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Abstract

Variants of the BERT architecture specialised
for producing full-sentence representations of-
ten achieve better performance on downstream
tasks than sentence embeddings extracted from
vanilla BERT. However, there is still little un-
derstanding of what properties of inputs de-
termine the properties of such representations.
In this study, we construct several sets of sen-
tences with pre-defined lexical and syntactic
structures and show that SOTA sentence trans-
formers have a strong nominal-participant-set
bias: cosine similarities between pairs of sen-
tences are more strongly determined by the
overlap in the set of their noun participants
than by having the same predicates, lengthy
nominal modifiers, or adjuncts. At the same
time, the precise syntactic-thematic functions
of the participants are largely irrelevant.

1 Introduction

Transformer-based encoder-only models derived
from the BERT architecture and pre-trained us-
ing similar objective and training regimens (De-
vlin et al., 2019; Liu et al., 2019) have become
the standard tool for downstream tasks at the level
of individual tokens and token sequences (Tenney
et al., 2019; Wang et al., 2021). Whole-sentence
representations can also be easily extracted from
the outputs of these models by either using the
embedding of the special [CLS] token, in cases
where the model was trained on the next-sentence-
prediction task, or averaging or max-pooling the
embeddings of all tokens produced by the model
(Zhelezniak et al., 2019). While both approaches
are widely used in practice, it has been argued
that these representations are not well suited for
sentence-level downstream tasks. Several modifica-
tions to the architecture and training regime were
proposed, which are known collectively as sentence
transformers (STs; Reimers and Gurevych, 2019).

STs have achieved state-of-the-art performance
on downstream tasks such as semantic search and
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question answering (Santander-Cruz et al., 2022;
Ha et al., 2021). Their analysis, however, has re-
ceived considerably less attention than the analysis
of the vanilla BERT model and its variants (Rogers
et al., 2020; Conia and Navigli, 2022). In fact, these
models are often considered to be uninterpretable
(Minaee et al., 2021).

A common feature of STs is that they are fine-
tuned to produce similar vector-space representa-
tions for semantically similar sentences. This ob-
jective induces a complex loss landscape shaped by
the available training data. The original Sentence-
BERT model (Reimers and Gurevych, 2019) was
trained on natural language inference data, and sen-
tences were considered to be semantically similar
if their NLI label was that of entailment. SOTA
models were trained on a much larger web-crawled
corpus including more than 1 billion sentence pairs
mined from sources such as Reddit conversations,
duplicate question pairs from WikiAnswers, etc.!
The richness and variability of this dataset begs the
question of what notion of semantic similarity is
implicitly learned by the models trained on it.

In this study, we begin addressing this question
through analysis of natural-looking synthetic sen-
tences with controlled syntactic and lexical content.
We concentrate on three questions.

First, we test if STs have part-of-speech biases.
We show that, all other things being equal, informa-
tion provided by nouns plays more important role
than the information provided by verbs, both in
simple sentences and in sentences with coordinated
verbal phrases.

Second, we compare the relative importance of
the overlap in the sets of participants in two sen-
tences with that of how many participants have
identical syntactic functions. We show that raw
lexical overlap is relatively more important than
having the same nouns in the same syntactic slots.

'See the list at https://huggingface.co/
sentence-transformers/all-mpnet-base-v2
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Third, we check how strongly sentence represen-
tations are affected by other sentential elements,
such as adverbials and nominal modifiers of differ-
ent types and lengths. We show that, unlike BERT
with token averaging, STs seem to largely disregard
these components in favor of nominal participants.

The paper is structured as follows: § 2 presents
the methodology that we follow in our analyses
and the models we employ; § 3 presents the case
studies and their results; § 4 provides an overall
discussion; § 5 surveys related work; § 6 concludes
the paper.

2 Methods and Experimental Setup

We experiment with representations produced
by three models. Two are SOTA STs: all-
mpnet-base-v2 (MPNET) is an instance of
mpnet-base (Song et al., 2020) fine-tuned on
the 1B sentence-pair corpus using the training ar-
chitecture from Reimers and Gurevych (2019);
all-distilroberta-v1l (DistilRoberta) is
a distilled instance of roberta-base (Sanh
et al, 2019) fine-tuned in the same way.
The third model is the wvanilla pre-trained
bert-large-uncased (BERT), as a point of
comparison for the first two.

All models were downloaded from HuggingFace.
Standard APIs from the Sentence Transformers
library? were used to compute embeddings using
MPNET and DistilRoberta; for the vanilla BERT
model, we averaged the embeddings of all sentence
tokens, including [CLS] and [SEP].2

We structure the presentation as a series of case
studies. For each case study, we construct a set of
sentences controlled for lexical content and syntac-
tic structure. Sentences are created in such a way as
to be grammatically correct, look naturalistic, and
as far as possible not bias the analysis.* They are
arguably less complex and variable than examples
sampled from real-word corpora; however, we be-
lieve that an analysis based on simple sentences is
a reasonable first step towards a better understand-
ing of model representations, as previous work has

https://www.sbert.net/index.html,
Reimers and Gurevych (2019).

3We experimented with omitting the special tokens, but
this led to sentence representations dominated by punctuation
signs and other undesired effects. In line with previous work
(Ma et al., 2019), we also found that using [CLS] embeddings
leads to bad results due to their high redundancy, and we do
not discuss them.

*Sentence-generating and model-fitting scripts can be
found in the Supplementary Materials.

shown for sentiment analysis (Kiritchenko and Mo-
hammad, 2018) and syntactic analysis (Marvin and
Linzen, 2018).

For each case study, we compute embeddings
for all sentences, together with cosine similarities
between embeddings of sentence pairs. We analyze
the similarities by means of regression modelling.
More precisely, we regress cosine similarities, z-
scored to improve comparability between encoders,
on the properties of sentence pairs, such as lexical
overlap, presence of identical participants in identi-
cal syntactic positions, or POS tags of participants.
We inspect the coefficients of the resulting regres-
sion fits to assess the relative importance of these
properties. Since (almost) all properties are coded
as binary variables, their magnitudes are directly
comparable in terms of importance.

For terminological clarity, we will use the term
models to refer to the regression models we use to
analyse the impact of sentence properties on rep-
resentational similarity. We call the transformers
computing these embeddings encoders.

Where the features of sentence pairs can be
straightforwardly related to simple properties of
individual sentences (e.g., in case when we are
testing if they have the same subject or direct ob-
ject), we also project sentence embeddings on a
2-D surface using UMAP (Mclnnes et al., 2018)°
and check if the spatial organisation of the points
is in line with our observations.

Lexical choice A potential confound of our ex-
perimental setup is lexical choice, which is never
completely neutral. For example, by taking a se-
mantically close pair of verbs, we can considerably
reduce the effect of predicate mismatch between
two sentences. Moreover, encoders can react id-
iosyncratically to particular words and word com-
binations. Including all combinations of words and
their positions in sentence pairs as predictor vari-
ables is not a solution, however, as it defeats the
purpose of identifying structural patterns and, in
the limit, amounts to replicating the encoders. We
address this confound in three ways.

First, we select nouns to be always at least as
interchangeable as words of other parts of speech
in terms of belonging to similar mid-to-high fre-
quency bands and referring to conceptually simple,
concrete objects. This follows from our working
hypothesis that encoders give preferential treatment

>We use the default settings and pairwise cosine dissimi-
larities as distance measure.
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to nominal elements, whose (generally entity re-
ferring) semantics is arguably easier to capture
than, for example, that of (generally event refer-
ring) verbs (Baroni and Lenci, 2011).

Second, we compare the analysis of the ST en-
coders against the analysis of the vanilla BERT en-
coder. As they are derived from averaging, vanilla
BERT embeddings treat all words equally, so if our
sentences, e.g., undersell differences in adverbs
because we chose two nearly synonymous ones,
this should be visible in the small coefficient track-
ing the impact of adverbs in the regression model
based on BERT embeddings. As will be shown
below, however, the hierarchy of coefficients for
regression models of STs is very different from that
for vanilla BERT, which arguably indicates that the
role of lexical effects is minor.

Third, we re-run all reported models on sen-
tences of the same structure with different lexical
content; see the Appendix for details. We observe
high stability of coefficients across replications,
higher for STs than for vanilla BERT. This further
corroborates the validity of our generalisations.

3 Case Studies

This section presents a series of case studies testing
the sensitivity of embeddings produced by sentence
transformers and BERT token averages to proper-
ties of input sentences. We start with analysing
simple intransitive sentences (§ 3.1) and simple
transitive sentences (§ 3.2). We then make specific
aspects of the structure more complex, analysing
the effect of lengthy NPs (§ 3.3) and coordinated
VPs (§ 3.4). Finally, we look more closely at the
syntax-semantics interface by inverting the proto-
typical alignment of POS tags and syntactic func-
tions (predicative nominals and gerund subjects,
§ 3.5) and by testing the degree to which encoders
track particular syntactic functions of verb argu-
ments (§ 3.6).

3.1 Simple Intransitive Sentences

Data The main goal of the analysis of simple
intransitive sentences is to check the relative con-
tribution of their components to their embeddings.
We study a nearly-minimal sentence template with
a nominal subject, an adverbial adjunct, and an in-
transitive verb. We construct a set of 256 sentences
of the form ‘[det] [subj] [adverb] [verb][punct]’,
where det ranges over {a, the}; sub j ranges over

mpnet distilroberta bert
SameDet 0.07 0.07 0.37
SameAdv 0.33 0.31 045
SamePred 0.74 0.61 0.58
SamePunct 0.24 024 0.84
SameSubj 2.26 240 1.27
R-squared 0.67 0.71 0.48

Table 1: A summary of the models predicting z-scored
pairwise cosine similarities between embeddings of sen-
tences with intransitive verbs. All coefficients are sig-
nificant with p < 0.001.

a set of nouns,® adverb ranges over {quickly,
slowly}, verb ranges over {appears, vanishes,
stops, moves}, and punct, over {., /}. Here and in
subsequent experiments, the generation procedure
assures that all sentence features are statistically
independent, which is a crucial prerequisite for
linear-regression modelling.

Model The regression model matrix is based on
32,640 pairs of generated sentences, which differ in
the value of at least one feature, with predictor vari-
ables SameDeterminer, SameAdverb, SameVerb,
SamePunct, and SameSubj. We regress z-score-
transformed cosine similarities between sentence
embeddings computed by three different encoders
on these predictor variables. The coefficients of the
fitted models are shown in Table 1.

Results Three observations from Table 1 hold for
all subsequent analyses.

(i) The coefficients are positive for all models
and all features. This means that sentence pairs
which agree in some constituent are always more
similar than sentence pairs that do not — as ex-
pected.

(ii) The coefficient of determination (R?) is
larger for ST-focused linear models. This means
that the embeddings computed by the ST encoders
are more dependent on the features of the sentences
we track and less dependent on identities of lexical
units. (It can be noted that the fact that we achieve
R? ~ 0.7 using only a few structural properties is
remarkable in itself.)

(iii) The differences among coefficients of the
ST-focused linear models are in general larger than

6{cat, dog, artist, teacher, planet, star, wind, rain}

7Replication models, fitted on sentences with the same
structure but different lexical content, are shown in Table 8 in
the Appendix.
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Figure 1: UMAP projections of embeddings of sen-
tences with intransitive verbs (left: sentence transformer,
right: BERT).

those of the linear model analysing BERT: in the
latter, the biggest coefficient (1.27 for SameSubj)
is only ~ 3.5 times higher than the smallest one
(0.37 for SameDet), while for the ST models this
ratio is above 30. This is connected to the fact that
BERT-derived sentence representations are more
dependent on semantically impoverished elements,
such as determiners and punctuation signs, which
dampen the effect of other constituents. For the
sake of brevity, we do not analyse determiners and
punctuation in subsequent experiments and keep
them constant as the and . respectively.

Turning to the comparison of coefficients inside
models, we see that STs pay considerably more
attention to subjects than to predicates: all things
being equal, sentences with different predicates and
adverbs but the same subject will be more similar
than sentences with the same predicate and adverb
and different subjects. The influence of punctuation
is surprisingly strong, being comparable to that of
adverbs, while the effect of determiners is very
weak, albeit statistically significant.

A plot of UMAP projections of sentence em-
beddings produced by MPNET and BERT, shown

in Figure 1, underlines that while averaged BERT
embeddings distinguish punctuation signs but do
not distinguish subjects, the situation is reversed
for the sentence transformer: it distinguishes sub-
jects cleanly but largely abstracts away from other
structural properties.

3.2 Transitive Sentences

Data The transitive sentences used in the anal-
ysis are generated using the following template:
“The [subj] [adverb] [verb] the [obj].” The range of
nouns was slightly extended;® the same adverbs as
in the previous experiment were used, while verb
ranged over {sees, chases, draws, meets, remem-
bers, pokes}. This produces 672 different sentences
and 225,456 sentence pairs.

Model The coding for SameAdv and SamePred
remains as above. The main focus in this study is
on whether sentence similarities are dominated by
the sentences having the same subject, the same
direct object, or the same words in these two po-
sitions even if their order were reversed. To test
for this, we added a categorical variable with the
following values:
00 no overlap in subject and object (the baseline);
A0 same subject, different objects;
0B same object, different subjects;
0A the subject of the first sentence is the object
of the second;
B0 the object of the first sentence is the subject
of the second;
BA subject and object are swapped;
AB the same subject and object.

Results A summary of the fitted models is given
in Table 2.° It demonstrates that when it comes to
simple transitive sentences, our understanding of
their embeddings produced by sentence transform-
ers remains high, despite the sentences being more
complex (R? =~ 0.7), while BERT embeddings
become more unpredictable (R? ~ 0.31). Fur-
thermore, while BERT again essentially treats all
tokens more or less equally, with adverbs slightly
discounted, STs prioritise participants (even BO has
higher coefficients than SamePred).

On the other hand, neither BERT nor STs priori-
tise the exact syntactic function of the participants:
coefficients for AO vs. OA, OB vs. BO, and AB vs.

8To {cat, dog, teacher, artist, robot, machine, tree, bush,
planet, star, wind, rain}.

A summary of the replication model fits is provided in
Table 9 in the Appendix.
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mpnet distilroberta bert
SameAdv 0.49 0.36  0.56
SamePred 0.73 0.42 0.78
SubjObj_0A 1.27 1.40 0.65
SubjObj_0B 1.31 145 0.69
SubjObj_A0 1.44 145 0.75
SubjObj_AB 2.98 3.08 1.60
SubjObj_B0 1.37 1.42 0.58
SubjObj_BA 2.85 298 1.39
R-squared 0.74 0.73 0.31

Table 2: A summary of the models predicting z-scored
pairwise cosine similarities between embeddings of sen-
tences with transitive verbs. All coefficients are signifi-
cant with p < 0.001.

BA are largely comparable across all models with
BA =~ A0 4 0B. That is, the effects of subjects
and objects are largely independent of one another.
A UMAP plot with the embeddings for the tran-
sitive sentences is shown in Figure 2 in the Ap-
pendix. It demonstrates that ST’ arrive at a much
more fine-grained clustering of sentences, largely
dominated by subjects and objects. They largely
discount predicates and adverbs which are quite
prominent in averaged BERT embeddings.

3.3 Transitive Sentences with Long NP
Modifiers

The previous analyses showed that representations
computed by STs are highly attuned to verb par-
ticipants but not to their particular syntactic roles.
This may mean that ST may be potentially misled
by nouns in other positions in the sentence, which
have less relevance to the described situation. This
study explores this possibility.

Data We repeat the analysis from § 3.2 using
the template of the form ‘The [subj] [modifier]
[adverb] [verb] the [obj]’, with a smaller set of sub-
jects,'” and the modi fier ranging over {with big
shiny eyes, that my brother saw yesterday, whose
photo was in the papers, worth a great deal of
money}. Altogether this gives 1,440 sentences and
1,036,080 sentence pairs. The modifiers have inter-
nal syntactic structure and contain a non-negligible
amount of lexical material that the models have to
‘skip over’ if their representations were focused on
the participant structure of the matrix clause.

4 cat, dog, rat, giraffe, wombat, hippo}

mpnet distilroberta bert
SameMod 1.01 1.02 1.62
SameAdv 0.40 0.42 0.27
SamePred 0.89 0.67 0.40
SubjObj_0A 0.83 1.06 0.32
SubjObj_0B 0.97 1.27 042
SubjObj_A0 1.11 1.14  0.53
SubjObj_AB 2.14 244 1.00
SubjObj_B0 1.20 1.30 0.54
SubjObj_BA 2.09 240 091
R-squared 0.73 0.81 0.61

Table 3: A summary of the models predicting z-scored
pairwise cosine similarities between embeddings of sen-
tences with transitive verbs and lengthy subject modi-
fiers. All coefficients are significant with p < 0.001.

Model The same coding strategy as in the preced-
ing section is used, augmented by a new binary vari-
able, SameMod, tracking whether two sentences
have the same modifier for the subject.

Results Both the model coefficients, shown in
Table 3, and the UMAP plot, shown in Figure 3
in the Appendix, indicate that BERT embeddings
are highly sensitive to lengthy modifiers:'! the
SameMod coefficient in the linear model is larger
than the coefficients for the same predicate and the
same subject-object combination added together.
The situation is very different for STs: SameMod
is more important than SamePred, especially for
DistilRoberta, but, with one exception, not more
important than even a partial overlap in participants.
Having the same participants, in either the same or
swapped syntactic functions, is more than twice as
important. We take this as evidence that STs have
a specific bias towards matrix-clause participant
sets, that is, the nouns that fill a thematic role of the
main predicate, while their precise functions and
nouns found in other positions in the sentence are
less important.

3.4 Coordinated Verbal Phrases

The analyses presented above show that the main
predicate of the sentence has only a limited influ-
ence on the representations computed by STs, com-
pared to its subjects and objects. Here, we show
that this effect still holds if there is more than one
main predicate.

"!"The results of the replication fits are shown in Table 10 in
the Appendix.
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mpnet distilroberta bert
V1Same 0.41 0.26 0.21
V2Same 0.13 0.08 0.23
V3Same 0.36 0.34 041
N1Same 0.33 0.35 0.23
N2Same 0.12 0.22 0.30
N3Same 0.56 057 041
R-squared 0.11 0.1 0.09

Table 4: A summary of the models predicting z-scored
pairwise cosine similarities between embeddings of sen-
tences with coordinated VPs from binary predictors. All
coefficients are significant with p < 0.001.

Data Using the same sets of nouns and transi-
tive verbs as in the previous experiment, we con-
struct sentences of the form ‘The man [verbl]
the [nounl], [verb2] the [noun2], and [verb3] the
[noun3]’, where triples of verbs and nouns are
taken from the Cartesian product of the sets of
all noun and verb combinations of size 3 without
replacement. To alleviate a possible ordering bias,
all verb and noun triples are shuffled for each sen-
tence. This results in 400 sentences and 79,800
sentence pairs.

Models and results The analysis proceeds in
three stages. First, we check if positions 1, 2, and
3 have different importance by regressing the nor-
malised cosine similarity on six binary variables
N[oun]1Same, V[erb]1Same, N2Same, etc. The
models, summarised in Table 4,'? show low coeffi-
cients of determination (with R? around 0.1), but
they indicate that positions are of unequal impor-
tance: BERT gives more weight to the last noun
and the last verb, while STs focus on the first and
the last N-V pair and largely ignore the second one.

A significantly better fit can be achieved by re-
placing binary predictors with overlap scores for
nouns and verbs. As Table 5'3 shows, this type
of model, even though it contains only 2 variables
instead of 6, obtains R? ~ 0.65 for STs. It is also
evident that all three models place more weight
on noun overlap than on verb overlap, with Dis-
tilRoberta showing the biggest difference between
the two.

This raises the question of whether particular
verb-noun collocations play a noticeable role, i.e.,

12A summary of the replication fits is given in Table 11 in
the Appendix.
3See Table 12 in the Appendix for the replication fits.

mpnet distilroberta bert
VerbOverlap 0.78 0.59 0.64
NounOverlap 0.93 1.09 0.88
R-squared 0.65 0.68 0.52

Table 5: A summary of the models predicting z-scored
pairwise cosine similarities between embeddings of sen-
tences with coordinated VPs from overlap scores. All
coefficients are significant with p < 0.001.

if a sentence containing chases the wombat will
be considerably more similar to another sentence
containing the exact phrase compared to a sentence
containing chases and wombat but not as a trigram.
Simply adding n-gram overlap scores to the model
is not possible, however, because it is highly cor-
related with both noun overlap and verb overlap.
In order to obviate this obstacle, we first construct
an auxiliary linear model predicting trigram over-
lap from noun and verb overlap and then use the
residuals of this regression in the main model.

The results are ambiguous: on one hand, the
coefficient for residualised trigram overlap is sta-
tistically significant with p < 0.001. On the other
hand, the effect is very weak (more than ten times
weaker than that of either noun overlap or verb
overlap), and the addition of trigram overlap to the
model improves R? by less than 0.001. This seems
to indicate that trigram overlap is not important for
practical purposes.

3.5 Predicative Nominals with Gerund
Subjects

A potential weak point of our analysis is that parts
of speech and syntactic functions are not decoupled:
itis not yet clear whether the encoders pay attention
to nouns or to subjects and objects.

Data To address this issue, we construct another
set of sentences where the subject is a gerund and
the predicate is nominal. The template is ‘[gerund]
[object] [copula] a [adjective] [predicate]’, where
gerund ranges over {continuing, abandoning,
starting, completing}, object ranges over {it, them,
the project, the plan}, copula is one of {is, was, will
be, is going to be}, adjectives are {big, real, negli-
gible, insignificant}, and the predicative nominal
ranges over {solution, mistake, failure, triumph}.
This gives 1024 sentences and 523,776 sentence
pairs. A variable copula provides an additional test
as to whether the sentence encoders can recognise
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mpnet distilroberta bert mpnet distilroberta bert
SameSubj 0.82 0.70 0.31 SameAdv 1.05 1.07 0.64
SameCop 0.35 0.30 0.55 SamePred 0.93 0.64 0.83
SameAdj 0.58 0.79 0.50 Overlap 0.90 1.00 0.91
SamePred 0.99 1.01 0.52 SPCRes 0.03 0.02 0.10
SameOb!Noun 1.01 1.04 0.60 R-squared 0.745 0738 057
SameObjPron 0.44 0.50 042 R-squared
R-squared 0.50 0.54 0.22 (w/o SPCRes) 0.744 0.737 056

Table 6: A summary of the models predicting z-scored
pairwise cosine similarities between embeddings of sen-
tences with gerund subjects and nominal predicates. All
coefficients are significant with p < 0.001.

multi-word sequences with low semantic content.

Model The sentence pair encoding includes four
binary variables (SameSubj, SameCop, SameAd;,
SamePred) and a nominal variable for the direct ob-
ject, indicating whether objects are different (base-
line), are identical and pronominal (SamePron), or
are identical and nominal (SameNoun).

Results The results in Table 6'* demonstrate that
all models treat both nominal predicates and nom-
inal direct objects as more important than gerund
subjects. STs, moreover, pay less attention to iden-
tical pronominal objects and discount multi-word
copula forms. R? values for the ST model are
lower than in the previous experiments (in the 0.50-
0.55 range), which may potentially indicate a poor
choice of lexical items; however, replication ex-
periments with a different set of words (except for
copula forms) achieved comparable results. This
suggests that embeddings of sentences of this type
are less easily explainable as additive combinations
of individual words compared to the sentence types
surveyed previously.

3.6 Revisiting Participant Sets: Ditransitive
Sentences

Our final experiment revisits the opposition be-
tween lexical overlap in verbal phrases and exact
argument-predicate matching. In this case, we fo-
cus on ditransitive verbs with two arguments: a
direct object and an oblique object which is an
integral part of the situation. !

14See an overview of replication fits in Table 13 in the
Appendix.

Many English ditransitive verbs can undergo the ‘dative
alternation’, which swaps the oblique object with a preposi-
tional phrase: Give the book to me/John vs. Give me/John a

Table 7: A summary of the models predicting z-scored
pairwise cosine similarities between embeddings of sen-
tences with ditransitive verbs. SPCRes stands for Same-
PosCountRes, i.e. the residuals of the number of iden-
tical words in identical positions regressed on lexical
overlap. All coefficients are significant with p < 0.001.

Data All permutations of the triple of basic nouns
{cat, dog, rat} are generated. For each permuta-
tion, all three nouns are, in turn, replaced with
one of the members of the set of extra nouns {gi-
raffe, wombat, hippo}; the original permutations
are also used. This provides a set of unique triples
of nouns where each pair of triples has from one
to three nouns in common. The Cartesian product
of this set of triples with a set of ditransitive verbs
({describes, sells, shows}) and a set of adverbs
({happily, quickly, secretly) is used to fill the tem-
plate “The [nounl] [adverb] [verb] the [noun2] to
the [noun3].” This procedures gives 540 sentences
and 145,530 sentence pairs.

Model The sentence pairs are coded for same
adverb, same predicate, the number of matching
nouns in matching positions (SamePosCount), and
lexical overlap minus 1 (the baseline value of 0
corresponds to overlap of 1; each successive value
corresponds to increase in overlap). As with over-
lapping words and trigrams above, these predictors
are correlated. Therefore, we residualise Same-
PosCount after regressing it on lexical overlap.

Results Table 7 is inconclusive in a similar way
to results from § 3.5. The coefficients for residu-
alised SamePosCount are significant; however, in
the ST models, their size is very small, and Same-
PosCount does not materially improve the predic-
tive power. We conclude, therefore, that syntactic
positions do not matter a great deal, in line with
our ‘participant set’ interpretation from § 3.4.

book (Levin, 1993). Of the verbs we use, show and sell partic-
ipate in it, and the status of describe varies across speakers.
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4 Discussion

Our analysis arguably goes some way towards ex-
plaining why sentence transformers beat vanilla
BERT-based models with token averaging on
sentence-modelling tasks. Token averaging makes
it impossible to distinguish between semantically
rich and impoverished sentence elements, nor be-
tween syntactically central vs. peripheral elements:
punctuation signs and determiners contribute on
the same level as the matrix-clause predicate and
main participants, while lengthy modifiers, such
as relative clauses, and multi-word copula forms
dominate the representation.

Sentence transformers, on the other hand, learn
to discount elements that only serve a grammatical
function or present background information and fo-
cus instead on the semantic kernel of the sentence.
The latter is in effect largely synonymous with the
set of nominal elements in the main clause, first
of all participants, but also predicative nominals.
Importantly, despite their evident syntactic-analytic
capabilities (e.g., in our setting they can distinguish
between participants of main and relatives clauses
and between main and auxiliary verbs), STs seem
to not pay much attention to the distinction between
subjects and direct or indirect objects. Instead they
prioritise raw overlap in the set of nominal partic-
ipants of the matrix clause. This can be seen, by
slightly abusing terminology of theoretical linguis-
tics, as a focus on the aboutness/topic of sentences,
what things they describe, and not on their predica-
tion/comment, what they actually say about those
things (Hu and Pan, 2009).

We believe that this focus is not inherent to the
architecture of sentence transformers but reflects
the nature of the datasets used for fine-tuning STs.
The size of these datasets makes it impossible to
convincingly reason about their contents, but their
genres (QA pairs, Reddit threads, etc.) makes it
plausible to expect a high degree of topic-based
overlap: questions and conversations tend to re-
volve around entities (persons and things), with
their actions and properties repeating less often.
This naturally leads to a focus on nouns referring
to prominent entities, which are known to appear
preferentially as subjects or objects for reasons of
coherence (Barzilay and Lapata, 2008), arguably a
good match to the patterns we observe.

5 Related Work

Analysis of transformer-based models for sentence-
level tasks, such as NLI, question answering, or
text classification, has largely followed the same
approaches as found in the general BERTology
(Rogers et al., 2020): probing, analysis of the ge-
ometry of the embedding space, extraction of parts
of input that are particularly important for model
performance, and behavioural analysis. In this vein,
Liu et al. (2021) and Peyrard et al. (2021) analyse
the attention patterns powering the performance of
transformer models on different types of sentence
classification, and Li et al. (2020) show that embed-
dings of sentences computed by BERT-based mod-
els, including siamese-fine-tuned sentence trans-
formers, are anisotropic and can be improved via
normalisation. Chrysostomou and Aletras (2021)
survey the existing methods for extracting ratio-
nales from input sentences in the context of text
classification and propose an improved approach,
while Luo et al. (2021) demonstrate that sentence
embeddings derived by averaging BERT token rep-
resentations suffer from artefacts arising from po-
sitional embeddings. Zhelezniak et al. (2019) ar-
gue that averaging should be replaced with max-
pooling.

Very similar to ours is the approach adopted by
MacAvaney et al. (2022), who construct a series of
probes to analyse the performance of several mod-
els on the task of information retrieval. While their
methodology relies on high-level document statis-
tics and wholistic document manipulation (word
and sentence shuffling, token-frequency similar-
ity between the document and the query, textual
fluency, etc.), our study analyses the role of lin-
guistically motivated structural factors and thus
complements their findings.

Opitz and Frank (2022) aim at directly decom-
posing the representations produced by sentence
transformers into several parts capturing different
properties of sentences reflected in AMR annota-
tions (presence of negation, concepts included in
the sentence, etc.). While our study tries to as-
certain what meaning components dominate the
representations, Opitz and Frank assume that these
components are known in advance and are equally
important: sentence embeddings in their modified
SBERT model are split into 15 segments, each of
which corresponds to one AMR-based meaning
component, plus a residual part to capture every-
thing not covered by AMR annotations.
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6 Conclusion

This paper aims at making a contribution towards
a better understanding of sentence transformers,
which are often seen as black boxes. We have
demonstrated that we can make surprisingly precise
inferences about sentence-pair similarities using
simple linguistic features such as lexical overlap.

The crucial difference between bag-of-words dis-
tributional models and current encoders is that STs
have became quite adept at disregarding ‘irrelevant’
parts of the sentence and concentrating on its key
elements. Unlike vanilla BERT sentence embed-
dings obtained by token averaging, STs yield more
structured embeddings that focus on the matrix
clause and are less tied to individual lexical items
and strings of function words.

This progress, however, comes with a particu-
lar type of bias: the structures that lead to high
sentence similarity in STs, i.e. the overlap in nomi-
nal ‘participant sets’, seem to mirror the dominant
type of paraphrases found in the data the STs were
tuned on, and STs are not compelled to look at
finer structures of input sentences. At least without
further fine tuning, this would appear to make them
unsuitable for downstream tasks that require knowl-
edge about more fine-grained aspects of sentence
structure, such as semantic roles (Conia and Nav-
igli, 2022), or extra-propositional aspects, such as
monotonicity, negation, or modality (Yanaka et al.,
2021; Nakov, 2016).

An interesting direction for future research
would be to explore the ways of decomposing sen-
tence representations into additive aspects such as
participant structure, main predication, etc. The
additional challenge here is that while theoretical
semantics has a lot to say about aspects of sentence
meaning (Pagin, 2016), there remains a lack of
analysis linking the notion of one-dimensional se-
mantic similarity (Agirre et al., 2012) that underlies
the optimisation of current sentence transformers
with theoretically more substantial concepts.

Limitations

The limitations of the proposed analysis are the
following:

1. The analysis is based on synthetic data. This
allows us to fully control the sentence struc-
ture and use balanced lexical material, but it
does not necessarily reflect the performance
of models on real-world data, especially when

sentences or text fragments are much longer.
However, synthetic data have generally shown
to be a good first step toward understanding
the behaviour of complex models.

2. The analysis does not cover graded distinc-
tions between words, i.e. we did not experi-
ment with filling the slots with synonymous
words, as opposed to completely unrelated
words. This makes it impossible to decide if
the models are sensitive to word identities or
to their actual semantics, as long as these two
notions are distinguishable.

3. The outputs of the models are interpreted
using linear regression analysis anchored to
the properties of synthetic sentences. This
kind of analysis makes it possible to disentan-
gle additive effects of different components
of sentence structure and provides statistical-
significance estimates, while high R? values
indicate that our findings have some valid-
ity. However, it cannot fully account for the
lexical effects (which we tried to safeguard
against by carefully selecting template fillers),
non-linear effects, and hidden collinearity pat-
terns (beyond those we addressed using resid-
ualised analysis).

4. The range of models analysed in the paper is
restricted. It covers some amount of variabil-
ity (sentence transformers vs. vanilla BERT;
two different variants of a base model for STs,
one of them distilled), but other combinations
of model architecture and training/fine-tuning
regime can lead to different outcomes.
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mpnet distilroberta bert
SameDet 0.08 0.11 0.26
SameAdv 0.38 0.38 0.96
SamePred 1.02 095 049
SamePunct 0.18 0.26 0.64
SameSubj 2.15 2.17 0.65
R-squared 0.71 0.71 043

Table 8: A summary of the replication models predicting
z-scored pairwise cosine similarities between embed-
dings of sentences with intransitive verbs. All coeffi-
cients are significant with p < 0.001.

A Appendix

A.1 Dimensionality-reduction plots
A.1.1 Simple transitive sentences

A UMAP plot of embeddings of simple transitive
sentences encoded accordings to their properties is
shown in Figure 2.

A.1.2 Transitive sentences with long NP
modifiers

A UMAP plot of embeddings of transitive sen-
tences with lengthy subject modifiers encoded ac-
cordings to their properties is shown in Figure 3.

A.2 Replication-model fits

A.2.1 Simple intransitive sentences

The following lexical items were used for the repli-
cation experiment:

e Nouns: wolf, bear, fruit, vegetable, building,
car, lightning, wave

» Verbs: stabilizes, bursts, grows, shrinks
* Adverbs: suddenly, predictably

A summary of the replication models is shown in
Table 8.

A.2.2 Simple transitive sentences

The following lexical items were used for the repli-
cation experiment:

* Nouns: pig, horse, soldier, farmer, android,
computer, grass, forest, comet, galaxy, cloud,
lightning

* Verbs: hears, pursues, imagines, recognizes,
touches, finds

mpnet distilroberta bert
SameAdv 0.54 0.32 0.95
SamePred 0.49 043 0.75
SubjObj_0A 1.46 1.50 0.70
SubjObj_0B 1.49 1.53 0.66
SubjObj_A0 1.48 1.54 0.76
SubjObj_AB 3.19 323 1.56
SubjObj_B0 1.40 148 0.50
SubjObj_BA 3.07 3.14 1.34
R-squared 0.81 0.8 045

Table 9: A summary of the replication models predicting
z-scored pairwise cosine similarities between embed-
dings of sentences with intransitive verbs. All coeffi-
cients are significant with p < 0.001.

* Adverbs: suddenly, predictably

A summary of the replication models is shown in
Table 9.

A.2.3 Transitive sentences with long NP
modifiers

The following lexical and phrasal items were used
for the replication experiment:

* Nouns: horse, pig, donkey, elephant, bison,
moose

* NP modifiers: missing a hind leg, whose face
we all know, born under a bad sign, pictured
on page seventeen

» Verbs: hears, pursues, imagines, recognizes,
touches, finds

* Adverbs: suddenly, predictably

The overview of the model fits is shown in Table 10.

A.2.4 Coordinated verbal phrases

The following lexical items were used for the repli-
cation experiment:

* Nouns: mouse, horse, fox, kangaroo, bison,
elephant

* Verbs: hears, pursues, imagines, recognizes,
touches, finds

A summary of the replication models is shown in
Tables 11 (individual-word-based models) and 12
(overlap-based models).
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mpnet distilroberta bert
SameMod 1.18 1.26 1.83
SameAdv 0.48 0.26 0.41
SamePred 0.64 0.64 0.44
SubjObj_0A 0.91 1.00 0.18
SubjObj_0B 0.99 1.09 0.17
SubjObj_A0 1.10 1.19 0.24
SubjObj_AB 2.13 232 042
SubjObj_B0 1.16 1.25 0.20
SubjObj_BA 2.11 2.28 0.39
R-squared 0.77 0.84 0.71

Table 10: A summary of the replication models predict-
ing z-scored pairwise cosine similarities between em-
beddings of sentences with transitive verbs and lengthy
subject modifiers. All coefficients are significant with
p < 0.001.

mpnet distilroberta bert
V1Same 0.29 0.18 0.35
V2Same 0.13 0.08 0.28
V3Same 0.39 0.40 0.42
N1Same 0.49 048 0.14
N2Same 0.10 0.25 0.18
N3Same 0.57 0.52 0.17
R-squared 0.12 0.11 0.07

Table 11: A summary of the replication models pre-
dicting z-scored pairwise cosine similarities between
embeddings of sentences with coordinated VPs from
binary predictors. All coefficients are significant with
p < 0.001.

A.2.5 Predicative nominals with gerund
subjects

The following lexical items were used for the repli-

cation experiment:

» Gerund subjects: proposing, rejecting, prais-
ing, criticizing
* Pronomial and nominal objects: him, me, the

idea, the design

* Copula forms (same as in the original experi-
ment): is, was, will be, is going to be

* Nominal predicates: decision, defeat, loss, im-
provement

A summary of the replication models is shown in
Tables 13.

mpnet distilroberta bert
VerbOverlap 0.69 0.52 0.85
NounOverlap 1.05 1.20 047
R-squared 0.69 0.76 0.41

Table 12: A summary of the replication models pre-
dicting z-scored pairwise cosine similarities between
embeddings of sentences with coordinated VPs from
overlap scores. All coefficients are significant with
p < 0.001.

mpnet distilroberta bert
SameSubj 0.82 0.70 0.31
SameCop 0.35 0.30 0.55
SameAdj 0.58 0.79 0.50
SamePred 0.99 1.01 0.52
SameObjNoun 1.01 1.04 0.60
SameObjPron 0.44 0.50 0.42
R-squared 0.50 0.54 0.22

Table 13: A summary of the replication models pre-
dicting z-scored pairwise cosine similarities between
embeddings of sentences with gerund subjects and nom-
inal predicates. All coefficients are significant with
p < 0.001.

A.2.6 Participant-set overlap vs. identical
participants

The following lexical items were used for the repli-
cation experiment:

* Basic nouns: horse, pig, donkey

» Extra nouns: elephant, bison, moose

* Verbs: gives, demonstrates, entrusts

* Adverbs: suddenly, predictably, openly

A summary of the replication models is shown in
Tables 14.
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mpnet distilroberta bert
SameAdv 1.05 1.07 0.64
SamePred 0.93 0.64 0.83
Overlap 0.90 1.00 0.91
SPCRes 0.03 0.02 0.10
R-squared 0.745 0.738 0.57
R-squared
(w/o SPCRes) 0.744 0.737 0.56

Table 14: A summary of the replication models predict-
ing z-scored pairwise cosine similarities between em-

beddings of sentences with ditransitive verbs. SPCRes
stands for SamePosCountRes, i.e. the residuals of the

number of identical words in identical positions re-
gressed on lexical overlap. All coefficients are signifi-

cant with p < 0.001.
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Figure 2: UMAP projections of embeddings of sentences with transitive verbs colour coded according to subject,

object, predicate, and adverb.
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Figure 3: UMAP projections of embeddings of senteng@q gith transitive verbs and long subject modifiers colour
coded according to subject, modifier, object, predicate, and adverb.



