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Abstract

We present FewShotTextGCN, a novel method
designed to effectively utilize the properties
of word–document graphs for improved learn-
ing in low-resource settings. We introduce K-
hop Neighborhood Regularization, a regular-
izer for heterogeneous graphs, and show that
it stabilizes and improves learning when only
a few training samples are available. We fur-
thermore propose a simplification in the graph-
construction method, which results in a graph
that is ∼7 times less dense and yields better
performance in low-resource settings while per-
forming on-par with the state of the art in high-
resource settings. Finally, we introduce a new
variant of Adaptive Pseudo-Labeling tailored
for word–document graphs. When using as lit-
tle as 20 samples for training, we outperform a
strong TextGCN baseline with 17% in absolute
accuracy on average over eight languages. We
demonstrate that our method can be applied to
document classification without any language
model pretraining on a wide range of typolog-
ically diverse languages while performing on
par with large pretrained language models.

1 Introduction

Text classification, a key task in natural language
processing (NLP), has many real-world applica-
tions, including toxic comment identification, news
categorization, spam detection and opinion mining.
One popular approach to this problem relies on
large-scale pretraining of Transformer models (De-
vlin et al., 2018; Conneau et al., 2019; Raffel et al.,
2020), which have shown to be able to approach or
even surpass human performance on many natural
language understanding (NLU) benchmarks (Ra-
jpurkar et al., 2016; Wang et al., 2019; Liang et al.,
2020). While these results are impressive for the
languages on which models are pretrained, perfor-
mance tends to deteriorate on languages where no
or little data is available (Chau and Smith, 2021;
van der Heijden et al., 2020). In practice, this

means that these models are effective on a set of
approximately 100 out of the 7000+ spoken lan-
guages in the world. Next to the requirement for
vast amounts of data for pretraining, Transformer
language models tend to be impractically large in
terms of their number of parameters and have a
high environmental footprint (Strubell et al., 2019).
Recently, Graph Neural Networks (GNNs) have
shown to be effective for text classification in both
transductive (Yao et al., 2019; Liu et al., 2020;
Lin et al., 2021) and inductive (Nikolentzos et al.,
2020; Ding et al., 2020) learning settings – with
promising results in both high- and low-resource
settings. Particularly in the transductive setting,
the authors of TextGCN (Yao et al., 2019) show
that Graph Convolutional Networks (GCNs) (Kipf
and Welling, 2016) can outperform state-of-the-art
methods for document classification on English
datasets without any language model pretraining.
They do so by modeling an entire corpus of docu-
ments simultaneously as one heterogeneous word–
document graph. The document classification task
is formulated as a node-classification task over this
graph.
Later work shows that (multilingual) Pretrained
Language Models (mPLMs) can be used to pro-
vide GNNs used in transductive setting with rich
representations of both words and documents, im-
proving results further in both monolingual (Lin
et al., 2021) and cross-lingual settings (Wang et al.,
2021; Li et al., 2020). These works focus solely on
high-resource settings and do not report any results
on performance in low-resource settings.
In this work, we propose a novel GNN-based
method for learning document classification tasks
on a range of languages without the need for any
pretraining data (i.e., without utilizing any pre-
trained word embeddings or language models), and
from few labeled samples only. To the best of our
knowledge, we are the first to investigate few-shot
graph-based transductive document classification
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in a range of languages other than English.

We present FewShotTextGCN, an improved ver-
sion of the original TextGCN model, where we
exploit properties of the heterogeneous word–
document graph for improved learning from scratch
and with only a few labels. More specifically, we:

(1) Introduce K-hop Neighborhood Regulariza-
tion (K-NR), an unsupervised learning technique
for heterogeneous graphs, and use it in its K =
2 instantiation as a regularizer tailored to word–
document graphs , and show that it consistently
leads to performance gains in low-resource set-
tings;

(2) Propose a simplification of the graph-
construction method, which results in improved
performance in the low-resource setting while re-
ducing the graph density by a factor of approxi-
mately 7 on average, therefore substantially speed-
ing up computations and reducing memory require-
ments;

(3) Present a variant of adaptive pseudo-labeling
(Zhou et al., 2019) on word–document graphs and
show that it leads to consistent gains over the origi-
nal TextGCN approach (Yao et al., 2019), particu-
larly when combined with K-NR.

We compare FewShotTextGCN to its predecessor
and two strong PLMs on ten topic classification
benchmarks comprising eight typologically diverse
languages, and experiment with a range of low-
resource settings, including using as little as 20 la-
beled samples to learn from, and without any other
form of (pre-trained) knowledge about a language
except for what constitutes a word (using word
boundaries or a tokenizer). In our lowest-resource
setting, our method outperforms TextGCN with
4.6% and 17% points in absolute accuracy on aver-
age for Reuters and MLDoc, respectively – while
having a substantially smaller computational and
memory footprint. FewShotTextGCN performs on
par with large PLMs on the great majority of the
considered benchmarks, without the need for any
large-scale pretraining and at only a fraction of the
parameter count of these PLMs – indicating that
graph-based methods are an attractive alternative to
using large PLMs for topic classification. All our
code and models are released to facilitate further
research on this topic.1

1https://github.com/mrvoh/
FewShotTextGCN

2 Graph Neural Networks

Graph Neural Networks (GNNs) are a class of
neural models designed to facilitate representation
learning on geometric data – data that naturally oc-
cur in many situations/fields, such as chemistry, so-
cial networks, maps, visual meshes, etc. Recently,
there has been a great surge in research on GNNs.
GNNs create new feature representations of nodes
by aggregating the nodes’ own feature represen-
tation and a message passed on from neighboring
nodes. A graph G = (V, E) is defined as a set
of nodes V with edges E between them, typically
represented as a square adjacency matrix A, where
each entry holds the weight of the edge between
node j and i. Locality in graphs is defined by
neighborhoods, where the neighbors of node i are
defined as Ni = {j : (i, j) ∈ E ∀(j, i) ∈ E}. Let⊕

be some permutation invariant aggregator such
as sum, average or max, and let ψ and ϕ be two
differentiable, learnable functions such as an MLP.
Using these ingredients, we can describe GNNs by
the way they do message passing.
Convolutional GNNs use the weights cij of the
edge between nodes j and i to weigh the incoming
messages. These weights are part of the definition
of the graph, meaning they are statically defined.
The input feature xi of node i is transformed to a
latent representation hi by taking

hi = ϕ(xi,
⊕

j∈Ni

cijψ(xj)) (1)

The first and most well-known convolutional GNN
is the Graph Convolutional Network (GCN) (Kipf
and Welling, 2016).

3 Related work

Our work is based on TextGCN (Yao et al., 2019),
which also serves as our baseline for all experi-
ments. To the best of our knowledge, we are the
first to investigate few-shot graph-based transduc-
tive learning from scratch for document classifi-
cation in a range of languages other than English.
Since the scope of our work is few-shot document
classification in many languages by learning from
scratch, we do not consider CLHG (Wang et al.,
2021) directly related work. The reasons being
it models corpora in multiple languages jointly,
whereas we learn each task in isolation, and re-
lies on machine translation and mPLMs. Similarly,
MGL (Li et al., 2020) relies on mPLMs for encod-
ing similar corpora in different languages into one
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embedding space, where consecutively a graph is
dynamically constructed based on the similarity of
the documents in the respective embedding space.
Finally, meta-learning is applied to learn to classify
documents in one language, given a limited set of
documents in at least three other languages. Hence,
we do not review these works in-depth.

TextGCN TextGCN (Yao et al., 2019) is the first
application of GNNs to transductive text classifi-
cation, applied on English datasets without any
language model pretraining. The great majority of
experiments is performed in high-resource settings,
but a small set of results on performance in low-
resource settings is also provided – motivating us to
further explore and expand upon this subject. The
authors construct a heterogeneous graph contain-
ing both word and document nodes. Word–word
edges are weighed based on the pointwise mutual
information (PMI) between the respective words,
and word–document edges are created based on the
TF–IDF score of the word in the respective docu-
ment. More specifically, the adjacency matrix A is
defined as:

Aij =





PMI(i, j) i, j words, PMI(i, j) > 0

TF–IDFij i document, j word
1 i = j

0 otherwise
(2)

Document–document links are not considered. A
one-hot encoding is used as input features for the
nodes and a two-layer GCN is used to classify the
document nodes. While this setup is relatively sim-
ple in terms of preprocessing, pretraining and the
number of parameters in the model, the authors
show that their method performs on par with state-
of-the-art methods, even improving the state of the
art for the 20News2 dataset.

BERTGCN Follow-up work on TextGCN is that
of BERTGCN (Lin et al., 2021), where the authors
leverage PLMs to initialize document–node fea-
tures. More specifically, a BERT-based model is
used to encode the documents, and all other nodes
are initialized with a one-hot vector. The BERT
model used for encoding documents is optimized
both via gradients propagated through the GCN
and via an auxiliary classifier that directly uses the
BERT embeddings to classify the documents. Us-
ing BERTGCN, the authors improve over TextGCN

2http://qwone.com/~jason/20Newsgroups/

on a variety of text classification tasks – especially
on a sentiment analysis task, for which word or-
der information is crucial for good performance
(Johnson and Zhang, 2014). To be able to use
BERTGCN in a full-batch gradient descent method,
the authors use a memory bank that allows decou-
pling the dictionary size from the mini-batch size.
Although the presented results are promising, a
drawback of using large PLMs is the need for vast
amounts of pretraining data, making these methods
inaccessible for low-resource languages.

4 Data

In this section, we give an overview of the datasets
we use and the respective classification tasks.

MLDoc Schwenk and Li (2018) published an
improved version of the Reuters Corpus Volume 2
(Lewis et al., 2004) with balanced class priors for
all languages. MLDoc consists of news stories in
8 languages: English, Spanish, French, German,
Italian, Russian, Japanese and Chinese. Each news
story is manually classified into one of four classes:
Corporate/Industrial (CCAT), Economics (ECAT),
Government/Social (GCAT) and Markets (MCAT).
Per language, the train and test datasets contain 1k
and 4k samples respectively.

Reuters 21578 From the Reuters-21578 dataset,
a dataset of English news articles on a wide variety
of topics, we use the R8 and R52 subsets (all-terms
versions3). R8 has 8 categories and consists of
5485 and 2189 samples for training and testing re-
spectively. R52 has 52 categories and 6532 and
2568 samples for training and testing respectively.
The distribution of samples over the respective cat-
egories is highly skewed.

During preprocessing on both datasets for all GNN-
based models, we remove words with a frequency
of less than 5, and tokenize the data. For all lan-
guages except Japanese and Chinese, we split sen-
tences based on whitespace. For Chinese, we use
the Jieba4 tokenizer, and for Japanese, the Fugashi
one (McCann, 2020). For Transformer-based mod-
els, solely their respective tokenizers are used.

5 Approach

Graph construction We follow the graph con-
struction method as described in the original

3
https://ana.cachopo.org/

datasets-for-single-label-text-categorization
4https://github.com/fxsjy/jieba
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TextGCN (Yao et al., 2019) work except we de-
viate in two different directions. Stopword removal
is omitted, as this assumes knowledge of the lan-
guage, whereas we aim for an approach that as-
sumes no prior knowledge. Furthermore, word–
word edges are omitted too. Omitting such edges re-
sults in a much less densely connected graph, mak-
ing learning substantially less memory intensive.
We argue that the added value of word–word edges
in a word–document graph is minimal given 1) only
global information of word co-occurrence is consid-
ered (i.e., co-occurrence over the whole corpus as
opposed to within document co-occurrence), and 2)
over the course of training, words co-occurring in a
document can influence each other’s representation
through an N -layer GNN where N > 1. We illus-
trate this with an example in Appendix E, while
in Section 8, we experimentally demonstrate the
limited effect of word–word edges using ablation
studies.

K-hop Neighborhood Regularization (K-NR)
We propose a new method that can exploit the prop-
erties of a word–document graph, inspired by ap-
proaches such as GraphSage (Hamilton et al., 2017)
that shows that meaningful node representations
can be learned in an unsupervised manner with con-
trastive learning methods like Node2Vec (Grover
and Leskovec, 2016). These methods typically con-
sist of two components: a sampling technique for
deciding what nodes are regarded as positive or
negative samples, and a loss function. Let u be
the anchor node, Pp the positive sample sampling
method, Pn the negative sample sampling method,
and JG(u, Pp, Pn) the contrastive loss function.
In the case of GraphSage, Pp is defined as a ran-
dom walk starting from the anchor node, and Pn is
defined as uniformly sampling from all available
nodes.
This contrastive learning approach on graphs as-
sumes homogeneity and Pp always samples in the
1-hop neighborhood from the anchor node. Herein,
we propose a contrastive learning regularization
method tailored on heterogeneous graphs instead,
where nodes of the same type are K-hops away
from each other on the graph.
In what follows, we describe our approach in detail
for heterogeneous word–documents graphs for the
specific case of K-NR with K = 2. Driven by
the intuition that documents (within a language)
that share large parts of their vocabulary are more
likely to be about the same topic, we introduce 2-

hop Neighborhood Regularization (2-NR), a novel
unsupervised learning method which can be used
as a regularization technique.
Let G = (V, E) be the graph defined by the vertices
V and edges E . Let Vd,Vw be the document and
word nodes respectively. Given anchor node u ∈
Vd, we first sample a word node v ∈ Vw connected
to u by sampling from a multinomial distribution
weighted by the edge attribute values (the TF–IDF
scores):

v ∼Multinomial(1, Au,{w|w∈Vw∧w∈N (v)}) (3)

Then, a positive document node up and negative
document node un are sampled as follows:

up ∼ U(N (v)) (4)

un ∼ U(Vd \ N (v)) (5)

Let zu be the final hidden representation of node u,
the 2-NR loss, L2-NR, is then defined as:

L2-NR(u, up, un) =

max{d(u, up)− d(u, un) +m, 0} (6)

for some distance function d and margin m. This
represents a triplet margin loss (Balntas et al.,
2016), which forces u to be closer to up than un by
at least a margin m. See Appendix A for an elabo-
ration on the intuition of 2-NR as well as a visual-
ization. In the word–document graph case, K = 2
works specifically because we know that document
nodes are only connected to word nodes and vice
versa (see Section 5 for a description of our graph
construction method). Hence, when starting at a
document node, all nodes in its neighborhood are
word nodes and similarly, all those word nodes do
exclusively have edges to document nodes. Hence
any walk of two steps starting at some document,
will end up at another document via a word (node)
they both contain. This simplifies the implementa-
tion for our specific word–document graph, but one
can easily imagine generalizing the method to situ-
ations where taking K hops on the graph does not
guarantee ending up at a node of the same type as
the start node by restricting the sampling methods
to a subset of the desired nodes.

Adaptive pseudo-labeling Pseudo-labeling is
a well-explored technique for improving perfor-
mance in semi-supervised learning settings (Lee
et al., 2013), which, recently, has also been success-
fully applied to graphs (Zhou et al., 2019; Chen
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et al., 2021). We argue this technique can be partic-
ularly powerful for heterogeneous word–document
graphs based on three premises:

(1) Different topics/classes have a different dis-
tribution of words in their vocabulary. So it can
be assumed that there exist words per class that
occur more often in documents corresponding to
that respective class – i.e. these words are more
distinctive for that given class, which in the word–
document graph translates to that word node having
relatively more edges to documents of the class the
respective word is distinctive for.

(2) Document nodes are always at least two hops
away from each other in the graph, meaning that
only the input features of one document can in-
fluence the final feature representation of another
document via message passing on the graph. This
is assuming a two-layer GNN.

(3) The most effective way of encoding label
information in the input document embedding is
by directly optimizing for that respective class on
the node, as opposed to relying on indirect opti-
mization via backpropagating through the message-
passing computational graph.
Instead of applying adaptive pseudo-labeling to the
whole graph, we propose to only apply it to a subset
of unlabeled document nodes, Ud, that are not part
of our train or test split. By doing this, we can di-
rectly optimize an unlabeled document embedding
to be a good predictor for a certain class (premise
(3)) . This class-tailored document embedding can
now be propagated over the graph to be used in
the final feature representation of other document
nodes via message passing on the graph (premise
(2)). Finally, we can assume that there exist word
nodes in the graph which are characteristic of a
topic/class and via which the class-specific features
can be propagated to other documents without los-
ing information due to over-smoothing (premise
(1)).
We implement adaptive pseudo-labeling as de-
scribed by Zhou et al. (2019), which adds an extra
component to the total loss, the pseudo-label loss
Lpse:

Lpse =
∑

vi∈U ′

1

Ni
CE(Ỹi, Fi) (7)

With CE representing the cross-entropy loss, Ỹi
the pseudo-label and Fi ∈ RC the predicted prob-
ability per class. The pseudo-label is generated
by taking the argmax over Fi, which results in the

pseudo-label loss optimizing for high-confidence
predictions on the most certain class. The set of
unlabeled samples U ′ used for this loss is defined
as:

U
′
= {ui : ui ∈ Ud|Fi,j ≤ β}, j = argmax

j′
Fi,j′}

(8)

Some minimum confidence threshold β is used to
filter out predictions, and the pseudo-loss per node
is weighted by dividing it by Ni, the amount of
nodes which have the same predicted label as node
ui and are part of U ′.

6 Experimental setting

Throughout our experiments, TextGCN is used as
a directly comparable baseline. Since our main
goal is to develop a method that performs well in
low-resource scenarios for many languages with-
out the need of any knowledge of that language –
apart from the ability to identify word boundaries
in a sentence – our setup deviates from the origi-
nal TextGCN work. Unlike the original work, we
do not perform a grid-search of hyperparameter
settings per experiment/language, but rather keep
them fixed – which make our results not directly
comparable to the original. Similarly to the original
TextGCN work, we also consider the R8 and R52
datasets for an analysis of our approach on English
(see Section 4). Additionally, we also provide re-
sults for two PLMs trained with the same amount
of data. These results are not directly comparable,
since the PLMs are trained in an inductive setting,
but are included to provide better insight into the
positioning of our method in the context of broader
literature.

PLM baselines We introduce both multilingual
BERT (mBERT) (Devlin et al., 2018) and XLM-R
(Conneau et al., 2019) as strong baselines based
on the Transformer (Vaswani et al., 2017) architec-
ture. These baselines are fine-tuned in the same
data settings, with their architecture settings kept as
their defaults as defined in the HuggingFace Trans-
formers library (Wolf et al., 2020). For training, a
learning rate of 5e-5 and a batch-size of 20 is used.

Learning settings We investigate the effective-
ness of our approach when learning from 1%, 2%,
5%, 10% and 90% of the available training samples.
The 1% setting is only considered for the R8 and
R52 datasets, due to the already relatively small
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% train Method MLDoc Reuters

de en es fr it ja ru zh ∆ R8 R52 ∆

1%

mBERT - - - - - - - - - 87.4 73.4 78.6
XLM-R - - - - - - - - - 87.6 75.0 81.3
TextGCN - - - - - - - - - 82.8 65.7 74.3
+ 2-NR - - - - - - - - - 83.9 68.5 76.2
+ Pseudo-label - - - - - - - - - 79.1 65.2 72.2
FewShotTextGCN - - - - - - - - - 88.6 69.2 78.9

2%

mBERT 80.2 68.0 57.1 53.8 53.2 56.6 64.0 27.1 57.5 83.8 78.3 81.1
XLM-R 79.4 79.0 71.1 73.5 62.4 57.5 70.0 40.5 66.7 85.8 81.8 83.8
TextGCN 60.7 68.2 71.4 35.6 59.3 63.8 55.2 73.4 61.0 84.2 59.2 71.7
+ 2-NR 85.9 75.3 75.7 81.9 66.9 70.7 65.7 79.1 75.2 85.3 63.2 74.3
+ Pseudo-label 83.7 76.2 61.0 70.0 47.1 62.6 58.1 74.8 66.9 80.1 64.5 72.3
FewShotTextGCN 86.9 84.0 75.7 83.5 66.9 78.9 67.5 80.3 78.0 87.2 65.2 76.2

5%

mBERT 89.1 85.0 74.0 84.3 67.7 77.1 73.5 80.9 79.0 94.7 86.0 90.4
XLM-R 91.2 84.6 76.3 87.7 75.8 81.2 75.2 85.0 82.1 95.7 88.8 92.3
TextGCN 88.9 73.8 77.2 84.9 70.5 79.6 59.0 80.4 76.8 87.2 67.3 77.2
+ 2-NR 89.6 85.5 79.4 86.4 75.0 81.0 67.3 81.6 80.1 90.4 69.0 79.7
+ Pseudo-label 88.9 87.2 77.0 83.8 72.1 79.8 60.6 80.6 78.0 87.4 64.4 75.9
FewShotTextGCN 91.5 88.6 81.2 88.7 72.6 81.9 70.0 82.0 82.1 90.9 69.2 80.1

10%

mBERT 90.3 87.5 86.3 87.3 77.1 81.2 82.5 82.8 84.4 95.7 85.1 90.4
XLM-R 91.0 88.1 88.8 87.2 75.8 81.9 83.0 88.9 85.6 96.9 92.4 94.7
TextGCN 90.7 85.5 87.2 86.4 72.5 81.1 72.7 85.1 82.7 89.1 73.6 81.4
+ 2-NR 89.9 86.8 87.8 87.1 77.3 81.1 68.1 84.7 82.9 90.9 76.0 83.5
+ Pseudo-label 91.5 87.2 87.2 87.8 72.6 82.5 74.4 85.3 83.6 90.2 75.6 82.9
FewShotTextGCN 91.8 90.0 87.9 88.7 74.4 82.5 74.4 85.3 84.4 92.5 80.2 86.4

90%

mBERT 91.4 93.2 93.3 94.2 86.6 87.8 86.7 90.9 90.5 95.8 94.5 95.2
XLM-R 95.2 94.2 95.9 93.4 87.1 86.9 88.7 91.3 91.4 97.5 95.4 96.5
TextGCN 94.5 91.9 94.3 93.6 85.8 89.1 82.8 89.5 90.2 94.1 82.0 88.1
+ 2-NR 94.0 91.1 93.9 92.1 84.7 86.8 84.5 88.6 89.5 95.3 83.1 89.2
+ Pseudo-label 94.3 92.1 94.3 92.3 85.6 88.5 82.9 89.4 89.9 94.1 82.3 88.2
FewShotTextGCN 94.2 91.8 94.5 92.1 84.3 87.7 84.5 89.3 89.8 95.4 85.1 90.3

Table 1: Average accuracy across 5 different seeds on the test set using a different number of training samples
available. ∆ corresponds to the average accuracy across all datasets/languages. Methods starting with “+” correspond
to TextGCN extended with one of our corresponding proposed methods at a time. FewShotTextGCN refers to the
combination of all our proposed improvements together (i.e., including both 2-NR and adaptive pseudo-labeling) as
well as our adjusted graph construction method. Highest scoring method per benchmark is marked in bold.

training set size in the MLDoc datasets. For all
settings except the 90% one, the size of the val-
idation set is equal to the size of the training set
(see Appendix D for a background experiment on
the influence of the division of a limited set of la-
beled samples over the train and validation sets).
The remaining documents are then added to the
word–document graph as unlabeled nodes. For the
high-resource setting (90%), the remaining 10%
of the training set is used for validation (i.e., no
unlabeled nodes). We train all GNN models from
scratch for each language and do not rely on any
form of transfer- or multi-task learning.

Training setup and hyperparameters We use
the Ranger optimizer (Liu et al., 2019; Zhang et al.,
2019; Yong et al., 2020), an adapted version of
Adam (Kingma and Ba, 2014). All experiments
run for 1000 epochs and the model with the lowest
validation loss is used at test time. A learning rate
of 0.01 and dropout of 0.5 are used throughout all
experiments except when mentioned otherwise. All
hidden dimensions are set to 64 and in line with
the original TextGCN work, we use two layers of
GCN followed by one linear layer for classification.
The log schedule for training signal annealing as
per Appendix A.2 in Xie et al. (2020) is used when-
ever 2-NR is applied. For pseudo-labeling, we set

1192



% train Edge types MLDoc

de en es fr it ja ru zh ∆

2%
Vd − Vw+Vw − Vw 60.7 68.2 71.3 35.6 59.3 63.8 55.2 73.4 60.9
Vd − Vw 74.6 71.7 71.3 76.7 59.9 65.1 59.9 75.4 69.3

5%
Vd − Vw+Vw − Vw 88.4 73.7 77.2 84.9 70.5 79.6 59.0 80.4 76.7
Vd − Vw 88.5 80.7 78.1 82.7 71.5 78.4 60.2 80.0 77.5

10%
Vd − Vw+Vw − Vw 90.7 85.5 87.2 86.4 72.4 81.0 72.7 83.7 82.5
Vd − Vw 90.3 86.8 87.0 86.4 75.8 82.3 74.7 85.1 83.6

90%
Vd − Vw+Vw − Vw 94.5 91.9 94.2 93.4 85.8 89.1 82.8 89.5 90.2
Vd − Vw 94.1 91.9 94.4 93.0 86.6 88.7 85.0 89.4 90.4

#edges Vd − Vw+Vw − Vw 7.4M 11M 5.5M 8.4M 5.2M 4.9M 10.2M 5.2M 7.2M
Vd − Vw 1M 1.3M 900K 1.1M 758K 1.1M 1.1M 889K 1M

Table 2: Average accuracy of 5 different seeds on the test set, with a different number of training samples available.
Here, the original TextGCN model is used and only the graph-construction method is varied. ∆ corresponds to the
average accuracy across seeds. Highest scoring method per language is marked in bold.

the confidence threshold β = 0.75 following the
original paper.

7 Results

7.1 Comparison to TextGCN

MLDoc Table 1 shows the results of our exper-
iments. In the 2% training data setting, FewShot-
TextGCN outperforms TextGCN by 17% points
on average (∆) on the eight languages of the ML-
Doc dataset, showing that we can effectively utilize
the properties of heterogeneous word–document
graphs to improve learning in low-resource set-
tings in many languages. For MLDoc, which is a
dataset with uniform class priors, we see the dif-
ference in performance between original TextGCN
and TextGCN combined with 2-NR grows larger
as the amount of training data decreases, demon-
strating that our proposed 2-NR regularizer helps to
combat overfitting. Comparing the ‘+2-NR’ results
to those of FewShotTextGCN (that uses both 2-NR
and adaptive pseudo-labeling), it can be seen that,
overall, our regularizer is the primary contributor
in outperforming the TextGCN baseline. Our ver-
sion of adaptive pseudo-labeling also outperforms
the TextGCN baseline, with the largest margins in
the low-resource settings, indicating the effective-
ness of utilizing unlabeled document nodes in the
word–document graph.
In the high-resource (90%) setting of MLDoc, Few-
ShotTextGCN performs on a par with the original
TextGCN. This can be explained by the fact that 2-
NR is a regularization method and the training data

set is relatively large in the high-resource setting,
which makes that adding regularization to the learn-
ing process can be redundant. Furthermore, our
version of adaptive pseudo-labeling works based
on a set of unlabeled documents not belonging to
either the train or the test set, which is a relatively
small set of documents in this setting, namely only
10% of the documents of the total training set.

Reuters Interestingly, FewShotTextGCN outper-
forms TextGCN consistently in all data settings
for the English Reuters datasets, which are highly
skewed in their class distribution. This can be seen
as supporting evidence for the hypothesis that 2-
NR forces the learned feature representations of
documents to contain information of all words it
contains, which helps to learn distinguishing fea-
tures for documents of minority classes.

7.2 Comparison to PLMs

MLDoc Although FewShotTextGCN only uses
≈ 1% of the parameters, has no pretrained knowl-
edge of the considered languages, has no notion of
word order in the documents and does not make
use of a shared subword vocabulary, it performs on
par with large PLMs across all settings for MLDoc.
In the lowest resource setting, FewShotTextGCN
outperforms all considered PLMs, whereas both
PLMs start performing on par as the amount of
available data increases. We hypothesize that the
somewhat larger difference in performance for the
Russian language is attributable to the fact that
Russian is a highly inflective language, resulting
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in many unique words to learn a representation
for. The PLMs have the advantage of using a sub-
word vocabulary which serves as a remedy for the
formerly described sparsity challenge.

Reuters For R8 holds that similarly to the re-
sults on MLDoc, FewShotTextGCN outperforms
the PLM baselines in the two lowest-resource set-
tings, whereas the PLMs perform better when more
training data is available. The results on R52 are
more notable, as the gap in performance between
FewShotTextGCN and the PLMs grows relatively
larger with more available training data. We hy-
pothesize this could be due to the fact for FewShot-
TextGCN we use only a 64 dimensional hidden size
to encode the 52 classes of the dataset, whereas the
PLMs use a hidden size of 768.

8 Ablation experiments

The original TextGCN implementation proposes to
use edges between words based on their respective
PMI. Since PMI is calculated using a window size
of 20, many extra edges are introduced. For the
MLDoc dataset, omitting word–word edges results
in a graph that has, on average, only 15% of the
amount of edges compared to the original graph
(see Table 2 for statistics on the number of edges
per graph construction method). To analyse the ef-
fect of word–word edges, we evaluate the original
TextGCN method across the different graph con-
struction methods in the same data availability set-
tings as our main set of experiments (Table 2). The
results provide empirical evidence that, on average,
word–word edges are redundant in topic classifi-
cation problems. The average performance using
graphs without word–word edges is always higher;
however, performance difference between the two
graph construction methods does get smaller as
more data is added. In Appendix E we present a
visual walk-through of how words can still influ-
ence each other’s feature representations in a graph
without word–word edges.

9 Discussion

K-NR for K > 2 Here, we argue by example
that K-NR can also be applied to other heteroge-
neous graphs with two or more different kinds of
nodes. Consider a network with three kinds of
nodes: venue nodes, paper nodes and author nodes
(Shi et al., 2016). Venue nodes have a connection to
a paper node if the paper is published at that venue

and authors have a connection to the paper node
when they are a contributor to that respective paper.
No other edges exist on this graph and the classifi-
cation task concerns the author nodes. In this case,
we could apply K-NR on the author nodes based
on the intuition that authors that publish a paper
at the same venue are more similar to each other
than authors that do not publish at the same venue.
In order to get from the anchor author node to a
positive author node, one has to traverse the graph
by hopping to a neighboring paper, venue, paper
and finally author node in that respective order –
resulting in K = 4. On this same graph, K-NR can
be applied for paper nodes as well for K = 2 and
traversing via the venue node. In general, consider-
ing a graph withM different node types, K-NR can
be applied if in terms of node types a symmetrical
path with an odd number of nodes can be traversed.
In this case, K = 2(M − 1).

10 Conclusion

We introduced K-hop Neighborhood Regulariza-
tion (K-NR), a contrastive learning method for het-
erogeneous graphs, and showed its implementa-
tion for word–document graphs (2-NR) is highly
effective in improving learning from scratch in
low-resource settings for a range of languages on
topic classification tasks. We also showed that we
can exploit properties of word–document graphs
for improved learning in few-shot settings. We
demonstrated that by simplifying the graph con-
struction method via omitting word–word edges
we can improve performance while reducing mem-
ory requirements in terms of total number of edges.
Additionally, we showed how pseudo-labeling can
be successfully applied to word–document graphs.
All approaches combined together form part of
our new proposed method, FewShotTextGCN, an
improvement over TextGCN for few-shot graph
learning. FewShotTextGCN performs on par with
large PLMs across the considered benchmarks us-
ing only a fraction of the parameters and no pre-
training whatsoever, showing that GNNs are an
attractive alternative for these Transformer-based
models. Finally, using this method, we showed
that transductive document classification can be
performed successfully on a wide range of typo-
logically diverse languages without any language
model pretraining. In future work, we plan to ex-
plore the effectiveness of 2-NR on a large range of
graphs, such as social networks, citation networks
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and product–user networks as well as adaptations
of K-NR for K > 2.

11 Limitations

Our work focused on a subset of the text-
classification field, namely topic classification. In
order to generalize our contributions to other sub-
sets such as sentiment classification, our method
might benefit from incorporating word order (John-
son and Zhang, 2014). Secondly, adding 2-NR
to the training process does slow down the con-
vergence rate of training. Exemplified: regular
TextGCN would often reach its lowest validation
loss in the range of 50 to 200 update steps, whereas
TextGCN + 2-NR would often reach its lowest val-
idation loss in the range of 700 to 900 update steps.
We do not consider this a major limitation as all
experiments can still be performed on a single GPU
with 8Gb of RAM.
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A 2-NR intuition and visualization

In Figure 1, we present a visualization of the pro-
cess behind 2-NR. Intuitively, 2-NR forces the
model to incorporate information of all words con-
tained in it such that documents with shared neigh-
bors (i.e., overlap in vocabulary) are closer to each
other in semantic space than documents without
shared neighbors in feature space, resulting in learn-
ing better feature representations of documents.

B Dataset statistics

Table 3 presents an overview of data statistics.

C Visualization of document embeddings

Figure 2 shows an example of the difference
in class separability between TextGCN and our
method, FewShotTextGCN. It can be easily seen
that using FewShotTextGCN there is less overlap
between regions in which instances of the respec-
tive classes live, which is in line with the observa-
tions in Table 1 where FewShotTextGCN outper-
forms TextGCN by 26% points absolute accuracy.

D Effective use of data on a limited
budget: training vs validation

Figure 3 shows the average accuracy and standard
deviation of 10 seeds when learning from a total of
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Figure 1: 2-hop Neighborhood Regularization visualized for a simple graph. On the left, the graph is defined as
a set of nodes X and an adjacency matrix A. The right figure depicts the transformed features H of each document
Di. Documents D1 and D2 have word W1 as shared neighbor and hence their distance in feature space (depicted
by the dotted line with d(D1, D2)) gets smaller, whereas the feature representations of D1 and D3 get pushed
away from each other, resulting in a larger distance in the respective space (d(D1, D3)). Word nodes are omitted in
feature space (right-hand side) for demonstration purposes.

Table 3: Summary statistics of datasets.

Dataset # Docs # Training # Test # Words # Nodes # Classes Average Length
MLDoc-de 5,000 1,000 4,000 14,358 19,358 4 144
MLDoc-en 5,000 1,000 4,000 17,665 22,665 4 215.6
MLDoc-es 5,000 1,000 4,000 11,662 16,662 4 143.2
MLDoc-fr 5,000 1,000 4,000 15,231 20,231 4 175.8
MLDoc-it 5,000 1,000 4,000 10,075 15,075 4 103.8
MLDoc-ja 5,000 1,000 4,000 8,423 13,423 4 271
MLDoc-ru 5,000 1,000 4,000 19,786 24,786 4 167.3
MLDoc-zn 5,000 1,000 4,000 9,270 14,270 4 163.2

R8 7,674 5,485 2,189 7822 15,496 8 98.9
R52 9,100 6,532 2,568 9027 17,992 52 106.3

100 labeled samples, divided over the train and vali-
dation set for Japanese and German, using the orig-
inal TextGCN model. Other languages are omitted
from the plot to prevent visual cluttering, but follow
a similar trend: when using too little data for train-
ing, the model fails to learn to generalize well – as
can be seen by the relatively low average accuracy
on the test set. For German, it is even the case that
learning does not converge at all when training on
10 samples, as we observe a mean accuracy of 25%
when the number of training samples is 10. The
balance between achieving the highest accuracy
with the smallest standard deviation seems to be
around the 50/50 split point. Increasing the training
data at the cost of fewer validation data after this
point can, in some cases, such as for Japanese at the
80/20 point, result in slightly higher accuracy, but
the standard deviation across different seeds also in-

creases, confirming the importance of a good-sized
validation set during learning.

E On the usefulness of word–word edges
in word–document graphs: illustration

We argue that the added benefit of word–word
edges is limited based on the premises that: 1)
words occurring in the same window might not in-
fluence each other’s meaning at all, especially since
sentence boundaries are not taken into account;
2) only global information of word co-occurrence
(over the whole corpus) is considered, meaning
that word A might be connected to word B, but
they might not co-occur in document X – yet, they
still influence each other’s feature representation as
much as when they would have co-occurred in that
document; 3) over the course of training, words
co-occurring in a document can still influence each
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(a) Original TextGCN (b) FewShotTextGCN

Figure 2: Visualization of the test set document embeddings in the final feature space of TextGCN and FewShot-
TextGCN on MLDoc-de using the 2% training data setting. UMAP (McInnes et al., 2018) is used for dimensionality
reduction

Figure 3: Average test accuracy and standard deviation for 10 seeds with different amounts of data used for training.
Given a total of 100 labeled samples, we vary how many are used for training and validation, adjusted in steps of 10.
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other’s representation, under the assumption that at
least a two-layer GNN is used. We illustrate this
by visualizing the initial node embeddings over the
course of a hypothetical training schedule, starting
at a random initialization in Figure 4a and going
up until some training step i in Figure 4, where the
model has improved its performance in the classifi-
cation task.
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(a) Words influencing each other’s feature represen-
tation without word–word edges over the course of
training: initialization. Classes are represented in differ-
ent node outline color (i.e., two document classes green,
blue) and words with an orange node outline. The actual
color of nodes represents the semantic value encoded in
the initial embedding. We simplify the graph by omitting
the initial features of the document nodes D1, D2 and
D3 and assume they will be learned based on the features
of the words occurring in them. Since both W1 and W3
occur in D1 and D2, they can intuitively not be distin-
guishing features for either the green or the blue class.

(b) Words influencing each other’s feature represen-
tation without word–word edges over the course of
training: during the course of training. Classes are
represented in different node outline color (i.e., two docu-
ment classes green, blue) and words with an orange node
outline. The actual color of nodes represents the semantic
value encoded in the initial embedding. After i steps of
training, D3 will have incorporated some of the informa-
tion of W2 in its own embedding (depicted by the yellow
stripes in the node) in order for it to be a good predictor
of the green class. Similarly, D1 will have incorporated
features of W3 in its own embedding (depicted by the
purple stripes in the node), as it is the most distinguishing
word for the blue class. Finally, if we consider two-layer
GNNs, the feature representation at layer 1 of W1, de-
noted by H1

W1, is a function of its own embedding and
the aggregated messages from H0

D1 and H0
D2 and H0

D3.
Similarly, the final feature representation of D2, H2

D2, is a
function of H1

D1 and aggregated messages from H1
W1 and

H1
W2. In order to perform the right classification, H2

D2,
the information corresponding to the green class (yellow
filling of node) should be passed on from H0

D3, which is
the document embedding of D3, to H1

W1, and then finally
to H2

D2. Due to the nature of GCNs, no distinction can
be made between what message is sent from what node
– as per Equation 1, xi = H0

W1, it can be easily seen
that optimizing H0

W1 to be a good predictor for the green
class (i.e., adjusting its feature representation to the yellow
color), helps in classifying D2 correctly.

Figure 4: A visualization with guiding explanation to provide an intuition behind how features of words might still
influence each other with having direct edges between them
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