 also
highlights that the deeper models often suffer from
longer latency during inference due to the numer-
ous sequential transformations to the input in both
the encoder and decoder. Furthermore, we ob-
served diminishing returns in performance as we
increased the number of layers.
Impact of extreme parameter sharing: From
Table-5 we can see that recurrent stacking
(hugeRS) is not particularly impactful. Note that
the key difference between the huge and hugeRS

models is that the latter has shared layer param-
eters. (Dabre et al., 2022) showed that recur-
rent stacking models, when trained with distilla-
tion data, can reach the performance of the par-
ent model (huge), but this does not appear to be
the case in our setting. Note that, in our case,
our training data is much larger than (Dabre et
al., 2022), indicating that recurrent stacking mod-
els might not be suitable here. Next, the infer-
ence time for hugeRS is almost the same as its
huge counterpart because the input is still trans-
formed the same number of times, but just using



the same layer. Comparing with the deeper base
models (base12L, base18L, base24L), increasing
the width of models increases parameters but re-
sults in only a slight increase in inference times,
unlike increasing the depth of the network.

Lang hugeRS base12L base18L base24L

as 19.2 21.6 23.3 22.9
bn 27.9 29.8 30.9 31.1
gu 30.4 32.5 33.9 33.9
hi 34.1 36.0 36.6 36.2
kn 25.4 27.0 28.3 28.0
ml 26.7 29.3 29.8 30.5
mr 26.7 29.5 30.4 30.6
or 25.4 28.3 29.5 29.6
pa 31.2 33.0 34.0 34.2
ta 24.6 26.3 27.4 27.9
te 29.6 31.4 33.0 33.0

Avg 27.4 29.5 30.6 30.7

Table 5: Performance of models with varying depth

Multi-stage training: The rationale behind High-
Quality data fine-tuning is that it enables the model
to relearn the richer set of examples and disregard
the previously noisy examples, which hurt the per-
formance. We observed that the performance of
the model improves with fine-tuning5 an existing
distilled model with HQ data (see Table-7). The
maximum improvement was observed for the Re-
current Stacked model, which showed the weakest
performance thus far, given its size. Note the im-
provement of the base model from 28.1 (SLD in
Table 3) to 28.4, by 0.3 BLEU. The previous gap
between the parent (IndicTrans; huge) and base
model was 3.3, and it has now come down to 3.0,
indicating that the gap can be overcome, but that
multilingual model compression is still very chal-
lenging.

The increments resulting from High-Quality
fine-tuning were averaged across multiple models
and languages, and the findings are presented in
Figure-3. It is observed in Figure-3 that multi-
stage training had the least effect on high-resource
languages such as Bengali and Hindi since the
model well learned these languages due to the
ample amount of training data available. Con-
versely, low-resource languages, such as Odia
and Assamese, benefited from multi-stage train-
ing. Our analysis showed that Malayalam expe-
rienced the most significant improvement with HQ
fine-tuning.

5For optimal fine-tuning, it is recommended to use a lower
learning rate (3e-5) and a smaller batch size (24K).

Lang base base12L base18L base24L big hugeRS huge

as 8.3 15.7 19.4 25.9 9.4 9.9 15.8
bn 7.8 13.1 18.8 23.7 8.6 9.2 8.8
gu 8.9 13.4 18.2 25.6 8.4 9.1 9.9
hi 8.8 13.0 18.4 24.2 10.7 9.3 8.7
kn 12.4 13.1 18.5 23.6 9.8 9.1 9.0
ml 8.7 13.8 20.7 26.2 9.7 9.0 9.0
mr 9.1 12.9 18.0 24.4 8.9 9.2 8.9
or 9.2 13.7 20.9 24.3 9.3 9.4 9.0
pa 8.9 13.7 19.3 24.7 8.9 9.2 9.0
ta 8.4 13.4 20.3 23.8 8.7 9.8 9.4
te 8.0 13.0 20.1 26.1 8.6 10.2 9.0

Avg 9.0 13.5 19.4 24.8 9.2 9.4 9.7

Table 6: Inference time per language (in seconds) with a
batch size of 64 on the Flores101 test set (1012 sentences
per language). As seen from the above table, base24L has the
highest latency due to the highest number of layers in the en-
coder and decoder.

Lang base base12L base18L base24L big hugeRS

as 0.6 0.7 0.3 0.3 -0.1 1.2
bn 0.2 0.5 0.3 0.5 -0.1 0.7
gu 0.6 0.6 0.1 0.2 0.4 1.1
hi 0.2 0.1 0.2 0.4 0.0 1.0
kn 0.3 0.6 0.2 0.5 0.2 0.8
ml 0.5 0.6 0.8 0.6 0.4 1.4
mr 0.0 0.5 0.4 0.3 0.7 1.2
or 0.5 0.6 -0.2 0.3 0.9 1.3
pa 0.3 0.3 0.4 0.6 -0.2 1.0
ta 0.2 0.6 0.1 0.2 0.3 0.8
te 0.2 0.4 0.5 0.5 0.4 0.6

Avg 0.3 0.5 0.3 0.4 0.3 1.0

Table 7: Multistage training improvements. Once again,
all these models were trained and fine-tuned on the distilled
dataset. The absolute scores, i.e., score of model trained
on the distilled data + the increment by fine-tuning on HQ-
distilled data is available in Table-14 of Appendix-B

Adapters: Adapters were introduced on top of the
distilled base model for each language and promi-
nent language families, such as Eastern Indo-
Aryan (Assamese-Bengali-Odiya), Western Indo-
Aryan (Hindi-Gujarati-Punjabi-Marathi), and Dra-
vidian (Kannada-Malayalam-Tamil-Telugu). No-
tably, these adapters were again fine-tuned on the
unfiltered distilled dataset. As presented in Table-
8, the outcomes revealed that the language-wise
and language-family adapters exhibited minimal
or no improvement in the given setting. This lack
of improvement could be attributed to the inad-
equacy of the added parameters in learning new
representations from languages to enhance per-
formance. Language-wise adapters outperformed
language-family adapters since high-resource lan-
guages dominate the low-resource ones when
building language families. In other words, when



Figure 3: Top: Comparative bar plot of improvements due to
HQ fine-tuning averaged over various languages vs. Model
Bottom: Comparative bar plot of improvements due to HQ
fine-tuning averaged over various models vs. Language

working with adapters, their limited capacity can
only handle limited data. Although we do not
show it, given our positive results with High-
Quality data, we expect that fine-tuning on the
same might lead to higher improvements. The
specific hyperparameters used for language-wise
and language-family adapters can be found in
Appendix-A Table-10.

Lang base LW LF

as 19.7 21.0 20.6
bn 28.8 28.8 29.2
gu 30.6 30.8 30.8
hi 34.1 34.4 34.2
kn 26.1 26.1 26.1
ml 28.2 28.2 27.9
mr 28.1 28.0 27.7
or 26.8 26.7 27.2
pa 31.2 31.3 31.2
ta 25.1 25.0 25.1
te 30.4 30.7 30.4

Avg 28.1 28.3 28.1

Table 8: Results of language-wise (LW) and language-family
(LF) adapter fine-tuning of base SLD model.

5.3 Key Takeaways and Recommendations

We have the following lessons:

1. The use of active learning techniques produced
comparable results, and no single approach stood
out as the best. Batch-Level distillation exhibited
the strongest numerical performance, but the im-
provements were statistically insignificant.

2. Multiple metrics should be used to evaluate
translations. Paraphrases of the target did not score
well in BLEU but were rated highly with Chrf++.

3. Multistage training, involving complete dataset
training followed by fine-tuning on a High-Quality
fraction, improves model performance. To main-
tain consistent distribution, the proportions of
translation pairs from each language should be
similar during data filtering, and the length distri-
bution should resemble the original dataset.

4. The use of adapters did not improve model
performance, attributed to insufficient parameter-
ization. With learning rate and batch size tuning,
equal language family proportions should be main-
tained during multilingual adapter fine-tuning.

5. Narrower but deeper models can achieve com-
parable performance to wider but shallower mod-
els, despite having fewer parameters. Increasing
depth by adding layers can lead to diminishing re-
turns with increasing inference latency.

6. Recurrently-stacked networks, despite their
promise, do not deliver in multilingual settings like
ours with low to high-resource languages. How-
ever, multi-stage training is recommended for such
models and, generally, for lower-parameter ones.

6 Conclusion and Future Work

In this paper we have empirically studied the com-
pression of MNMT models, taking Indic to En-
glish translation as a case study, and explored the
effectiveness of prominent knowledge distillation
approaches. We have also studied the impact of
model size, parameter sharing, multi-stage train-
ing, and quality of training data. We confirm the
high difficulty of this task but make several rec-
ommendations that we expect will benefit practi-
tioners. Having noted the positive impact of High-
Quality data, we will explore this aspect in further
detail in the future. We will also expand to MNMT
models focusing on other language groups. Fi-
nally, the impact of post-training quantization ap-
proaches and low-precision decoding will also be
investigated.
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[Buciluǎ et al.2006] Buciluǎ, Cristian, Rich Caruana,
and Alexandru Niculescu-Mizil. 2006. Model com-
pression. In Proceedings of the 12th ACM SIGKDD
International Conference on Knowledge Discovery
and Data Mining, KDD ’06, page 535–541, New
York, NY, USA. Association for Computing Machin-
ery.

[Chronopoulou et al.2022] Chronopoulou, Alexandra,
Dario Stojanovski, and Alexander Fraser. 2022.
Language-family adapters for multilingual neural
machine translation.

[Dabre and Fujita2019] Dabre, Raj and Atsushi Fujita.
2019. Recurrent stacking of layers for compact
neural machine translation models. Proceedings
of the AAAI Conference on Artificial Intelligence,
33(01):6292–6299, Jul.

[Dabre and Fujita2020] Dabre, Raj and Atsushi Fujita.
2020. Combining sequence distillation and trans-
fer learning for efficient low-resource neural ma-
chine translation models. In Proceedings of the Fifth
Conference on Machine Translation, pages 492–502,
Online, November. Association for Computational
Linguistics.

[Dabre et al.2020] Dabre, Raj, Chenhui Chu, and
Anoop Kunchukuttan. 2020. Multilingual neural
machine translation. In Proceedings of the 28th In-
ternational Conference on Computational Linguis-
tics: Tutorial Abstracts, pages 16–21, Barcelona,
Spain (Online), December. International Committee
for Computational Linguistics.

[Dabre et al.2022] Dabre, Raj, Himani Shrotriya,
Anoop Kunchukuttan, Ratish Puduppully, Mitesh
Khapra, and Pratyush Kumar. 2022. IndicBART:
A pre-trained model for indic natural language
generation. In Findings of the Association for
Computational Linguistics: ACL 2022, pages
1849–1863, Dublin, Ireland, May. Association for
Computational Linguistics.

[Diddee et al.2022] Diddee, Harshita, Sandipan Danda-
pat, Monojit Choudhury, Tanuja Ganu, and Kalika
Bali. 2022. Too brittle to touch: Comparing the
stability of quantization and distillation towards de-
veloping low-resource MT models. In Proceedings
of the Seventh Conference on Machine Translation
(WMT), pages 870–885, Abu Dhabi, United Arab
Emirates (Hybrid), December. Association for Com-
putational Linguistics.

[Do and Lee2022] Do, Heejin and Gary Geunbae Lee.
2022. Target-oriented knowledge distillation with
language-family-based grouping for multilingual
nmt. ACM Trans. Asian Low-Resour. Lang. Inf. Pro-
cess., jun. Just Accepted.

[Feng et al.2022] Feng, Fangxiaoyu, Yinfei Yang,
Daniel Cer, Naveen Arivazhagan, and Wei Wang.
2022. Language-agnostic BERT sentence embed-
ding. In Proceedings of the 60th Annual Meeting
of the Association for Computational Linguistics

https://www.cdac.in/index.aspx?id=print_page&print=PN
https://www.cdac.in/index.aspx?id=print_page&print=PN


(Volume 1: Long Papers), pages 878–891, Dublin,
Ireland, May. Association for Computational
Linguistics.

[Firat et al.2016] Firat, Orhan, Kyunghyun Cho, and
Yoshua Bengio. 2016. Multi-way, multilingual neu-
ral machine translation with a shared attention mech-
anism. In Proceedings of the 2016 Conference of the
North American Chapter of the Association for Com-
putational Linguistics: Human Language Technolo-
gies, pages 866–875, San Diego, California, June.
Association for Computational Linguistics.

[Goyal et al.2022] Goyal, Naman, Cynthia Gao,
Vishrav Chaudhary, Peng-Jen Chen, Guillaume
Wenzek, Da Ju, Sanjana Krishnan, Marc’Aurelio
Ranzato, Francisco Guzmán, and Angela Fan.
2022. The Flores-101 evaluation benchmark for
low-resource and multilingual machine translation.
Transactions of the Association for Computational
Linguistics, 10:522–538.

[Hendrycks and Gimpel2016] Hendrycks, Dan and
Kevin Gimpel. 2016. Gaussian error linear units
(gelus).

[Hinton et al.2015] Hinton, Geoffrey, Oriol Vinyals,
and Jeff Dean. 2015. Distilling the knowledge in
a neural network.

[Houlsby et al.2019] Houlsby, Neil, Andrei Giurgiu,
Stanislaw Jastrzebski, Bruna Morrone, Quentin
De Laroussilhe, Andrea Gesmundo, Mona Attariyan,
and Sylvain Gelly. 2019. Parameter-efficient trans-
fer learning for NLP. In Chaudhuri, Kamalika and
Ruslan Salakhutdinov, editors, Proceedings of the
36th International Conference on Machine Learn-
ing, volume 97 of Proceedings of Machine Learning
Research, pages 2790–2799. PMLR, 09–15 Jun.

[Kim and Rush2016] Kim, Yoon and Alexander M.
Rush. 2016. Sequence-level knowledge distillation.
In Proceedings of the 2016 Conference on Empiri-
cal Methods in Natural Language Processing, pages
1317–1327, Austin, Texas, November. Association
for Computational Linguistics.

[Ott et al.2019] Ott, Myle, Sergey Edunov, Alexei
Baevski, Angela Fan, Sam Gross, Nathan Ng, David
Grangier, and Michael Auli. 2019. fairseq: A
fast, extensible toolkit for sequence modeling. In
Proceedings of the 2019 Conference of the North
American Chapter of the Association for Compu-
tational Linguistics (Demonstrations), pages 48–53,
Minneapolis, Minnesota, June. Association for Com-
putational Linguistics.

[Papineni et al.2002] Papineni, Kishore, Salim Roukos,
Todd Ward, and Wei-Jing Zhu. 2002. Bleu: a
method for automatic evaluation of machine trans-
lation. In Proceedings of the 40th Annual Meet-
ing of the Association for Computational Linguistics,
pages 311–318, Philadelphia, Pennsylvania, USA,
July. Association for Computational Linguistics.
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A Hyperparameter Details

Hyperparameter Value

Global Batch size 64K
Dropout 0.2
Label smoothing 0.1
Gradient clipnorm 1.0
Early-stopping patience 5
Optimizer Adam
Adam betas (0.9, 0.98)
learning rate 5e-4
lr scheduler inverse-sqrt decay
Warmup steps 4000

Table 9: Hyperparameters employed for training the student
models, identical to those used for training IndicTrans

Hyperparameter LW LF

Global Batch size 2K (as), 8K 24K
Adapter Dropout 0.1 0.1
Adapter Activation GELU GELU
Adapter Bottleneck 256 256
learning rate 1e-3 1e-3
Warmup steps 1000 (as), 2000 (gu), 1600 (or), 4000 4000

Table 10: Hyperparameters employed for Adapter fine-
tuning. Note that, the rest of the model hyperparameters are
the same as in Table-9

B Additional Analysis

This section presents the remaining Chrf++ results
for Distillation techniques, Adapter fine-tuning,
Width-vs-Height Analysis, and Multistage train-
ing.

Lang OG base IT SLD W+S LD BL GL GLwD

as 43.0 48.2 44.8 44.9 45.5 45.2 45.1
bn 54.6 56.9 54.7 54.6 55.0 54.3 54.6
gu 55.9 58.7 56.2 56.8 56.9 56.6 56.5
hi 58.9 61.3 58.7 59.0 59.3 59.0 59.0
kn 51.4 54.6 52.2 52.1 52.2 52.1 52.2
ml 53.6 57.2 54.3 54.3 54.6 53.9 54.4
mr 53.2 56.4 54.0 53.9 54.2 53.7 53.6
or 52.2 55.5 53.0 53.2 52.9 53 52.8
pa 56.2 60.0 56.4 56.7 56.9 56.8 56.7
ta 51.1 54.1 51.1 51.1 51.3 51.2 51.3
te 55.3 58.2 55.7 55.9 55.7 55.8 55.8

Avg 53.2 56.5 53.7 53.9 54.0 53.8 53.8

Table 11: Chrf++ scores of base model distilled with various
distillation techniques. Note that the IndicTrans (IT) scores in
the first column are for reference.

Lang base LW LF

as 45.8 45.6 45.1
bn 54.7 54.7 54.9
gu 56.2 56.4 56.3
hi 58.7 58.8 58.7
kn 52.2 52.4 52.2
ml 54.3 54.2 54.1
mr 54.0 53.8 53.7
or 53.0 52.7 53.0
pa 56.4 56.3 56.2
ta 51.1 50.9 50.8
te 55.7 55.9 55.6

Avg 53.7 53.8 53.7

Table 12: Chrf++ Results of language-wise (LW) and
language-family (LF) adapter fine-tuning of base SLD model.

Lang hugeRS base12L base18L base24L

as 42.9 46.6 48.0 47.9
bn 52.9 55.4 56.3 56.4
gu 55.2 58.0 58.6 58.8
hi 58.4 60.1 60.5 60.3
kn 51.2 53.2 54.1 54.1
ml 52.5 55.4 55.8 56.3
mr 52.0 55.1 55.9 56.2
or 50.7 54.3 55.3 55.5
pa 56.1 58.1 58.7 59.0
ta 50.1 52.3 53.1 53.5
te 54.2 56.6 57.7 57.9

Avg 52.4 55.0 55.8 56.0

Table 13: Chrf++ scores for Width-vs-Height analysis

Lang base base12L base18L base24L big hugeRS

as 20.3 22.3 23.6 23.2 23.3 20.4
bn 29.0 30.3 31.2 31.6 31.1 28.6
gu 31.2 33.1 34.0 34.1 34.2 31.5
hi 34.3 36.1 36.8 36.6 36.5 35.1
kn 26.4 27.6 28.5 28.5 28.1 26.2
ml 28.7 29.9 30.6 31.1 30.6 28.1
mr 28.1 30.0 30.8 30.9 31.2 27.9
or 27.3 28.9 29.3 29.9 30.1 26.7
pa 31.5 33.3 34.4 34.8 34.3 32.2
ta 25.3 26.9 27.5 28.1 27.7 25.4
te 30.6 31.8 33.5 33.5 33.3 30.2

Avg 28.4 30.0 30.9 31.1 30.9 28.4

Table 14: Absolute BLEU scores obtained by Multi-stage
training.

Lang base base12L base18L base24L big hugeRS

as 45.5 (0.7) 47.5 (0.9) 48.7 (0.7) 48.5 (0.6) 48.2 (0.1) 44.3 (1.4)
bn 55.0 (0.3) 55.9 (0.5) 56.6 (0.3) 56.8 (0.4) 56.6 (0.2) 54.1 (1.2)
gu 56.9 (0.7) 58.4 (0.4) 59.0 (0.4) 59.1 (0.3) 58.9 (0.5) 56.5 (1.3)
hi 59.1 (0.4) 60.2 (0.1) 60.8 (0.3) 60.7 (0.4) 60.8 (0.4) 59.4 (1.0)
kn 52.5 (0.3) 53.7 (0.5) 54.5 (0.4) 54.7 (0.6) 54.1 (0.3) 52.2 (1.0)
ml 54.9 (0.6) 56.1 (0.7) 56.6 (0.8) 57.0 (0.7) 56.8 (0.7) 54.0 (1.5)
mr 54.3 (0.3) 55.9 (0.8) 56.4 (0.5) 56.6 (0.4) 56.7 (0.5) 53.6 (1.6)
or 53.4 (0.4) 55.0 (0.7) 55.5 (0.2) 55.9 (0.4) 55.8 (0.9) 52.6 (1.9)
pa 56.9 (0.5) 58.3 (0.2) 59.2 (0.5) 59.6 (0.6) 59.2 (0.3) 57.2 (1.1)
ta 51.4 (0.3) 52.8 (0.5) 53.3 (0.2) 54.0 (0.5) 53.6 (0.4) 51.2 (1.1)
te 56.1 (0.4) 57.2 (0.6) 58.1 (0.4) 58.4 (0.5) 58.1 (0.5) 55.2 (1.0)

Avg 54.1 (0.5) 55.5 (0.5) 56.2 (0.4) 56.5 (0.5) 56.2 (0.4) 53.7 (1.3)

Table 15: Multistage training Chrf++ results. The bracketed
number denotes the Chrf++ improvement due to High-Quality
fine-tuning.



C Note on Evaluation

This paper mainly relies on BLEU and Chrf++,
but lately, COMET7 is becoming popular. How-
ever, COMET is unavailable for most Indic lan-
guages we study. Therefore, we leave this for fu-
ture work.

7https://unbabel.github.io/COMET/html/
index.html
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