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Abstract

Treebanks annotated with Universal Depen-
dencies (UD) are currently available for over
100 languages and are widely utilized by the
community. However, their inherent quality
characteristics are hard to measure and are
only partially reflected in parser evaluations
via accuracy metrics like LAS. In this study,
we analyze a large subset of the UD tree-
banks using three recently proposed accuracy-
free dataset analysis methods: dataset cartogra-
phy, V-information, and minimum description
length. Each method provides insights about
UD treebanks that would remain undetected
if only LAS was considered. Specifically, we
identify a number of treebanks that, despite
yielding high LAS, contain very little informa-
tion that is usable by a parser to surpass what
can be achieved by simple heuristics. Further-
more, we make note of several treebanks that
score consistently low across numerous metrics,
indicating a high degree of noise or annotation
inconsistency present therein.

1 Introduction

Datasets have long played a crucial role in dictat-
ing the pace of progress in NLP. Their function,
for most tasks, is largely two-fold: 1) to collect
data points (and their corresponding gold-standard
labels) on which statistical models can be trained,
and 2) to serve as benchmarks though which var-
ious models can be evaluated and compared. In
recent years, much research has been devoted to-
wards developing new datasets, tasks, and bench-
marks for NLP — so as to articulate the distin-
guishing aspects of a bevy of new neural models.
Syntactic parsing has remained an active area of re-
search in this regard, and Universal Dependencies
(UD) (Nivre et al., 2016, 2020; de Marneffe et al.,
2021) has emerged as a crucial initiative within
NLP, offering a set of cross-lingually consistent
annotation principles that have since been adapted
to over 100 languages.

Notably, the CoNLL shared tasks of 2017 and
2018 (Zeman et al., 2017, 2018) featured UD at the
forefront, inviting researchers to submit systems
that could not only parse, but process the entirety of
UD across its numerous annotation layers. Beyond
parsing, UD has also been utilized for a variety of
other ends, including cross-lingual transfer (Am-
mar et al., 2016; Pires et al., 2019; Wu and Dredze,
2020; Lauscher et al., 2020), domain adaptation (Li
et al., 2019, 2020; Stymne, 2020), and linguistic
typology (Futrell et al., 2015; Hahn et al., 2020;
Levshina, 2019).

Though UD and other initiatives have aided in
driving recent advances in NLP, overall progress
has typically been measured via aggregate accuracy
metrics, which provide little more than a bird’s
eye view into the data. In the era of deep learn-
ing, where popular models are notoriously opaque,
it has thus proven vital to study the contents of
datasets and identify aspects that may misrepre-
sent model performance. In this vein, numerous
studies have shown that the crowd-funded nature
of some popular NLP datasets makes them prone
to annotation artefacts that are readily exploitable
by neural models as heuristics (Kaushik and Lip-
ton, 2018; Gururangan et al., 2018; Poliak et al.,
2018; McCoy et al., 2019). With such insights
in mind, researchers have shifted their focus to-
wards the datasets instead of the models, propos-
ing general methods for exploring the former so
as to better understand the performance of the lat-
ter. Such approaches have drawn from, e.g., in-
formation theory (Perez et al., 2021; Ethayarajh
et al., 2022), item response theory (Rodriguez et al.,
2021; Vania et al., 2021), and model training dy-
namics (Swayamdipta et al., 2020). This work,
however, has predominately focused on classifi-
cation tasks and has proven difficult to extend to
other classes of problems, such as the structured
prediction tasks of UD.

In this paper, we perform an analysis of (a large

1076



subset of) UD v2.9 through the perspective of a pop-
ular parsing architecture — namely that of Dozat
and Manning (2016). As opposed to much previous
work, which prioritizes metrics like LAS in order
to build accurate parsers, we aim instead to bet-
ter understand the underlying data, as well as how
our parser interfaces with it. To do so, we extend
recently proposed dataset analysis methods based
on model training dynamics (Swayamdipta et al.,
2020), V-information (Xu et al., 2020; Ethayarajh
et al., 2022), and minimum description length
(Blier and Ollivier, 2018; Voita and Titov, 2020;
Perez et al., 2021) to the dependency parsing sce-
nario. In working with each method, we formalize
the following set of research questions:

1. Which treebanks appear hard (or easy) to
parse, given a model’s confidence throughout
training, and variability therein?

2. Which treebanks contain the most (or least)
information that is actually usable by a parser,
with respect to a naive baseline?

3. Which treebanks are the most (or least) sam-
ple efficient, i.e. most easily fit by a parser,
irrespective of training set size?

2 Universal Dependencies

Universal Dependencies (UD) (Nivre et al., 2016,
2020; de Marneffe et al., 2021) is an initiative
focused on the development of dependency tree-
banks. UD is founded upon a lexicalist perspec-
tive on syntax, which posits that (syntactic) rela-
tions are formed directly between words. Although
this approach does not take morphological seg-
mentation explicitly into account, UD nonetheless
provides such information in the form of lemmas,
part-of-speech tags, and morphological features for
each word. These design decisions have inspired
the widespread adoption of UD as an annotation
scheme, which has grown from 10 treebanks across
10 languages in v1.0 to 243 treebanks across 138
languages in v2.11.

2.1 Dependency Parsing

Though UD contains multiple layers, our focus
in this paper is on its syntactic layer — the de-
pendency tree annotation upon which parsers are
trained and evaluated. As a task, dependency
parsing amounts to mapping a sentence x =
{x1, x2, ..., xn} to its respective syntactic struc-
ture y. This is typically a tree (a rooted, directed,
acyclic graph) over x, where each word xi ∈ x

(called a dependent) forms an edge with another
word xj ∈ x that it syntactically modifies (its head).
Though such edges (xi, xj) are sometimes consid-
ered in isolation, most often they are accompanied
by a label describing the relation between xi and
xj . UD comprises of a base set of 37 such labels,
in addition to treebank-specific subtypes that can
be introduced by annotators.

Unlike classification or sequence labeling tasks,
which entail predicting y given a fixed label set K,
parsing is considered a structured prediction task,
where the output space is constrained by the sen-
tence length n + 1 (with a special root symbol
included). In data-driven parsing, a parser is typ-
ically a function f whose parameters θ are fit on
some gold-annotated training set Xtrain, e.g. a UD
treebank. A trained parser’s predictions ŷ = fθ(x)
can then be evaluated on a held out test set Xtest

by means of various metrics. Commonly, these
are labeled attachment score (LAS), which is the
percentage of all words in Xtest that are assigned
the correct head and label by f , and the unlabeled
attachment scores (UAS), which is the percentage
of words that are assigned the correct head, irre-
spective of label. We will focus primarily on LAS
in this study, as it assesses both head attachment
and labeling.

2.2 UD Parsing

In conjunction with UD’s popularity and transition
to v2.0, the CoNLL 2017 and 2018 Shared Tasks on
Multilingual Parsing from Raw Text to Universal
Dependencies (Zeman et al., 2017, 2018) sought to
consolidate trends in parsing research with respect
to a wealth of new data, algorithms, and models.
Overall, the findings of both shared tasks offered
many insights for the future of dependency parsing.
Primarily, they helped establish Dozat and Man-
ning (2016)’s parser as the most popular parsing
architecture of the neural NLP era. Though many
new architectures have been proposed since, the bi-
affine attention decoder continues to feature promi-
nently in parsing research, where the focus has
shifted to the matter of feature representation and
fine-tuning, rather than decoding (see, e.g. Kon-
dratyuk and Straka (2019); Üstün et al. (2020)).

3 Beyond Accuracy

In NLP, system performance is typically measured
via accuracy, which has the advantage of being
intuitive and straightforward to calculate. More-
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over, it is often useful in model selection, as well
in setting the state-of-the-art for a given dataset or
task. Beyond these qualities, however, accuracy
leaves much to be desired when investigating mod-
els vis-a-vis datasets. For one, it is often reported
with respect to a single checkpoint from a model’s
training regime, which typically consists of numer-
ous epochs and parameter updates. In honing in
on one particular checkpoint (usually the best with
respect to validation loss or accuracy), one can-
not readily assess whether the model was easily
fit on the data, or if training was stopped prema-
turely. Furthermore, in choosing the argmax over
the output distribution, one inevitably loses infor-
mation about it: Was the model confident in making
its prediction? Or was the distribution highly en-
tropic? Also relevant is the train/test distinction: in
evaluating on the latter, one can gauge a model’s
ability to generalize, but generally cannot assess
the goodness-of-fit on the former, nor its sample
efficiency. Likewise, accuracy cannot, in principle,
adequately assess the quality of the training data:
can the model learn from all instances therein? Or
does the data contain a substantial amount of noise
due to, e.g. annotation inconsistencies?

With regard to dependency parsing, accuracy-
based metrics like LAS carry a number of addi-
tional drawbacks. For example, if working with an
arc-factored graph-based dependency parser, one
must score all possible n incoming edges for a de-
pendent xi ∈ x. If n = 1, then x must necessarily
be attached to the dummy node and assigned the
root label. For a treebank consisting of many
such sentences (e.g. Russian Taiga), this will lead
to artificially inflated accuracies for that particular
relation. Another concern is the potential prolifera-
tion of functional relations that may arise in some
treebanks (e.g. Japanese GSD), where parsers of-
ten yield disproportionately high accuracies (Nivre
and Fang, 2017). To transcend the limitations of
accuracy-based measures in dependency parsing,
we consider three recently proposed dataset analy-
sis methods as a means of exploring UD treebanks:
dataset cartography (Swayamdipta et al., 2020),
V-information (Xu et al., 2020), and minimum de-
scription length (Blier and Ollivier, 2018).

3.1 Dataset Cartography

Dataset cartography (Swayamdipta et al., 2020) is
a method for analyzing training datasets via the
lens of model training dynamics. Put briefly, DC

assumes the use of a model f trained to minimize
loss on a dataset D of size N . Crucially, for a
given instance Di = (x, y∗), DC posits that f de-
fines a probability distribution over labels y, such
that the probability of the true label p(y∗|x) can
be tracked throughout training. Given a gradient
descent-based training regime of E epochs, DC de-
fines the notion of confidence (CONF) as follows:

CONFi =
1

E

E∑

e=1

pθe(y
∗|x)

where θe are f ’s parameters following the epoch e
update. Intuitively, high CONF values (e.g. ≈ 0.95)
for a given training instance Di indicate that f gen-
erally assigns high probability to y∗ throughout
training — i.e. that Di is “easy-to-learn”. Con-
versely, low CONF values (e.g. ≈ 0.05) indicate
that f generally “fails” to learn from those particu-
lar instances.

As a complement to CONF, Swayamdipta et al.
(2020) also introduce the variability (VAR) metric,
which summarizes the tendency of f to waver in its
assignment of p(y∗|x) throughout training. VAR is
defined as follows:

VARi =

√∑E
e=1(pθe(y

∗|x)− CONFi)2

E

In essence, while CONF is the mean of p(y∗|x)
across E, VAR is its standard deviation. Using
both of these metrics, Swayamdipta et al. (2020)
are able to construct data maps, which visualize
D through the perspective of f . With VAR and
CONF plotted on the x and y axes, respectively,
data maps help in identifying select regions of D
that are easy or difficult for f to learn — or are
otherwise ambiguous.

3.2 V-Information

An alternative approach for quantifying dataset
“difficulty” is proposed by Ethayarajh et al. (2022),
who leverage the concept of V-Information. Intro-
duced by Xu et al. (2020), V-information (denoted
as IV(X → Y )) is a framework for estimating the
amount of information between random variables
X and Y (input and output, respectively) that is
usable by a model in family V — e.g., a sentiment
classifier or syntactic parser. Here, usability is
measured with respect to an encrypted form of the
input ∅, from which V must nonetheless attempt
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to predict Y — essentially a label-only baseline.
Predicting Y from X and ∅ amounts to measuring
V-entropy:

HV(Y ) = inf
f∈V

[− log f ′[∅](Y )]

and conditional V-entropy:

HV(Y |X) = inf
f∈V

[− log f [X](Y )]

where f ∈ V is a model that maximizes the log-
likelihood of the labels Y with the original input X
and f ′ is the same model trained on the encrypted
input ∅. Given these two quantities, IV(X → Y )
can be computed as follows:

IV(X → Y ) = HV(Y )−HV(Y |X)

In essence, V-information is the amount of informa-
tion between inputs and labels that can be estimated
by V beyond the label distribution itself. Given that
V-information is computed with respect to HV(Y ),
it is important to note that IV(X → Y ) ≥ 0. Also,
if X is independent of Y , then IV(X → Y ) = 0.

In addition to functioning as a summary statistic
alternative to accuracy, V-information can also be
generalized to the instance-case. To do so, Etha-
yarajh et al. (2022) propose measuring point-wise
difficulty, which they deem PVI and calculate as
follows:

PVI(x → y) = − log2 pf ′(y∗|∅)+ log2 pf (y
∗|x)

where fθ, f ′
θ ∈ V are models trained on normal and

encrypted data, respectively. Recall that, as before,
y∗ refers to the gold label and not the one with the
highest score. Unlike V-information, PVI can re-
turn negative values at the instance level (similarly
to pointwise mutual information (Shannon, 1948)),
which indicates that the model would fare better
choosing a class at random.

3.3 Minimum Description Length
Minimum description length (MDL) (Rissanen,
1978) is an information-theoretic concept that con-
cerns the transmission of data through a specified
channel — i.e., a probabilistic model. Ideally, a
model that is fit well on some data will learn to
transmit — or compress — it using as few bits as
possible (Blier and Ollivier, 2018). Naively, in or-
der to evaluate how well a model, e.g., a neural
network, might learn to compress its training data,
one might refer to the model’s cross-entropy loss

after training for a full cycle of E epochs, which
amounts to the Shannon-Humman code (Shannon,
1948). However, a model endowed with enough
parameters may learn to fit the data without nec-
essarily compressing it — see, e.g., Zhang et al.
(2021), who show that training loss can still be
minimized on data that contains no inherent struc-
ture (shuffled labels). MDL is thus designed to
express not only how well a model might learn to
compress some data, but also how efficiently the
model itself might be transmitted.

Blier and Ollivier (2018) outline various meth-
ods for compressing labels, with or without a
model. Among these, they describe online (or pre-
quential) coding (Rissanen, 1984; Dawid, 1984),
which transmits the labels and model without ex-
plicitly compressing the latters’s parameters. On-
line coding requires D to be partitioned into S
blocks where 1 = t0 < t1 · · · < tS = N . The
model of choice, f , is initialized with parameters
θ, learning algorithm A, etc. The first block, t0, is
first evaluated with a uniform prior1 and then used
to train fs (we omit the parameters θ for brevity).
This model is then evaluated on ts+1 and reset to
its initial state, where it is consequently trained on
ts+1, and so on. Formally, the online codelength
can be expressed as:

Lonline(y1:n|x1:n) =
S−1∑

s=1

ts+1∑

n=ts

− log2 pfs(yn|xn)

In contrast to the training loss above, which rep-
resents the data codelength if the model parameters
are known, Lonline (henceforth MDL) is an implicit
way of measuring the same without knowing the
model parameters. Effectively, MDL estimates f ’s
ability to generalize with respect to D: models that
learn efficiently from limited instances will yield
shorter codelengths.

4 Experimental Setup

In this section, we describe our data sampling pro-
cedure, the parsing model we employ, and our ex-
tension of the aforementioned analysis methods to
the context of (graph-based) dependency parsing.
More details about how each metric is calculated
can be found in Appendix A.

Data In order to compare the analysis obtained
with each of the dataset analysis methods, we re-
quire a representative sample of UD treebanks.

1More details on this can be found in Appendix A.
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Figure 1: Spearman’s ρ across all metrics of interest,
including training set size in tokens and sentences.

Since each method requires the training of a parser
on some subset of data (as well as a validation set
for estimating V-INFO), we consider every UD tree-
bank that contains train, validation, and test splits.
To ensure that a) there is sufficient data for training
our parsers and b) training is reasonably quick and
the models do not overfit, we limit our selection to
treebanks whose training sets contain at least 1,000
and at most 20,000 sentences. This gives us 88 tree-
banks across 58 languages,2 with Faroese FarPahC
having the smallest training partition (1,021 sen-
tences, 23,094 tokens) and Polish PDB the biggest
(17,773 sentences, 281,736 tokens). All resuls are
reported with respect to UD v2.9, which was the
most recent release at the time of experimentation.

Parsing Model We employ a neural parser based
on Dozat and Manning (2016)’s biaffine decoder,
as implemented in the SuPar3 Python library. For
input encoding, we make use of randomly initial-
ized word embeddings (d ∈ R100) and LSTM-
based character embeddings (d ∈ R100), as well
as a stacked three-layer LSTM feature extractor
(d ∈ R400). We choose to forego the use of POS
embeddings (contrary to Dozat et al. (2017)), so as
to maintain a direct correspondence between the
input string and its tree, which is vital for measur-
ing V-INFO. Furthermore, we do not initialize the
input embeddings with pretrained representations

2We filter out four treebanks due to issues with tokeniza-
tion, etc.

3https://github.com/yzhangcs/parser

in order to avoid confounds central to language cov-
erage and overlap (Wu and Dredze, 2020). Each
model is trained for 30 epochs with a batch size of
32 and optimized by Adam (Kingma and Ba, 2014)
with a starting learning rate of 2e−3.

Analysis Methods In order to be able to measure
CONF, VAR, and V-INFO, we need to be able to
extract the probabilities that parsers assign to gold
arcs and labels. Recall that Dozat and Manning
(2016)’s parser is effectively a multi-task model,
which jointly maximizes the log-likelihood of a
given word’s correct head, as well as the label for
the relation. The arc and label logits are calculated
via separate biaffine transformations, which yield
a Sarcs ∈ RN×N+1 matrix for the former and a
Slabels ∈ RN×N+1×R tensor for the latter, where
N is the sentence length and R is the size of the
relation set. To obtain a normalized probability dis-
tribution, we apply a softmax to the last dimension
of each Sarcs and Slabels, and index into the correct
cell for the gold head and label probabilities.

For MDL, we train parsers on increasingly larger
partitions of the training set, starting with a min-
imum of five sentences and doubling in size up
to a maximum of 360 — a total of 995 sentences.
We do so in reference to the smallest treebank in
our sample (Faroese FarPahC (1,021 sentences)),
so as to control for training set size, which varies
drastically across treebanks. In accordance with
the parser’s multi-task design, we compute two sep-
arate MDL measures with respect to the separate
arc and relation losses, averaged over five trials.

5 Results and Analysis

In this section, we analyze the results of our four
metrics: CONF, VAR, V-INFO, MDL. We focus
our analysis on arcs (probabilities and loss) and
refer to Appendix B for the full set of results. For
each metric, we begin with a brief discussion of its
pairwise correlation to all other metrics, which is
displayed for reference in Figure 1. We continue by
framing our analyses with respect to the Top 3 best
and worst performing treebanks for each metric.

5.1 Dataset Cartography
Figure 2 (left) depicts the mean CONF and VAR

scores calculated across arcs. We observe a strong
negative correlation between CONF and VAR. This
relationship also appears to be influenced by 1)
validation LAS and 2) training set size. This is
not surprising, as training set size is a common
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Figure 2: Left: mean CONF and VAR scores for Arcs across all languages; color represents Validation LAS and
point size represents the size of the train set in words. Right: Data maps for Arcs for best and worst CONF scoring
languages, with 2d densities super-imposed.

predictor of indicates that parser performance can,
to a large extent, be reliably estimated simply by
observing its confidence throughout training.

In zooming in on individual points, we observe
several treebanks in the upper left-hand corner
of the arc plot, which corresponds to high aver-
age CONF and low VAR. Indeed, many of these
points belong to the largest treebanks in the sample,
e.g., Hindi HDTB (0.92 CONF, 0.06 VAR, 281,057
tokens), French GSD (0.92, 0.06, 354,505), and
Catalan AnCora (0.89, 0.06, 429,141). However,
English Atis — a relatively small treebank with
48,655 tokens— tops out with the highest CONF

overall at 0.94 (VAR: 0.08). This is unsurprising
given the nature of the Atis dataset (Price, 1990),
which collects transcriptions of requests sent to au-
tomated flight information systems, e.g. list the
nonstop flights early tuesday morning from dallas
to atlanta. The imperative nature of such requests,
in combination with a small vocabulary, likely lim-
its the range of structures a parser might encounter
during training, thus making the treebank easy to fit.
Interestingly, the second and third-highest CONF

treebanks are both Japanese: GSDLUW (0.93, 0.07,
130,298) and GSD (0.93, 0.07, 168,333). This
is likewise expected, as GSD has been observed
by, e.g., Nivre and Fang (2017) to possess a large
amount of functional relations, which can be parsed
with near 100% accuracy.

On the other end of the spectrum, we observe
that Turkish IMST (0.58, 0.19, 37,784), Viet-
namese VTB (0.59, 0.24, 20,285), and Uyghur
UDT (0.67, 0.20, 19,262) yield the three lowest

CONF scores overall, as well as generally high
VAR. Interestingly, though Turkish IMST does not
appear within the top-25 highest VAR treebanks, it
nonetheless yields the lowest CONF, indicating the
the treebank might be particularly “hard” to parse
for reasons other than treebank size (Çöltekin et al.,
2017). Conversely, the fact that VTB and UDT
are low CONF and high VAR implies that a lack of
training data might play a role.

The data maps for the highest and lowest CONF

scoring treebanks (depicted in Figure 2 (right))
highlight important disparities between these two
groups. Most strikingly, we observe that the over-
whelming majority of arcs in the English, Hindi,
and Japanese treebanks are concentrated in the up-
per left high-CONF/low-VAR region, which is char-
acterized as easy-to-learn by Swayamdipta et al.
(2020). Indeed, this corresponds to 65.26, 68.02,
and 68.32% of all tokens in the English, Hindi, and
Japanese treebanks where CONF ≥ 0.95 and VAR

≤ 0.1. Conversely, only 3.04, 7.61, and 0.001%
of all arcs in the Turkish, Uyghur, and Vietnamese
treebanks are allocated to this region, indicating
that this group contains few arcs that might be con-
sidered “trivially easy”. Likewise, if we define the
hard-to-learn region as consisting of points where
CONF ≤ 0.25 and VAR ≤ 0.1, we find that 9.5,
5.45, and 5.06% of the latter group’s treebanks can
be characterized as such, respectively, compared to
0% for any treebank in the former group.

5.2 V-Information
Figure 3 depicts the PVI density for the Top 3 and
Bottom 3 treebanks in terms of V-INFO for arcs.
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Figure 3: Left: Arc-level PVI density for Top-3 and Bottom-3 V-INFO treebanks, across arcs (labels omitted for
space). Right: Block-wise codelength (in bits) for Top-3 and Bottom-3 MDL treebanks, across arcs.

We observe weaker correlations between V-INFO

and LAS when measured across all treebanks than
we did for CONF or VAR, indicating that V-INFO

measures different aspects of parser performance
than either of these metrics. Immediately, we can
see that the lowest-ranked treebanks — Telugu
MTG (0.44 average V-INFO), Turkish FrameNet
(0.71), and Turkish Tourism (1.05) — have densi-
ties that are skewed towards 0. In particular, Telugu
shows a sharp peak around this point, suggesting
that it contains many arcs and relations that can
be inferred by sentence sizes and label distribu-
tions. In contrast, the distributions representing
the highest V-INFO treebanks (Latin LLCT (3.74),
Romanian SiMoNERo (3.38), and Catalan AnCora
(3.24)) are much flatter and more evenly distributed
along the space of positive V-INFO values.

Turkish Tourism is composed entirely of hotel
and restaurant reviews. Due to the nature of this
genre, the treebank’s vocabulary is very limited
and many of its sentences are exceptionally short
— 4.77 tokens on average in the dev set. This lim-
its the space of possible trees that a parser may
encounter, potentially biasing it towards certain
structures. For example, the adverb "çok" (very)
appears in the first position of 128 sentences as
modifier of the 2nd word (typically an adjective,
e.g., "güzel" (good)). A similar effect can be ob-
served for Telugu MTG, which contains 5.05 words
per sentence in its development set, and for Turkish
FrameNet, which systematically places the root of
the sentence at the penultimate position (91.7% of
the time).

Given the observations above, V-INFO can be
imagined as a means of simultaneously penaliz-
ing regularity and stochasticity in data. We can
illustrate this further by returning to the CONF re-

sults. Recall that, for arcs, the highest scoring
treebank was English Atis. Interestingly, when
measuring its arc V-INFO, we find that its rank
drops to 77 out of 88 (1.97). Recall that the Atis
dataset contains a single genre of data with simple
sentences often beginning with what is, show me,
etc. In this case, simply guessing (1, 0) and (2, 1)
for the first two arcs yields accuracies of 0.52 and
0.41, respectively, which the label-only baseline
employed for calculating V-INFO would likewise
capture. By contrast, the lowest scoring CONF tree-
bank — Turkish IMST — retains a low rank of
83 (1.27). Recalling that 9.5% of IMST’s tokens
are considered hard-to-learn by the cartography
metrics, this treebank is likely to contain certain
annotation inconsistencies that cannot be system-
atically captured beyond guessing.4 Such cases,
too, are captured by V-INFO. With this in mind,
we might surmise that high V-INFO values might
represent treebanks with a varied distribution of
structures that are likewise consistently annotated,
thus requiring strong generalization of the parser.

In addition to arcs, we would also like to note
the interesting behavior of V-INFO for relations,
which is generally uncorrelated with any other met-
ric (other than arcs). This is due to the fact that the
parser must know the identity of both words when
deciding upon the relation that binds them. For
the vast majority of relations, this cannot be deter-
mined from position alone, even if head placement
is largely systematic (as in the aforementioned Atis
and Tourism treebanks). As a result, aggregate

4Indeed, this is corroborated by Türk et al. (2019), who
discuss the errors resulting from the automatic conversion of
IMST to the UD format, among which are 269 cases where
a subject bearing a genitive marker was misidentified as an
object in the accusative case.
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V-INFO for relations (3.89 ± 3.66) is noticeably
higher than for arcs (2.40 ± 1.98), albeit with more
spread. It is important to note, however, that there
are two primary exceptions to this in the form of
the root and punct relations, which can be de-
terministically assigned to the first (dummy node)
and last (end of sentence punctuations) positions.

5.3 MDL

In terms of MDL, we observe only moderate corre-
lations across all other measures, with the strongest
between CONF for arcs. Here, we find that MDL
for relations (which takes the model’s loss into ac-
count) is actually more correlated with arc CONF

than CONF for relations. Expectably, neither mea-
sure is correlated with treebank size, which was
controlled across treebanks.

For rankings, we observe that the Top 3 tree-
banks (for arcs) are largely the same ones as re-
turned by arc CONF: Japanese GSD and GSDLUW,
(2.85, 2.39) English Atis (3.12), and Turkish Atis
(3.48). This is unsurprising given the reasons out-
lined in previous sections. Therefore, it seems fea-
sible that MDL — which measures a parser’s fit on
successively larger, unseen partitions of a dataset
— would reflect such qualities as well. MDL’s al-
ternative interpretation as a measure of a dataset’s
sample efficiency is also applicable here: a parser
trained on a small number of trees will likely gen-
eralize well in these very narrow distributions.

Interestingly, we encounter a handful of new tree-
banks at the higher end of MDL scores: Finnish
TDT (6.46), Chinese GSD (traditional and simpli-
fied) (6.11, 6.14), and Latin PROIEL (5.94). Intu-
itively, a high MDL in the case of parsing might
suggest that the model is exposed to a larger di-
versity of token types during training, which could
hinder it in learning various types of dependen-
cies. Following this logic, one might hypothesize
that treebanks representing languages with com-
plex morphological systems might yield compar-
atively higher MDL, due to the higher number of
word forms that appear therein. In line with this,
we observe that the highest MDL treebanks tend
to be morphologically rich, e.g., Finnish, Latin,
Turkish, Estonian, Polish, Russian.

In an attempt to quantify the correspondence
between a treebank’s attested morphological com-
plexity and its MDL, we compute a series of proxy
metrics, as featured in Çöltekin and Rama (2018).
These include type-token ratio (TTR) (averaged

across 10 random samples of 1,000 sentences),
number of feature types (in these samples), and
feature entropy (calculated across feature types).
Indeed, Figure 3 shows a strong correspondence
between TTR and MDL, as the two are highly
correlated (ρ = 0.58, p < 0.001). Significant cor-
relations for feature entropy (ρ = 0.35, p < 0.001)
and number of feature types (ρ = 0.28, p < 0.001)
corroborate our hypotheses further. Interestingly,
while both Chinese GSD treebanks simultaneously
yield the highest MDL and comparatively high mor-
phological scores, the language itself is typically
described as having an analytical (impoverished)
morphology. We surmise, however, that this fact
— combined with Chinese’s logographic writing
system — contributes to high MDL scores in the
same way as morphological richness: a lack of
high-frequency function words and a wide range of
lexical items lead to large vocabulary sizes. MDL
for these treebanks is thus expectably high.

6 Conclusion

In this paper, we investigated 88 UD treebanks
through the lens of dataset difficulty measures. We
found that CONF and VAR are capable of paint-
ing a nuanced picture of how easy or hard tree-
banks might be to parse. We also observed that a
model’s confidence throughout training is an ex-
cellent indicator of how well it might generalize
to held-out data. Regarding V-INFO, we observed
that the measure tends to simultaneously penalize
high degrees of predictability and stochasticity, and
that treebanks otherwise characterized as easy may
have low V-INFO due to lack of structural diver-
sity. Finally, treebanks with high MDL seem to
be characterized by low sample efficiency, which
in turn is related to morphological complexity and
vocabulary usage. Given the broad range of in-
sights expressed via these metrics, we hope that
our results — however preliminary — will inspire
future researchers to pursue a greater understand-
ing of UD as trove of data, so as to push further
boundaries in the realms of parsing, typology, etc.

In terms of future work, we make note of several
potentially interesting directions. Indeed, one of
the main drawbacks of our experimental design is
that it only accounts for the perspective of a single
parsing architecture — albeit (arguably) the most
popular one of the neural era. Dependency pars-
ing, however, has a long research tradition where
many different parsing models have been proposed
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throughout the years — each with their respective
advantages and drawbacks (see, e.g. McDonald
and Nivre (2007, 2011)). Though we chose to work
with an arc-factored graph-based parser due to the
need for extracting arc-level probabilities, future
studies may consider consider ways of leveraging
transition-based parsers (Nivre, 2003) or models
that directly maximize full tree probabilities (Koo
et al., 2007; Ma and Hovy, 2017). If working with
a wide range of parsing models, one could employ
item response theory (Rodriguez et al., 2021; Vania
et al., 2021), which is a framework that consol-
idates many predictions per instance in order to
identify regions of datasets that may be perceived
as difficult, easy, etc. Certainly, this would provide
a more broad perspective on UD than what we have
offered here.

A different direction that could be explored is
data selection, which is indeed what Swayamdipta
et al. (2020) proposed as the main uses for dataset
cartography. Although the CONF and VAR met-
rics provide valuable insights about UD treebanks
in our case, they are nonetheless measured at the
token-level. This is distinct from their original
application, in that each token is crucial for the
composition a sentence and cannot be readily re-
moved. Although we experimented with measuring
sentence-level CONF and VAR, some preliminary
results indicated that a naive application of Koo
et al. (2007)’s method is ultimately confounded by
sentence length. As such, it would be interesting
to experiment with models that directly optimize
for tree probability, such as Ma and Hovy (2017).
If successful, this would allow us to identify se-
lect subsets of treebanks for the purpose of training
more accurate parsers with less data, or for choos-
ing the least noisy sentences for typological studies,
etc.

Limitations

As already mentioned, the main limitation to our
work is that we focus on a single parsing archi-
tecture. Indeed, it would be preferable to extend
the experiments described here to other parsers
in order to evaluate the generalizability of our re-
sults. Ideally, we might choose to work with a com-
parable transition-based parsing algorithm, which
have been shown to exhibit different error profiles
than their graph-based counterparts (McDonald and
Nivre, 2007; Kulmizev et al., 2019). However, the
fact that transition-based parsers calculate probabil-

ities over transitions instead of arcs would render
such parsers incompatible with the cartography and
V-INFO measures, which reveal interesting insights
about our surveyed treebanks. Beyond this, we note
that the scope of our current work is quite large,
as we compare 10 metrics across 88 treebanks. By
this token, we can admittedly only offer a bird’s eye
view of the UD treebank collection, even if our sur-
veyed metrics offer more nuance than attachment
scores.

Ethical Considerations

The research presented in this paper is compatible
with the ACL ethics policy. The datasets used come
from the Universal Dependencies repository and
have appropriate licenses and documentation. The
experiments are done with small-scale models that
do not have a significant impact in terms of energy
consumption.
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Hlaváčová, Václava Kettnerová, Zdeňka Urešová,
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A Analysis Method Details

Since every surveyed dataset analysis method was
proposed with classification tasks in mind, we must
make numerous modifications in order to make
them applicable to structured prediction problems
like dependency parsing.

Dataset Cartography Given that we can index
directly into Sarcs and Slabels throughout the train-
ing regime, the process of calculating CONF and
VAR for each token is relatively straightforward. As
such, we keep track of the probabilities assigned
to the gold arcs and labels in the train and develop-
ment sets after each epoch.

V-information In order to calculate V-INFO, we
must be able to estimate V-entropy and conditional
V-entropy. Though the latter can be computed by
simply fitting a model f ′ ∈ V on a designated
training set, the former requires the “encryption”
of the input X . To do so, we follow Ethayarajh et al.
(2022) in setting every input token string x ∈ X
to _. V-entropy can then be estimated by fitting
f ′ on the same, albeit encrypted, training set, and
IV(X → Y ) subsequently calculated on a held-out
(also encrypted) validation set. Though we track
V-INFO across all epochs, we report it for e = 30,
across arcs and labels. Also, it is worth noting that,
although we attempted to compute IV(X → Y ) at
the sentence level via unlabeled tree probabilities
extracted via Koo et al. (2007)’s method, the model
f ′ trained on encrypted data produced extremely
low probabilities, which led to underflow when
computing the logarithm. As such, we chose to
forego further exploration of this problem for this
study.

Minimum Description Length Since our tree-
banks vary greatly in size, we must set our par-
titions such that they can span the length of the
smallest training set (1,021 sentences). This way,
our estimation of MDL remains comparable across
treebanks. To do so, we employ partitions S =
{5, 10, 20, 40, 80, 160, 320, 360} at the sentence
level, where the entire training set is shuffled prior
to partitioning. For t0, which does not contain any
training data, we follow Voita and Titov (2020) in
calculating the codelength over t0 using a uniform
prior. This is computed as follows:

Lunif(y1:s1 |x1:s1) =
n∑

i=1

log2Kt1i
(1)
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where K is the number of words (arcs or la-
bels) in a given sentence i in the first partition t1
(composed of s = 5 sentences). Note that this is
the extension of uniform coding proposed by Blier
and Ollivier (2018) to structured prediction. In a
typical classification task with K labels, the same
codelength is computed as Lunif(y1:s1 |x1:s1) =
s1 log2K.

For all remaining t ∈ S, we revert a model to
its initial state, train it on ti and compute its code-
length over ti+1. Since MDL is particularly sen-
sitive to the ordering of instances within S, we
repeat this process for 5 trials, fully re-initializing
the model after each one.

B Full Results

The results for all metrics on all treebanks can be
found in Table 1.
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Size Rank Accuracy Arcs Relations

Language Treebank # Tokens Abs. Rank UAS LAS CONF VAR V-INFO MDL CONF VAR V-INFO MDL

Afrikaans AfriBooms 33.88 46 84.48 79.48 0.80 0.21 2.72 3.87 0.89 0.13 2.64 3.69
Ancient Greek PROIEL 187.03 55 85.00 79.92 0.79 0.14 2.83 5.30 0.87 0.09 2.66 5.10
Ancient Greek Perseus 159.90 75 75.13 68.61 0.76 0.15 2.57 5.32 0.85 0.10 2.57 5.31
Arabic PADT 223.88 48 85.45 79.39 0.82 0.10 2.43 4.52 0.88 0.06 2.31 4.94
Armenian ArmTDP 42.10 66 83.07 74.69 0.70 0.22 2.97 5.18 0.76 0.17 2.90 5.27
Basque BDT 72.97 71 82.44 77.90 0.76 0.19 2.34 5.29 0.87 0.13 2.48 5.21
Bulgarian BTB 124.34 15 91.61 86.76 0.90 0.11 2.83 4.14 0.93 0.07 2.60 4.37
Catalan AnCora 429.14 2 92.98 90.13 0.89 0.06 3.24 4.34 0.94 0.03 2.68 4.17
Chinese GSD 98.62 77 78.68 73.78 0.73 0.20 2.78 6.12 0.87 0.15 2.82 6.14
Chinese GSDSimp 98.62 74 78.76 73.90 0.74 0.19 2.78 5.95 0.87 0.13 2.82 6.20
Coptic Scriptorium 30.84 54 86.36 82.54 0.79 0.23 2.86 3.53 0.86 0.21 2.43 3.74
Croatian SET 152.86 31 88.44 83.86 0.85 0.13 3.02 5.21 0.90 0.08 2.81 5.00
Czech FicTree 133.64 24 91.28 86.52 0.87 0.12 2.90 4.77 0.89 0.09 2.84 4.74
Danish DDT 80.38 53 83.88 80.56 0.77 0.18 2.78 5.13 0.90 0.10 2.87 5.15
Dutch Alpino 186.03 29 91.35 87.44 0.86 0.13 3.03 5.48 0.91 0.07 2.78 5.42
Dutch LassySmall 75.13 52 84.95 78.94 0.83 0.19 2.85 4.79 0.89 0.11 2.71 5.00
English Atis 48.66 13 93.63 89.39 0.94 0.08 1.97 3.13 0.94 0.07 1.48 2.99
English EWT 204.58 23 88.95 85.98 0.85 0.10 2.79 5.03 0.94 0.05 2.96 5.24
English GUM 103.40 25 88.66 85.65 0.84 0.13 3.05 4.86 0.92 0.08 3.04 5.00
English LinES 57.37 45 85.77 81.43 0.80 0.17 2.78 4.64 0.89 0.12 2.81 4.64
English ParTUT 43.50 44 86.52 81.67 0.78 0.20 2.86 4.21 0.88 0.14 2.87 4.39
Estonian EWT 49.60 86 75.94 68.64 0.69 0.22 2.31 5.85 0.78 0.17 2.60 5.73
Faroese FarPaHC 23.09 62 79.24 73.43 0.79 0.23 2.43 3.57 0.86 0.17 2.49 3.57
Finnish FTB 127.60 69 86.54 81.32 0.80 0.15 2.07 5.79 0.86 0.12 2.34 5.76
Finnish TDT 162.82 59 85.68 80.96 0.80 0.16 2.68 6.46 0.88 0.12 3.09 6.42
French GSD 354.50 4 94.49 91.46 0.91 0.06 3.13 4.44 0.94 0.04 2.62 4.45
French Rhapsodie 19.14 78 80.63 73.45 0.66 0.24 2.57 4.64 0.79 0.19 2.58 4.62
French Sequoia 50.51 26 89.12 85.50 0.82 0.18 3.16 4.14 0.90 0.12 2.70 4.13
Galician CTG 79.33 37 85.13 81.83 0.79 0.14 2.82 4.03 0.91 0.07 2.15 4.23
German GSD 263.80 19 88.23 83.32 0.87 0.09 2.79 4.35 0.94 0.04 2.77 4.52
Gothic PROIEL 35.02 84 79.59 71.86 0.68 0.21 2.26 5.54 0.77 0.17 2.45 5.57
Greek GDT 42.33 37 86.89 82.84 0.82 0.19 3.00 3.51 0.88 0.13 2.53 3.60
Hebrew HTB 137.72 18 88.68 84.94 0.86 0.12 2.93 4.18 0.92 0.07 2.77 4.38
Hindi HDTB 281.06 6 94.10 90.57 0.92 0.06 3.02 3.83 0.94 0.05 2.05 3.90
Icelandic Modern 123.87 34 91.32 88.40 0.83 0.16 2.79 5.17 0.90 0.11 2.82 5.14
Indonesian GSD 97.60 49 85.86 78.71 0.80 0.13 2.88 5.04 0.85 0.10 2.70 4.83
Irish IDT 95.88 32 86.61 80.02 0.84 0.13 2.60 4.23 0.89 0.10 2.73 4.29
Italian ISDT 276.02 12 91.78 88.80 0.89 0.08 2.98 4.59 0.94 0.05 2.61 4.41
Italian ParTUT 48.93 40 87.63 83.48 0.81 0.18 2.88 4.28 0.90 0.11 2.58 4.42
Italian PoSTWITA 99.54 60 83.23 76.76 0.80 0.14 2.63 5.32 0.86 0.09 2.76 5.36
Italian TWITTIRO 23.63 76 79.60 71.49 0.71 0.22 2.56 4.63 0.78 0.17 2.49 4.62
Italian VIT 225.08 21 87.94 84.94 0.86 0.09 3.04 4.59 0.92 0.05 2.55 4.46
Japanese GSD 168.33 3 94.78 93.46 0.93 0.07 2.88 2.85 0.97 0.04 2.06 2.62
Japanese GSDLUW 130.30 8 94.86 93.70 0.93 0.07 2.46 2.39 0.97 0.04 1.85 2.28
Korean GSD 56.69 80 81.91 76.14 0.73 0.20 2.13 5.25 0.83 0.16 2.07 5.29
Latin LLCT 194.14 1 96.45 95.12 0.91 0.10 3.74 3.76 0.96 0.05 2.90 4.02
Latin PROIEL 172.13 67 81.81 75.85 0.73 0.15 2.49 5.94 0.83 0.11 2.87 6.04
Latvian LVTB 201.60 41 87.03 83.32 0.85 0.13 2.83 5.72 0.92 0.09 2.99 5.57
Lithuanian ALKSNIS 47.64 81 76.43 69.36 0.68 0.23 2.43 5.47 0.81 0.16 2.75 5.29
Maltese MUDT 22.88 67 81.10 73.05 0.70 0.24 2.69 4.47 0.77 0.21 2.83 4.64
Naija NSC 111.88 11 93.09 90.47 0.89 0.12 3.18 4.47 0.93 0.07 2.67 4.37
Norwegian Bokmaal 243.89 14 91.88 89.37 0.88 0.10 2.87 5.15 0.95 0.05 2.86 5.09
Norwegian Nynorsk 245.33 15 90.97 88.47 0.88 0.11 2.95 5.12 0.94 0.06 2.92 4.98
Norwegian NynorskLIA 35.21 79 75.58 69.24 0.70 0.22 2.17 5.00 0.83 0.16 2.61 5.18
Old Church Slavonic PROIEL 37.43 81 81.87 74.62 0.72 0.21 2.31 5.30 0.79 0.18 2.43 5.23
Old East Slavic TOROT 118.63 73 81.85 75.31 0.80 0.14 2.04 5.61 0.86 0.10 2.35 5.74
Old French SRCMF 158.62 39 89.07 83.86 0.86 0.11 2.67 5.23 0.90 0.07 2.68 5.28
Persian Seraji 121.06 36 88.28 84.13 0.83 0.16 3.14 4.77 0.91 0.08 2.44 5.04
Polish LFG 104.75 20 94.43 91.37 0.91 0.11 2.23 4.15 0.92 0.08 2.27 4.27
Polish PDB 281.74 30 91.63 85.57 0.88 0.10 2.89 5.65 0.88 0.08 3.08 5.68
Portuguese Bosque 171.78 17 90.22 86.57 0.85 0.12 3.12 4.26 0.92 0.06 2.60 4.34
Portuguese GSD 255.31 7 92.31 90.37 0.89 0.08 3.09 4.06 0.96 0.04 2.45 4.27
Romanian RRT 185.11 28 89.69 83.80 0.86 0.12 2.97 5.04 0.89 0.07 2.85 4.96
Romanian SiMoNERo 116.86 9 92.43 89.19 0.88 0.13 3.38 4.12 0.93 0.07 2.69 4.18
Russian GSD 74.91 47 86.42 81.26 0.81 0.17 2.89 4.69 0.88 0.11 2.57 4.60
Russian Taiga 176.63 65 77.75 69.63 0.80 0.13 2.28 5.61 0.89 0.08 2.61 5.45
Scottish Gaelic ARCOSG 63.70 51 86.57 80.83 0.82 0.16 2.62 4.65 0.87 0.14 2.66 4.36
Serbian SET 74.26 33 89.18 85.07 0.84 0.17 3.07 4.74 0.89 0.11 2.72 4.68
Slovak SNK 80.63 42 85.90 79.84 0.88 0.14 2.48 4.58 0.89 0.11 2.76 4.61
Slovenian SSJ 112.53 22 90.46 87.66 0.87 0.14 3.09 5.01 0.93 0.08 2.83 4.68
Spanish AnCora 452.74 5 91.90 88.90 0.88 0.07 3.19 4.51 0.94 0.03 2.73 4.12
Spanish GSD 382.44 10 90.75 87.72 0.87 0.06 3.04 4.33 0.94 0.03 2.58 4.21
Swedish LinES 55.45 56 85.07 79.98 0.79 0.19 2.72 4.96 0.87 0.13 2.82 4.85
Swedish Talbanken 66.65 57 83.48 78.97 0.81 0.19 2.67 5.16 0.89 0.13 2.88 5.24
Telugu MTG 5.08 72 86.47 66.87 0.74 0.16 0.44 4.56 0.60 0.13 0.68 4.40
Turkish Atis 36.20 27 90.85 88.44 0.90 0.13 1.13 3.48 0.93 0.11 1.59 3.29
Turkish BOUN 98.21 83 76.09 67.92 0.70 0.16 1.71 5.80 0.81 0.12 2.24 5.76
Turkish FrameNet 16.33 63 86.49 71.15 0.79 0.13 0.71 3.91 0.65 0.15 1.16 3.94
Turkish IMST 37.78 88 67.65 58.38 0.58 0.19 1.29 5.69 0.70 0.16 1.83 5.86
Turkish Kenet 143.29 61 87.14 73.74 0.81 0.13 1.53 4.75 0.79 0.10 1.91 4.69
Turkish Penn 166.51 50 88.11 77.55 0.83 0.09 1.61 4.50 0.82 0.08 1.89 4.56
Turkish Tourism 71.24 34 93.57 88.20 0.91 0.09 1.06 5.02 0.89 0.08 1.34 4.89
Ukrainian IU 92.40 58 85.78 80.97 0.78 0.18 2.88 5.46 0.87 0.11 2.81 5.33
Urdu UDTB 108.69 43 86.51 80.29 0.83 0.13 2.75 4.32 0.87 0.09 1.88 4.27
Uyghur UDT 19.26 85 75.25 60.47 0.66 0.20 1.35 4.92 0.66 0.17 1.46 4.96
Vietnamese VTB 20.29 87 67.44 57.77 0.59 0.24 1.42 5.21 0.71 0.22 1.84 5.14
Western Armenian ArmTDP 72.09 64 82.99 75.46 0.78 0.19 2.77 5.22 0.82 0.14 2.90 5.24
Wolof WTB 23.56 70 79.00 71.16 0.72 0.24 2.66 4.37 0.80 0.20 2.61 4.62

Table 1: Results across all treebanks and metrics. Size is measured per thousand tokens. Green cells indicate that
the treebank is Top 3 in that category. Red cells correspond to Bottom 3.
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