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Abstract

Compositionality is a pivotal property of sym-
bolic reasoning. However, how well recent neu-
ral models capture compositionality remains
underexplored in the symbolic reasoning tasks.
This study empirically addresses this question
by systematically examining recently published
pre-trained seq2seq models with a carefully
controlled dataset of multi-hop arithmetic sym-
bolic reasoning. We introduce a skill tree on
compositionality in arithmetic symbolic rea-
soning that defines the hierarchical levels of
complexity along with three compositionality
dimensions: systematicity, productivity, and
substitutivity. Our experiments revealed that
among the three types of composition, the mod-
els struggled most with systematicity, perform-
ing poorly even with relatively simple compo-
sitions. That difficulty was not resolved even
after training the models with intermediate rea-
soning steps.'

1 Introduction

Integrating symbolic reasoning capabilities into
neural models has been a crucial goal of artifi-
cial intelligence (Marcus, 2003; d’Avila Garcez
and Lamb, 2020). With this in mind, many re-
searchers investigated how well modern neural
models achieve symbolic reasoning (Lake and Ba-
roni, 2018). However, recent studies have reported
conflicting results on this; some suggest that neu-
ral models can solve complex multi-hop reason-
ing (Clark et al., 2020), while others claim that
models struggle even with performing simple sym-
bolic operations (Qian et al., 2022).

As a step toward further understanding neu-
ral models’ symbolic reasoning ability, this study
systematically analyzes recently published pre-
trained seq2seq models using a carefully controlled
dataset of multi-hop arithmetic symbolic reasoning.

'Our code and data are available at https://github.
com/keitokudo/dentaku_skill_tree.
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A=1,B=2, B=?

Systematicity A=1+2, B=2+3, B=?

A=142, A=?

Productivity A=1, B=2, B=? A=1, B=2, C=3, C=?

Substitutivity A=1, B=2, B=? a=1, =2, y=?
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Figure 1: Three dimensionalities of compositionality in
arithmetic symbolic reasoning

Specifically, our study empirically evaluates the
models’ ability to generalize the compositionality
underlying arithmetic reasoning, where we explore
three dimensions of compositionality: (i) system-
aticity, (ii) productivity, and (iii) substitutivity, as
illustrated in Figure 1. Capturing compositionality
is crucial in performing symbolic reasoning since
compositionality is a pivotal property of generaliz-
ability over training instances.

To systematically explore the models’ compo-
sition ability, we introduce a skill tree on compo-
sitionality that defined the hierarchical levels of
complexity in arithmetic symbolic reasoning, as il-
lustrated in Figure 2. Using this hierarchy as a lens,
we identify the limitations of the neural seq2seq
models in capturing the compositionality in arith-
metic symbolic reasoning. Our major findings can
be summarized as follows:

* Among the three types of composition, the
models struggled most with systematicity,
performing poorly even with relatively simple
compositions.

* The major difficulty in systematicity was in
the access to intermediate information that is
not stated in input but produced during the
reasoning.

 Capturing systematicity remained hard for the
models trained with the information of the
intermediate reasoning steps.
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2 SKill tree in arithmetic reasoning

We take arithmetic reasoning as the domain for
our exploration because it allows us to synthesize
questions systematically, as we show in this paper,
which helps examine a model’s composition ability
in a controlled manner. Furthermore, the arithmetic
reasoning ability of neural models has gained much
attention as modern large language models still
struggle with this problems (Rae et al., 2021).

Specifically, we use multi-hop arithmetic reason-
ing problems as follows:

Question: A=1, B=2, C=A+2, C=?
Answer: 3

Here, the value assigned to the variable C is asked.

2.1 Compositionality in multi-hop symbolic
reasoning

In this study, we specifically focused on three di-
mensions: systematicity, productivity, and substi-
tutivity (Hupkes et al., 2020). According to these,
we evaluate how well neural models achieve com-
positional generalization.

Systematicity refers to the ability of combining
known different concepts into a more complex
concept, i.e., structural composition. To evalu-
ate this ability in models, we first trained with
several types of primitive operations (e.g., addi-
tion; A=1+2,A=? and selection; A=1,B=2,B=?).
Then, we measured the performance in solving
problems consisting of combinations of primitives
(e.g., A=1+2,B=2+3,B=?).

Productivity refers to the ability to solve
longer/complex problems based on shorter/simpler
ones. To evaluate this ability in models, we
first trained with a short version of a formula
(e.g., A=1+2,B=2+3,B=?). Then, we measured
the performance in solving longer problems (e.g.,
A=1+2,B=2+3,C=3+4,C=?).

Substitutivity refers to the ability to keep the per-
formance even if a particular constituent in a prob-
lem is replaced with another (unseen) constituent
(i.e., lexical composition). To evaluate this ability
in models, we conduct several experiments chang-
ing the variable characters between training and
test (e.g., train with A=1+2,A=?; then evaluated
with @ =1+2, ¢ =?).

2.2 Dataset configurations

Typical symbolic reasoning (e.g., procedural pro-
gramming, assembly language) consists of at least
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Figure 2: Skill tree to evaluate compositional generaliza-
tion. The data format of primitive operations is gray and
others (complex formulas composed of combinations of
primitive operations) are blue .

three primitive symbol manipulations: assignment
(a=2), arithmetic operation (1+2), and reference
(a=?). With this in mind, our dataset is generated
by combining the following five basic formulas:
(i) A=1 (assignment), (ii) A=B (reference & assign-
ment), (iii) A=1+2 (arithmetic operation & assign-
ment), (iv) A=B+2 (arithmetic operation & assign-
ment & reference), (v) A=? (reference). The de-
tailed properties are explained in Section 3.

2.3 SKkill tree evaluations

We preliminarily observed that compositionally
generalizing complex multi-hop arithmetic reason-
ing was difficult for neural seq2seq learners (the
1,2,6—9 setting in Section 4). Building on this
fact, this study questions what type of composition
made it hard for the neural models. To answer this,
we designed a skill tree on compositionality that
organizes the (hierarchical) complexity levels of
symbolic reasoning.> Evaluating the models using
problems with different complexity of composi-
tion in a step-wise manner, we elucidate the exact
weakness of neural seq2seq models in multi-hop
symbolic reasoning.

Specifically, we designed ten versions of sym-
bolic reasoning problems. The hierarchical rela-
tionship of their task levels is illustrated in Fig-
ure 2; in this skill tree, each vertex, i.e., domain,
corresponds to different task settings with different

The term "skill tree" refers to a visualization method of
step-by-step learning in the field of pedagogy (Tondello and
Nacke, 2019), distinct from the "tree" in graph theory.
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base large x-large

Task Type ZA WA ZA WA ZA WA

1,2 Sys. 420 8.1 352 898 517 967
—4 +subst. 39.1 804 332 894 507 96.7
23 sys. 336 754 321 856 359 947
—5 +subst. 336 77.0 315 872 365 949
23,6 8ys. 408 765 39.1 877 405 946
—8 +subst. 393 747 375 864 392 949
23,6 sys. 565 797 510 837 581 942
—7 +subst. 576 802 51.1 8.8 567 951
1,2,6 sys. 241 282 231 293 275 326

—9 +subst. 258 280 241 31.7 285 347

7.8 sys. 236 213 253 259 223 282
—10  +subst. 223 216 244 264 230 302

1 prod. 100.0 100.0 100.0 100.0 100.0 100.0
—3 +subst. ~ 100.0 100.0 100.0 100.0 100.0 100.0

4 prod. 100.0 100.0 100.0 100.0 100.0 100.0
—5 +subst. 999 999 100.0 100.0 100.0  99.9

9 prod. 570 593 61.7 638 606 627
—10  +subst. 584 609 622 641 595 645

Table 1: Average accuracies in the experiment with 2 dif-
ferent seeds. The “Task” column exhibits (train—test)
domains corresponding to the skill-tree (Figure 2). The
“Type” column shows the targeted compositionality type
in each setting; here, “sys.,” “prod,” and “subst.” denote
the systematicity, productivity, and substitutivity gener-
alizations, respectively.

complexity, and edges represent the hierarchical
complexity levels.

By adequately selecting a particular combina-
tion of training and test domains, we evaluated the
compositional generalization ability of the models
from various perspectives. Here, the arithmetic ex-
pressions used in the test domain are a combination
of those in training domains, creating a semi-order
relationship in the skill tree. For example, using
the settings 1 (A=1+2,A=?) and 2 (A=1,B=2,B=?)
as a training set, and 4 (A=1+2,B=2+3,B=?) as a
test set, one can evaluate the model’s systematicity
generalization towards the arithmetic operations
(a+b) and assignments (A=2,B=7,B=7).

3 Experimental settings

3.1 Data

Dataset: In each experimental setting, we
refer to the training domains as Dipain =
{dtrain1, * * * diraink } and the test domain as dyest-
Each domain has 100,000 training data and 3,200
test data; these are randomly generated, and there is
no overlapped instance. When the training domain
consisted of multiple domains, we used the union
of the training data in Dyyin. In addition, when the
training domain is not primitive operations (1, 2,
3, and 6 in Figure 2), we further added the primi-

tive operation data related to the training domain
(Appendix A) into the training data.

Arithmetic expressions: As introduced in Sec-
tion 2, the input is a sequence of arithmetic expres-
sions. Formally, each expression is in the format of
a=n or a=n{+, -, max,min}m except that the final
expression asks the number assigned to a specified
variable (b=?). Here, a and b are a member of a
variable name set 2J; n and m are a member of the
variable name set or number set ¥ U A. Specifi-
cally, 3 consists of 21 alphabets, and N consists
of the integer from 0 to 99. The symbol = indicates
that the result of the left-hand side is substituted
into the right-hand side. The operations (+, -, max,
and min) correspond to arithmetic addition, sub-
traction, max (returning the larger of its left and
right numbers), and min (returning the smaller of
its left and right numbers).

The questions are designed so that the answer
is unique, and depending on the problem set-up,
may include mathematical expressions that are not
directly related to the final answer, i.e., distractors.
The order of the equations is arbitrary; the first
equation should not necessarily be calculated first.
Substitivity test: In each experimental setting,
we evaluate the substitutivity generalization per-
formance of the model under the situation where
the variable names are replaced with unseen ones,
e.g., training with a=1+2, a=7?; then evaluating with
a=2+4, a=?. In this setting, we replaced each
variable name in the test set with one of five alpha-
bets that do not overlap with the training ones.

3.2 Trainig and test

Training: The training stops when the accuracy
on the validation dataset does not increase in suc-
cessive five epochs or until the validation accu-
racy reaches 100%. Checkpoints with the high-
est accuracy in the validation dataset are used for
evaluation. Note that among the experiments, the
accuracy in the training domain reached at least
99.5%; this indicates that the primitive operations
were learnable for the models. Detailed settings for
training are described in Appendix A.

Evaluation metrics: The accuracy is calculated by
the test data in the test domain di.s;. Here, we used
two metrics: (i) zero-shot accuracy (ZA) and (ii)
weighted average of accuracies (WA) to measure
the efficiency of learning (Talmor et al., 2020). In
measuring WA, a model was further trained using
the training set in the test domain dieg; then, the
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weighted average of accuracies at every update was
calculated (details are in Appendix B).

3.3 Models:

We used three different sizes (base, large, and x1)
of TS5 (Raffel et al., 2020), which is a widely used
pre-trained seq2seq model in numerical reasoning
tasks (Pal and Baral, 2021; Chung et al., 2022;
Yang et al., 2021). Note that we began our training
using the models with learned parameters. We also
evaluated BART variants and randomly initialized
models in Appendix C.

4 Experiments and results

We adopted nine combinations of training and test
domains as shown in the first column of Table 1
(training domains—test domain). Six of them test
the systematicity generalization and the other three
test productivity generalization. In each setting, we
further tested substitutivity generalization ability
using the test domain data with a different variable
name set (e.g., & instead of A) to that used in the
training domain.

Table 1 shows the overall results. We observed
the following four trends:

* Systematicity generalization was more diffi-
cult than productivity generalization.

* Even in the simple composition (the setting
1,2—4), the models struggle with generaliza-
tion from zero or few examples.

* Models achieved substitutivity generalization.

* Model size did not incur substantial perfor-
mance difference.

We identified that the systematicity generaliza-
tion of reference and arithmetic operations (setting
2,3 — 5; from A=1,B=2,C=3,C=? and A=1+2 ,A=?
to A=1+2,B=2+3,C=4+5,C=?) was a simple set-
ting, yet difficult to solve (refer to Appendix D
for results on other tasks.). To better understand
why neural models struggle with this setting, we
decomposed the complexity of this setting and ana-
lyzed the model performance. Note that Kim and
Linzen (2020) also suggested that neural models
lack systematicity generalization ability in the con-
text of semantic parsing; our results corroborate
their findings from the context of arithmetic multi-
hop reasoning.

Is this difficulty specific to arithmetic sym-
bolic reasoning? We experimented with the

base large x-large
Setting ZA WA ZA WA ZA WA
235 336 754 321 85.6 359 947
String 373 941 66.1 984 869 993
Steps 262 82.1 36.1 894 337 964

Table 2: Ablation study with the 2,3—5 (vanilla) setting.
“String” refers to the setting where string operations are
used instead of arithmetic operations. “Step” denotes
the setting generating intermediate steps.

same setting except that the four arithmetic op-
erations are replaced with string operations (join,
reserveJoin, strSub, and stackJoin; details are
in Appendix E.1). The notable difference between
arithmetic and string operations is that the string
operation could be achieved by only copying se-
lective elements in the input (e.g., 12+34=1234),
while arithmetic operation requires the models to
access the arithmetic knowledge stored in their in-
ternals (e.g., 1+2=3) and generate new information
not stated in the input context (e.g., 3).

Larger models tended to overcome the weak-
ness in composition with string operations (e.g.,
the accuracy of 86.9 in zero-shot evaluation with
the x-large model), while they struggled with arith-
metic operations. This suggests that the major dif-
ficulty in systematicity was in the access to the
arithmetic knowledge (e.g., 1+1=2).

Does scratchpad training alleviate the difficulty?
Existing studies suggested that showing the inter-
mediate step (scratchpad-style training/inference)
improves the multi-hop reasoning ability of neural
models (Wei et al., 2022). We tested whether such
an explicit generation of intermediate information
alleviates the difficulty faced in the previous analy-
sis. Specifically, we trained models with interme-
diate steps (e,g. A=1+2,B=2+3,B=?; B=2+3,B=5.
Details are in Appendix E.2) during training.

The accuracy was calculated by the exact match
of the answer and intermediate steps (the steps
are designed to be uniquely determined). The per-
formance gain due to explicating the intermediate
steps was limited (Table 2), at least with our T5-
based models. This shows that, in our carefully con-
trolled setting, merely employing the scratchpad-
style generation is not substantially effective.

S Analysis

We conduct a more in-depth analysis of compo-
sitional generalization difficulties from another
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Complexity base large x-large Average
dimensions ZA WA ZA WA ZA WA

A#variables 0.098 -0.098 0.488 -0.293 -0.098 -0.488 -0.065
A#fnumbers 0.059 0.265 -0.088 0.647 0.206 0.677 0.294
A#operations -0.507 -0.338 -0.338 0.169 -0.338 0.169 -0.197
Attreference  -0.655 -0.655 -0.393 -0.655 -0.655 -0.655 -0.611

Table 3: Spearman’s rank correlation coefficient between the increase of training—test arithmetic complexity and
the compositional generalization performance (accuracy) across the nine settings listed in Table 1. A negative
score indicates that the greater the training—test discrepancy in its dimension, the more difficult compositional
generalization is. In the case that there are multiple training domains, the maximum value among them is used.

perspective—complexity of arithmetic expressions.
Specifically, for each pair of training and test do-
mains listed in Table 1 (e.g., 1,2—4), we quantified
the increase of the complexity of arithmetic formu-
las from several aspects, e.g., how much the for-
mula’s number of variables increased in the test do-
main (setting of 4) compared to the training domain
(setting of 1 and 2). Specifically, we focused on the
increase of the number of variables (A#variables),
numbers (A#numbers), operations (A#operations),
and references (A#references) from the training to
test domains. Here, “#reference” denotes the num-
ber of access to a particular variable on the right-
hand of equations. For example, the A#references
is 1 if the training data format is A=n,B=A+m and
the test format is A=n,B=A+m,C=B+[. Then, we
identified which dimension strongly relates to the
compositional generalization difficulty.

We analyzed the macro trends between formula’s
complexity increase and the difficulty of general-
ization across the experimental settings. Table 3
shows Spearman’s rank correlation coefficient be-
tween each complexity and the test-domain accu-
racy. We found a notable negative correlation in the
Attreference; that is, the more references in the test
domain compared to the training domain, the more
difficult the compositional generalization becomes
(the cases of 1,2,6—9 and 9—10 settings). Simply
put, this reveals the difficulty of compositional gen-
eralization with multi-hop reasoning—retaining the
results of a calculation and accessing them again
for another calculation.

6 Related work

The analysis of the compositional generalization
ability of neural models and arithmetic multi-hop
reasoning problems have typically been studied
separately; this study has merged these two direc-
tions. As for composition generalization analy-

sis, several studies analyzed neural models using
datasets such as SCAN (Lake and Baroni, 2018),
COGS (Kim and Linzen, 2020), and CFQ (Keysers
et al., 2020). These mainly focused on composi-
tionality in the context of semantic parsing; the
composition ability toward symbol manipulations
(e.g., multi-hop arithmetic reasoning) is typically
out of focus. As for arithmetic reasoning, neural
models’ abilities have been analyzed typically us-
ing benchmarks such as DROP (Dua et al., 2019). It
has recently been reported that such dataset has su-
perficial cues (Al-Negheimish et al., 2021), which
made it unclear how much arithmetic reasoning
neural model achieves; our study using a carefully
controlled dataset contributed to the exact weak-
ness of neural models in this context.

7 Conclusion

In this study, we have empirically investigated the
arithmetic multi-hop reasoning ability of modern
neural models through the lens of compositional
generalization ability. To systematically analyze
neural models’ ability, we have defined a skill tree
that organizes the (hierarchical) complexity levels
of the multi-hop symbolic reasoning dataset.

Our experiments have revealed that the major
weakness lies in systematicity, even with a rela-
tively simple composition. Through the ablation
studies, we also have found that difficulty in sys-
tematicity is pronounced in accessing knowledge
that is not written in input but stored in models.
Furthermore, even in training models with inter-
mediate steps that explicate the composition, they
struggle to capture systematicity. We also found
the difficulty of multi-hop reasoning in composi-
tional generalization. These highlight the exact
weakness of neural models and encourage studies
to overcome such limitations.
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Limitations

In this work, we explored neural networks’ ability
to capture compositionality in symbolic arithmetic
reasoning in hopes that it may lead to future im-
provements in more general reasoning. However,
arithmetic reasoning may not necessarily gener-
alize to natural language tasks. Furthermore, we
explored several aspects of multi-hop arithmetic
reasoning, but these were chosen from a relatively
human-centric perspective, and models may suffer
from unforeseen other difficulties. Finally, while
we found several patterns in how model perfor-
mance degrades, it is difficult to aggregate this into
a full picture of what a model can and cannot do.
Further experiments are needed to gain a more com-
plete understanding of model performance
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A Training configurations

Training data: Data of primitive domains (grey
domains in Figure 2) are also added to the training
data. Specifically, data in the primitive domains
that are reached by traversing the graph (Figure 2)
from the training domain to the left is added. For
example, when the training domain has the domain
of 7, the data of primitive domains of 2, 3, and 6 are
added?. Note that when the domain of 3 is included,
the domain of 1 is not added. Additionally, as
the objective of this study does not emphasize the
generalization performance in arithmetic ability,
the scope of numbers utilized in the test domain
is adjusted to ensure that the upper limit of the
answers in the test domain does not surpass that of
the answers in the train domain.

Hyperparameter: We used the TS5 models (v1.1)
as pre-trained model*. We used three model sizes:
base (250 million parameters), large (800 million
parameters), and xI (3 billion parameters). Follow-
ing T5 (Raffel et al., 2020) fine-tuning configura-
tions, we use Adafactor (Shazeer and Stern, 2018)
as the optimizer with a constant learning rate. Also,
we specify the learning rate 1.0 x 10~ for training
and 5.0 x 107" in measuring the WA. The batch
size is 32 for all experimental settings. We trained
each model on NVIDIA A6000 (48GB memory),
A100 (80GB memory). In addition, following pre-
vious research about numerical reasoning (Geva
et al., 2020), we tokenize numbers in a digit-by-
digit manner.

B How to calculate WA

As described in Section 3, we used weighted av-
erage accuracy (WA). This metric quantifies the
efficiency (ease) of generalization by assigning a
high weight to accuracy in the early training stage.
Specifically, the weights w; (where ¢ is the num-
ber of validation steps) were calculated using the
following formulae:

3Task 7,8—10 do not incorporate data from the primitive
domains into the training data to evaluate if compositional
generalization can be achieved solely from complex compo-
nents.

*https://huggingface.co/docs/transformers/
model_doc/t5v1.1

base large

Task  Type ZA WA ZA WA

1,2 Sys. 25,5 712 338 61.0
—4  +subst. 252 724 309 62.0
2,3 Sys. 23.0 48.7 254 49.1
—5  +subst. 22.1 47.5 25.7 435
2,3,6  sys. 29.6 57.6 35.0 55.1
—8  +subst. 28.7 504 343 50.2
2,3,6  sys. 36.7 59.8 404 485
—7  +subst. 394 57.0 38.6 393
1,2,6 sys. 220 26.1 21.1 16.1
—9  +subst. 22.6 26.7 23.5 18.2
7.8 Sys. 241 28.6 325 253
—10 +subst. 249 27.7 349 203
1 prod. 924 99.8 100.0 83.1
—3  +subst.  91.2 99.8 100.0 82.3
4 prod. 60.4 93.0 89.5 90.8
—5  +subst. 63.8 959 91.8 874
9 prod. 335 494 41.6 21.0
—10 +subst. 343 482 435 222

Table 4: Experimental results when BART is used
as a pre-trained model. The “Task™ column exhibits
(train—test) domains corresponding to the skill-tree
(Figure 2). The “Type” column shows the targeted com-
positionality type in each setting; here, “sys.,” “prod,”
and “subst.” denote the systematicity, productivity, and
substitutivity generalizations, respectively.

w; = —ai + Wmax ()

Wmax = AWmin (2)
2

min — T\ 3

v (N+ D(a+1) )

o — (wmax - wmin) . 4)

N

Here, N is the number of validation steps. « is a
hyperparameter that determines how heavily the
accuracy in the early stages is weighted. We set
a to 1000 in all the experiments. Also, We used
the first 100 validation steps to calculate WA, so
specify N = 100 for all experiments. WA was
calculated with accuracy on the held-out validation
datasets in the test domain.
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Task base large x-large
1,2 (—4) 72.5 100.0 100.0
2,3 (—5) 63.3  56.1 99.9
1,3,6 (—7,8) 68.6 679 67.5
1,2,6 (—9) 999 76.0 76.8
7,8 (—10) 48.6 373 24.0
1(—=3) 51.1  15.1 16.3
4 (—5) 100.0 999 99.9
9 (—10) 99.7 999 99.7

Table 5: Accuracy on the training held-out dataset when
we start training the model from randomly initialized
parameters. (When training began with parameters pre-
trained on language, the accuracy was almost 100% in
all settings.) Each training task includes the primitive
operations required to solve train domain tasks as de-
scribed in section A.

C Model variants

C.1 BART

To confirm the generality of our results obtained
with the T5 models, we also conduct the same ex-
periment using BART (Lewis et al., 2020). We
use two model sizes®: base (140 million parame-
ters) and large (400 million parameters). Table 4
shows the result using BART. The same tendency
described in Section 4 was observed when BART
was used as a language-pre-training model.

C.2 Training from scratch

We also experimented with the case where we
started training from randomly initialized parame-
ters to isolate the effect of the pre-training adopted
in TS. We found that these initialized models failed
to learn even primitive operations and in-domain
tasks (Table 5), at least with the hyperparameter set-
ting® used in this study. Thus, we did not proceed to
their evaluation of compositionality generalization.

D Detailed analysis of T5-based models

Figure 3 shows the learning curves (accuracy on
validation datasets) for all tasks demonstrated in
Table 1. The graphs also show that the neural lan-
guage model struggles to solve tasks that require

Shttps://huggingface.co/facebook/bart-base,
https://huggingface.co/facebook/bart-1large

Unlike in the training domain used for the language pre-
trained model, we relax the training stopping criterion. We
stopped training when the accuracy did not increase by 10
epochs in the validation dataset.

compositional generalization in the beginning part
of the training.

D.1 String operations ablation for all tasks
Table 6 shows the experimental results of the abla-
tion study using string operations for all tasks.
D.2 Scratch pad evaluation for all tasks

Table 7 shows the experimental results of the abla-
tion study using scratchpad for all tasks.

E Dataset details

Table 8 summarizes the characteristics of each task.

E.1 String operations

Table 9 shows the details of the string operations.

E.2 Scratch pad formulation

For the additional study using scratchpad in sec-
tion 4, we generate problems with ing the in-
termediate steps. Scratchpad is in the form of
straightforward one-by-one calculations of only
those calculations necessary to find the target vari-
able. The following is an example of scratchpad
reasoning:

Question: A=1+2, B=A+3, B=?
Answer: A=1+2;A=3;B=A+3;B=3+3;B=6
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2,3,6—8 (sys.)

- 7,810 (sys.)

9—10 (prob.)

Figure 3: Learning curves of generalization test for all tasks.

base large x-large
Task  Type ZA WS ZA WS ZA WS
1,2 Sys. 59.2 959 669 985 639 989
—4  +subst.  59.0 95.1 673 982 622 99.0
2,3 sys. 373 941 66.1 984 869 993
— 5 +subst. 359 935 652 986 842 99.0
2,3,6 sys. 59.6 939 715 98.0 525 972
—8  +4subst. 563 928 67.1 98.0 523 97.0
2,3,6  sys. 343 91.0 463 93.6 32.0 95.7
—7  4subst. 343 913 481 936 342 965
1,2,6  sys. 132 343 11.6 38.1 123 59.6
—9  4subst. 127 349 13.0 390 124 58.8
7.8 Sys. 262 61.1 200 61.7 213 674
—10  +subst. 264 614 199 600 20.5 685
1 prod. 100.0 100.0 100.0 100.0 100.0 100.0
—3  +subst.  100.0 100.0 100.0 100.0 99.9 100.0
4 prod. 100.0 100.0 99.9 100.0 100.0 100.0
—5  +subst. | 100.0 100.0 100.0 100.0 100.0 100.0
9 prod. 69.6 882 715 899 753 920
—10 +subst. 674 88.8 72.0 89.6 752 92.0

base large x-large
100 100 100 == ————
& PPN 3 / 3 [
& = & / & I/
< 80 < 80 / = 801/
o Q /24 = If
£ g A/ £ I
3 607, 3 601/ 3 60
8 ) 8 il 8
w/o | 2 c | <
subst 2 40 2 40 2 40
N © © ©
S s bl
s 20 s 20 s 20
[} [0] [0]
(0] 20 40 60 80 100 20 40 60 80 100 20 40 60 80 100
Number of updates Number of updates Number of updates
100 — 100 — S —— 100 e~
s 80 e s 801 /7 5. 80 ;‘/‘
3 6017/ 3 604/ 3 60
/ & 8 i s N
w c c / c
subst. |2 40 2 409 2 40
© © ]
2 = =
S 20 S 20 S 20
(o] (o] (0]
0o 20 40 60 80 100 o] 20 40 60 80 100 (o] 20 40 60 80 100
Number of updates Number of updates Number of updates
— 1,24 (sys.) — 2,3,6—7 (sys.) 1—3 (prob.)
2,325 (sys.) 1,2,6—9 (sys.) 4—-5 (prob.)

Table 6: Experiments result from string operation ablation. The “Task™ column exhibits (train—test) domains
corresponding to the skill-tree (Figure 2). The “Type” column shows the targeted compositionality type in each

setting; here, “sys.,” “prod,” and “subst.” denote the systematicity, productivity, and substitutivity generalizations,
respectively.

1360



base large x-large
Task Type ZA WS ZA WS ZA WS

1,2 SySs. 30.6 813 339 855 356 949
—4  4subst. 303 779 329 855 363 955

2,3 Sys. 262 821 36.1 894 337 964
—5  4subst. 254 813 36.1 881 329 964

2,3,6  sys. 00 276 00 475 00 713
—8 4subst. 0.0 260 00 473 00 729

2,3,6 sys. 0.0 431 00 590 00 75.0
—7  4subst. 0.0 400 00 566 00 733

1,2,6  sys. 00 02 00 25 00 143
—9  +subst. 00 01 00 27 00 164

7.8 Sys. 00 170 00 332 0.0 551
—10  +subst. 0.0 174 00 326 00 553

1 prod. 100.0 100.0 100.0 100.0 96.0 99.9
—3  4subst. 1 100.0 100.0 100.0 100.0 95.8 99.9

4 prod. 100.0 100.0 100.0 99.9 100.0 99.9
—5  4subst. 1 100.0 100.0 100.0 99.9 100.0 99.9

9 prod. 0.0 508 00 722 00 809
—10 4subst. 0.0 51.8 00 695 00 793

Table 7: Experiments result from scratchpad ablation. The “Task” column exhibits (train—test) domains correspond-
ing to the skill-tree (Figure 2). The “Type” column shows the targeted compositionality type in each setting; here,

“sys.,” “prod,” and “subst.” denote the systematicity, productivity, and substitutivity generalizations, respectively.
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Domains

Required premitives Targeted composition

Task Example

Assign.  Arith.

Ref. Sys. Prod. Subst.

1
2
3
3
4
4
5
5>
6
7
7
8
g’
9
9

10
100

A=1, B=2, B=?
A=1+2, A=?

A=1, B=2, C=3, C=?

a=1, B=2, v=3, v=?
A=1+2, B=2+3, B=?

a=1+2, B=2+3, B=?

A=1+2, B=2+3, C=3+4, C=?
a=1+2, B=2+3, v=3+4, v=?

A=1, B=A, B=?

A=1, B=2, C=B+3, C=?

a=1, B=2, v=B+3, v=?
A=1+2, B=2+3, C=B, C=?

a=1+2, B=2+3, v=B, v=?
A=1+2, B=A+3, B=?

a=1+2, B=a+3, B=?

A=1+2, B=A+3, C=B+4, C=7?
a=1+2, B=a+3, v=B+4, v=?

v

ASENENEN

N N N N N N N NN NN NENEN

AN NN NN NEN

v
v v
v
v v
v v
v v v
v
v v
v v v
v v
v v v
v v
v v v
v v v
v v v v

Table 8: Dataset configurations. The “Task™ column exhibits (train—test) domains corresponding to the skill-tree
(Figure 2). “Assign.” “Arith.” and “Ref”” in “Required primitives” column mean primitive operations name,

“assignment

99 <

arithmetic operations” and “reference” (see subsection 2.2) The “Target composition” column shows

the targeted compositionality type in each setting; here, “Sys.,” “Prod,” and “Subst.” denote the systematicity,
productivity, and substitutivity generalizations, respectively.

Description Example
join String concatenation. 12 + 34 = 1234
reverseJoin String concatenation + Reverse 123 * 78 = 87321
strSub Deletion of duplicate characters. 7873 - 73 = 87
Return O if there are no dupli-
cates.
stackJoin Select one character from the left 12 * 34 = 1324

side of each string alternately and
return the combined string.

Table 9: Detail of string operation.
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