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Abstract
Pretrained language models have been shown
to store knowledge in their parameters and
have achieved reasonable performance in com-
monsense knowledge base completion (CKBC)
tasks. However, CKBC is knowledge-intensive
and it is reported that pretrained language
models’ performance in knowledge-intensive
tasks are limited because of their incapa-
bility of accessing and manipulating knowl-
edge. As a result, we hypothesize that pro-
viding retrieved passages that contain relevant
knowledge as additional input to the CKBC
task will improve performance. In particular,
we draw insights from Case-Based Reason-
ing (CBR) – which aims to solve a new prob-
lem by reasoning with retrieved relevant cases,
and investigate the direct application of it to
CKBC. On two benchmark datasets, we demon-
strate through automatic and human evaluations
that our End-to-end Case-Based Reasoning
Framework (ECBRF) generates more valid
knowledge than the state-of-the-art COMET
model for CKBC in both the fully supervised
and few-shot settings. From the perspective of
CBR, our framework addresses a fundamental
question on whether CBR methodology can be
utilized to improve deep learning models.

1 Introduction

Commonsense knowledge helps humans navigate
everyday situations seamlessly (Apperly, 2010) and
is required for many intelligent scenarios (Davis
and Marcus, 2015). To automatically enlarge the
scale of commonsense knowledge base for the ben-
efit of reducing labeling labor and expense, Knowl-
edge Graph Completion (KGC) has become a hot
research topic (Ji et al., 2022). The general KGC
task is to expand existing knowledge graphs by us-
ing well-trained classifiers—they are trained with
existing annotated samples and predict whether or
not there is a relationship between two existing en-
tities in a knowledge graph (Wang et al., 2017).

∗Contribution starts from their stay at Cornell.

Subject Relation Object

hardware shop at location mall

world map has property draw with grid-lines

PersonX receives its reward wants to keep the prize

PersonX wins the big Jackpot wants to get its money

Table 1: Commonsense knowledge base tuples. Exam-
ples are from ConceptNet and Atomic.

Although KGC methods can automatically find un-
labeled relationships, they are always classification
or ranking tasks and are limited to existing entities
in a knowledge graph and can’t extend to new en-
tities (Ji et al., 2022). To extend to new entities,
COMET (Bosselut et al., 2019) proposes to use
text generation for exploring and discovering new
entities, which is called commonsense knowledge
base completion (CKBC) task, utilizing the knowl-
edge within the pretrained language models (PLM),
which has been with process in recent years (De-
vlin et al., 2019; Radford et al., 2019). Specifically,
COMET uses subject and relation as direct input to
PLM and aims to generate objects, most of which
are novel and unseen entities.

However, CKBC is knowledge-intensive, requir-
ing wide-ranging and detailed knowledge; and it is
reported that the ability of pretrained language mod-
els to access and precisely manipulate knowledge
is limited (Lewis et al., 2020b). One potential so-
lution to this is to provide “non-parametric knowl-
edge" through additional input. Lewis et al. (2020b)
and Guu et al. (2020), for example, have shown
that by retrieving passages that contain knowledge
relevant to the current task, performance can be im-
proved. For CKBC, unfortunately, it might be espe-
cially difficult to find useful passages that contain
relevant commonsense knowledge from the web
due to a reporting bias (Gordon and Van Durme,
2013) in which people rarely express the obvious
(i.e., commonsense knowledge).

An example of reporting bias from Table 1 is
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that people rarely say “when a person wins a big
Jackpot, he/she will want to get its money” because
it’s too obvious and meaningless to say. Therefore,
instead of retrieving passages from the web, we pro-
pose that benefits can still be gained by retrieving
relevant knowledge from a “case base” of existing
commonsense knowledge tuples1 and using the re-
trieved knowledge as non-parametric knowledge
(i.e., beyond that represented in the model parame-
ters) to augment the current CKBC input example.
In addition, to prevent ECBRF from overfitting
to some commonly retrieved cases, we propose
randommask as a training strategy that randomly
masks the retrieved cases during training, which
functions similar to dropout (Srivastava et al., 2014)
and further improves the performance of the frame-
work. We also analyze several variations to better
understand the process.

Although past attempts suggest that similar
retrieval-based methods cannot improve the per-
formance of CKBC (Wang et al., 2021), on two
benchmark datasets, we demonstrate through au-
tomatic and human evaluations that our End-to-
end Case-Based Reasoning Framework (ECBRF) 2

generates more valid and informative knowledge
than (1) the state-of-the-art COMET model (Bosse-
lut et al., 2019) for CKBC which employs no case
retrieval, and (2) a baseline model that employs
random case retrieval – on both fully supervised
and few-shot settings. We also provide an analysis
on why different conclusions are reached.

In addition, our framework draws insight from
Case-Based Reasoning (CBR), and also has con-
tributions to the CBR research. CBR is a sub-
ject in classical AI that solves a new problem by
reusing the solutions of retrieved seen similar prob-
lems stored in the case base (Aamodt and Plaza,
1994). CBR’s methodology has four steps — case
retrieval, reuse, revise and retain. Past years of
accomplishment in deep learning (DL) have led to
enthusiasm in the CBR community to apply DL in
the service of CBR. However, based on the obser-
vation that many challenges remain in DL where
CBR has advantages (e.g. few-shot learning), some
CBR researchers (Leake and Crandall, 2020) ad-
vocate using CBR to complement DL. However,
past works on using CBR to complement DL only
limit to shallow Neural Networks (NN) (Liao et al.,
2018; Leake et al., 2021; Ye et al., 2021, 2022).

1Initialized with tuples from training set or external data.
2Code available at https://github.com/ZonglinY/

ECBRF_Case_Based_Reasoning_with_PLM.git

The latest work even suggests that in many tasks
NN itself outperforms CBR-complemented NN (Ye
et al., 2022), which raises fundamental questions
on whether CBR methodology is useful for DL.

Our work addresses this doubt by being the first
to show a concrete implementation of the integra-
tion of the full methodology of CBR to PLM (as
one typical model in DL) (we show in §6 that we
simulate the third step in the methodology of CBR
instead of actually implement it, since it requires
huge human efforts) and show that the integra-
tion method can benefit from multiple steps in the
methodology of CBR, and can lead to better perfor-
mance over PLM itself in both fully supervised set-
tings and few-shot settings on CKBC. Notably our
proposed framework has a larger advantage in few-
shot settings, where CBR methods typically have
advantage. We also find that the generation of our
framework is largely related to the retrieved case
especially when they are similar, which exhibits
strong case-based reasoning patterns. In addition,
a detailed analysis of our framework from a CBR
perspective is provided in §6.

Our contributions can be summarized as follows:
(1) Drawing insights from CBR, we introduce a
new end-to-end framework for CKBC task. We
also propose training strategies that can better uti-
lize the retrieved knowledge. (2) We conduct ex-
tensive experiments on the CKBC task in various
settings (e.g. fully supervised and few-shot), and
the results consistently demonstrate that our pro-
posed framework achieves improvements over the
state-of-the-art baseline methods. (3) From the
perspective of the CBR community, whether CBR
methodology can be used to improve DL models
remains a fundamental research question. We ad-
dress this doubt by being the first to show a con-
crete implementation of the integration of the full
methodology of CBR to PLM, and showing that
such integration can achieve better performance
than single PLM. A thorough analysis of the inte-
gration from CBR perspective is also provided.

2 Related Work

Case-Based Reasoning CBR is a subject in clas-
sical AI which consists of 4 sub-processes in
its methodology: retrieve, reuse, revise and re-
tain (Aamodt and Plaza, 1994). Leake and Cran-
dall (2020) advocate using CBR to complement the
challenges in deep learning (e.g., few-shot learn-
ing). §A.4 provides more detailed related works
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relevant to this line. Specifically, our framework
is inspired by Watson (1999)’s proposal that com-
pared to CBR being described as an artificial intel-
ligence technology , it is better to describe CBR as
a methodology for problem solving, that may use
any appropriate technology. Here we treat CBR
as a methodology and deep learning as technology
that uses CBR as the general high-level process and
deep learning as components of the process.

Reasoning in NLP CBR could be seen as a
type of analogical reasoning (Kolodner, 1997), and
analogical reasoning belongs to inductive reason-
ing (Salmon, 1989). Inductive reasoning (Yang
et al., 2022) is different from deductive reason-
ing (Clark et al., 2020) (both belong to logical rea-
soning) that the premise in inductive reasoning can
not provide conclusive support to its conclusion.

Commonsense Knowledge Base Completion
Here we mainly describe works that use text gen-
eration models for this task. Li et al. (2016) pro-
pose models to evaluate the full knowledge tuple
rather than generate new knowledge. Saito et al.
(2018) make an extension by proposing a joint
model for the completion and generation of com-
monsense tuples. However, their work focuses
on augmenting knowledge base completion model,
rather than to increase coverage in commonsense
knowledge base construction. Yao et al. (2019)
and Malaviya et al. (2020) focus on link predic-
tion and ranking of knowledge, which is a different
task with our generative CKBC task. Sap et al.
(2019) use LSTM (Hochreiter and Schmidhuber,
1997) to generate commonsense knowledge and
Bosselut et al. (2019) further leverage pre-trained
language models to generate commonsense knowl-
edge. Gabriel et al. (2021) present the task of
discourse-aware commonsense inference and pro-
poses a memory-based model to generate common-
sense knowledge that is more coherent with con-
text. Wang et al. (2021) give an analysis on knowl-
edge capacity, transferability, and induction of pre-
trained language models to perform generalizable
commonsense inference. Da et al. (2021) analyze
the few-shot learning ability of pretrained language
models for CKBC task. Unlike these works, we
propose a model that can improve the performance
of generative CKBC tasks in both fully supervised
settings and few-shot settings.

Language Model Prompting First developed by
the GPT series (Brown et al., 2020), retrieved data

are used as augmented input to improve few-shot
performance of remarkable large models. However,
past research suggest that such in-context learning
cannot improve the CKBC task (Wang et al., 2021),
and we are the first to show how in-context learn-
ing is useful for CKBC. In addition, such large
models are hard to obtain and Brown et al. (2020)
do not explore the finetuning performance, neither
do they explore the full CBR methodology’s ef-
fect on PLM. Gao et al. (2021) use prompting and
also incorporate demonstrations into context to im-
prove few-shot performance. Their work, however,
only focuses on classification tasks and regression
tasks, which is different from the CKBC. Similar
to our work, Das et al. (2021) use retrieved cases as
prompt to improve the performance of PLM. How-
ever, they only focus on question answering task
and do not integrate the full methodology of CBR,
missing important steps such as retain.

3 Task Definition

In the generative CKBC task, a knowledge data in-
stance is represented as a tuple of subject, relation,
and object: (sub, rel, obj). All sub and obj are
in natural language phrases (Figure 1). rel can be
used as either a special token or the corresponding
natural language phrases (Bosselut et al., 2019).
Here we use rel as natural language phrases. The
task is that given a pair of sub and rel, the goal is
to generate the corresponding obj.

4 Methodology

We start by formalizing our framework as a retrieve-
then-predict generative process. Then in §4.2, we
describe our ECBRF’s modules for the generative
process in detail. Finally, we present a hybrid train-
ing strategy for better regularization.

Figure 1 describes our method. In the figure,
“query” stands for a sub and rel pair which is used
as input to ECBRF to generate obj. “Case Base” is
initialized with knowledge triples from the training
set. “Cases” means the retrieved knowledge triples
from the “Case Base”. “In-context demonstrations”
stand for the retrieved cases that are used for input
augmentation (concatenate with the query). The
subject, relation, and object of the retrieved cases
are sub-scripted with “r” (e.g., subr).

4.1 ECBRF’s Generative Process

ECBRF takes x as input and learns a distribution
p(y|x) over possible outputs y. Here x consists of
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Neural Knowledge Retriever 
 ∼ pθ(z |x)

PersonX wins any money | As a result, PersonX wants to    (x)
query  (sub, rel)

  PersonX receives its reward | As a result, PersonX wants to → keep the prize 
  PersonX wins the big Jackpot | As a result, PersonX wants to → get its money 
  …                                                                                                                  

(z1)(z2)(z3) (s)

retrieved cases

save the money for a future purchase  (y)
output  (obj)

[CLS]   PersonX receives its reward | As a result, PersonX wants to → keep the prize                                 
             PersonX wins the big Jackpot | As a result, PersonX wants to → get its money    
             … 

  [SEP]  PersonX wins any money | As a result, PersonX wants to →                                                                                                     

(z1)(z2)(z3) (s, x)

cases and query

Case-Augmented Encoder 

 ∼ pφ(y |s, x)

     Case Base
  

  
(subr, relr, objr)(Z)

step 1 of CBR: retrieve

In-context 
demonstrations

step 2 of CBR: reuse step 3 & step 4 of CBR: 
revise and retain

Figure 1: Our end-to-end case-based reasoning framework (ECBRF) for commonsense knowledge base completion.
It involves all four steps of the CBR methodology (retrieve, reuse, revise and retain).

sub and rel, and y consists of obj. More specifi-
cally, ECBRF decomposes p(y|x) into two steps:
retrieve and predict. Given an input x, we first re-
trieve similar cases z1, z2, ... (each case zi consists
of subr, relr and objr) from case base Z, while
(x, y) /∈ zi. We model this as a sample from the
distribution p(z|x).

Then we use zi in a number of m to compose a
supporting set s (for each query, one supporting set
is used for input augmentation). Specifically,

p̂(s|x) =
∑

zi∈top-m(p(.|x))
p(zi|x) ((x, y) ̸∈ z) (1)

p(si|x) = exp p̂(si|x)∑
j exp p̂(sj |x)

(2)

Then we condition on both the supporting set s
and the query x to generate the output y, modeled
as p(y|s, x). To obtain the overall likelihood of
generating y, we treat s as a latent variable and
marginalize s via a top-k approximation, yielding:

p(y|x) =
∑

s∈top-k(pθ(.|x))
pθ(s|x)pφ(y|s, x) (3)

4.2 Model Architecture

We now detail two key components – the neu-
ral knowledge retriever, which models pθ(z|x);
and case-augmented encoder, which models
pφ(y|s, x).

Neural Knowledge Retriever The retriever uses
max inner product search (MIPS) to retrieve z.
Specifically, the retriever is defined using a dense
inner product model:

pθ(z|x) = exp f(x, z)∑
z′ exp f(x, z

′)
(4)

f(x, z) = Embedquery(x)
TEmbedcase(z) (5)

where Embedquery is an embedding function
that maps sub and rel in the query input to a
d−dimensional vector, and Embedcase is an em-
bedding function that maps subr, relr and objr
in the knowledge tuples in memory store to a
d−dimensional vector. The relevance score f(x, z)
between x and z is defined as the inner product of
the vector embeddings. The retrieval distribution
is the softmax over relevance scores between top-k
retrieved cases and current query input.

We implement the embedding functions
Embedquery and Embedcase using two DPR-
based models (Karpukhin et al., 2020). The
input format for query x is the concatenation of
subject and relation: [CLS] sub [SEP] rel [SEP];
And the input format for case z is the con-
catenation of the subject, relation, and object:
[CLS] subr [SEP] relr objr [SEP].

Case-Augmented Encoder Given an input x and
a supporting set s, the case-augmented encoder
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defines:

pφ(y|s, x) =
N∏

i

pφ(yi|x, s, y1:i−1) (6)

We use BART (Lewis et al., 2020a) and GPT-
2 (Radford et al., 2019) as the base model for case-
augmented encoder.

We also add prompts which we find is help-
ful. The input format (with prompts and in-context
demonstrations) for case-augmented encoder is:

Here are some similar cases to infer from: z0 z1
... zm−1 From the similar cases we can infer that:
[SEP] sub rel

Zhao et al. (2021) show that pre-trained language
model has “Recency Bias”, which is the tendency
to repeat answers that appear in the last in-context
demonstration in classification tasks. We analyse
this strategy for the generative CKBC task (we call
it “reverse demonstration”) that the most similar
case from the retriever is placed as the last demon-
stration, the second most similar case in the second
last demonstration, and so on.

4.3 Training Method

Since the purpose of in-context demonstration is
only to provide ancillary information, the model
should be able to predict obj w/ or w/o it. There-
fore here we design a specific training strategy
for ECBRF – during training, we randomly mask
out in-context demonstrations and only keep the
(sub, rel) query for some training examples with
probability pmask. It is designed to function sim-
ilarly to dropout to prevent overly relying on re-
trieved cases.

5 Experiments & Analysis

In this section, we introduce the experiment
datasets and evaluation details, as well as exper-
iment setups and the experiment results, measured
with automatic and human evaluations.

5.1 Datasets and statistics

We evaluate ECBRF using two automatic common-
sense knowledge base completion benchmarks —
ConceptNet (Speer et al., 2017) and ATOMIC (Sap
et al., 2019). In total, ConceptNet contains 101,800
tuples and ATOMIC contains 877,077 tuples. We
use the same data split as COMET (Bosselut et al.,
2019) did. In ATOMIC, around 17% of the labeled
knowledge tuples use “None” as the object. As a
result, models can easily get high performance by

always generating “None”. To better evaluate, we
don’t use knowledge tuples with the object being
“None” for both training and evaluation. Apart from
using the entire train set for training, we also con-
duct experiments in the few-shot settings — where
the model is only trained with 5 to 320 knowledge
tuples3. More details on data pre-processing is
shown in §A.7.

5.2 Evaluation Details

For automatic evaluation metrics, following Bosse-
lut et al. (2019) we use BLEU-2, perplexity, and
novelty metrics (including %N/T-sro, %N/T-o, and
%N/U-o). Specifically for novelty metrics, we re-
port the proportion of all generated tuples that are
novel tuple (%N/T-sro) (here novel means unseen
in train set), have a novel obj (%N/T-o), and the
proportion of the set of unique obj in all generated
objects (%N/U-o).

In addition to automatic evaluation, we also per-
form human evaluation, including validness, in-
formativeness, and preference score. For valid-
ness and informativeness, following Gabriel et al.
(2021), the score is based on a 5-point Likert
scale (with 5 points the highest score). For valid-
ness, following Gabriel et al. (2021), we judge the
validness of the generated new knowledge by the
likelihood of inferences based on a 5-point Likert
scale (with 5 points the highest score). Specifically,
obviously true (5), generally true (4), plausible (3),
neutral or unclear or basically a repetition (sub-
sentence) of the query (2), and doesn’t make sense
(1). For informativeness, the rating standard is also
based on a 5-point Likert scale. Specifically, rich in
relevant details (5), has relevant details (4), it seems
some details are provided (3), basically a repetition
(sub-sentence) of the query (2), unfinished genera-
tion (1). For preference score, We ask the human
raters to compare the generations between ECBRF
and COMET. Specifically, a valid generation with
more information provided will be assigned 1.0
point, and a generation that is not valid or with less
information will be assigned 0.0 instead. However,
if the two generations perform comparably, both
generations will be assigned 0.5 points.

Following Bosselut et al. (2019), for each ex-
periment and for each model, we sample 100 gen-
erations for human evaluation. Each generation
is rated by three graduate students. During the

3Note that for the few-shot settings, our ECBRF’s case
base is also initialized with 5 to 320 tuples
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ConceptNet 5-shot 20-shot 40-shot 160-shot 320-shot Full (100%)

COMET (GPT2)∗ 374.32 / 0.33 339.19 / 0.58 282.76 / 0.38 58.59 / 1.44 41.23 / 2.29 13.04 / 3.37
ECBRF (GPT2) 284.67 / 0.51 220.07 / 0.59 102.46 / 1.63 52.10 / 1.61 38.63 / 2.59 13.60 / 2.83

COMET (BART)∗ 14.26 / 1.15 11.31 / 1.64 9.48 / 3.70 6.60 / 6.70 5.44 / 9.57 2.90 / 20.19
ECBRF (BART) 12.85 / 1.20 9.53 / 2.11 8.70 / 3.17 6.19 / 6.20 5.22 / 9.31 2.93 / 18.55

w/ random mask 13.68 / 1.40 9.82 / 2.02 8.98 / 2.96 6.14 / 6.88 5.05 / 10.71 2.86 / 19.97
w/o reverse demonstration 13.02 / 1.20 9.60 / 1.84 8.74 / 2.95 6.21 / 6.13 5.06 / 10.12 2.92 / 19.80
w/ rand retrieval 13.23 / 1.00 10.15 / 2.61 9.24 / 3.45 6.42 / 6.21 5.40 / 8.93 2.91 / 20.29

ATOMIC 5-shot 20-shot 40-shot 160-shot 320-shot Full (100%)

COMET (GPT2)∗ 753.93 / 2.11 512.11 / 3.44 409.30 / 2.32 209.78 / 2.73 165.28 / 2.68 67.95 / 4.00
ECBRF (GPT2) 653.90 / 2.30 416.16 / 2.89 319.12 / 2.26 182.43 / 2.92 163.56 / 2.86 67.35 / 4.05

COMET (BART)∗ 19.72 / 5.76 16.83 / 5.38 13.58 / 9.20 14.30 / 11.56 14.45 / 12.67 6.98 / 19.34
ECBRF (BART) 18.17 / 5.16 14.73 / 3.85 13.05 / 10.13 15.19 / 10.13 14.61 / 11.66 6.95 / 19.06

w/ random mask 18.50 / 5.29 14.93 / 4.04 13.01 / 7.47 14.52 / 12.42 14.53 / 12.64 6.96 / 19.22
w/o reverse demonstration 18.13 / 5.58 14.70 / 3.89 12.99 / 5.14 15.15 / 10.18 15.65 / 10.95 6.95 / 19.24
w/ rand retrieval 18.16 / 4.33 14.66 / 3.64 12.96 / 4.70 14.60 / 11.76 14.80 / 12.91 6.96 / 19.02

Table 2: Perplexity (↓) / BLEU (↑) scores on ConceptNet (upper) and ATOMIC (down). The best scores for each
setting are boldfaced. ∗: baseline models (our own implementation).

20-shot (BART) 160-shot (BART) Full (BART)

ConceptNet

COMET 0.37 / 1.76 / 1.74 0.42 / 2.86 / 2.69 0.47 / 3.87 / 3.49
ECBRF 0.63 / 2.47 / 2.38 0.58 / 3.26 / 3.13 0.53 / 3.95 / 3.58

ATOMIC

COMET 0.43 / 2.21 / 2.27 0.44 / 3.05 / 3.05 0.47 / 3.59 / 3.36
ECBRF 0.57 / 2.44 / 2.58 0.56 / 3.22 / 3.17 0.53 / 3.64 / 3.43

Table 3: Human evaluation results using preference
score, validness, and informativeness.

sub: PersonX spends ___ working;
rel: As a result, others feel

Ground truth: [’happy’, ’happy to have x in their life’]

COMET’s generation: happy (BLEU: 31.62)
ECBRF’s generation: satisfied with personx’s work (BLEU: 0.00)

Table 4: An example to show that BLEU is not a perfect
metric for CKBC.

evaluation the order of the two generations to be
compared are randomized for each selection, there-
fore human raters have no clue on which choice is
associated with which model. More details about
human evaluation can be found at §A.6.

5.3 Experimental Setup
Baselines We use COMET (Bosselut et al., 2019)
as our baseline. COMET is originally implemented
with GPT (Radford et al.), a pretrained language
model as the base model and uses subject and rela-
tion as direct input and uses the generation result as
object. Here we compare two versions of COMET,

20-shot (BART) 160-shot (BART) Full (BART)

ConceptNet

COMET 98.00 / 13.46 / 58.99 92.22 / 14.83 / 61.83 57.83 / 5.57 / 71.29
ECBRF 96.64 / 21.24 / 51.10 93.27 / 16.09 / 65.83 59.62 / 4.84 / 73.08

ATOMIC

COMET 100.0 / 58.18 / 15.83 100.0 / 30.92 / 29.11 100.0 / 9.21 / 17.93
ECBRF 100.0 / 82.16 / 22.79 100.0 / 34.96 / 29.70 100.0 / 6.49 / 15.37

Table 5: Novelty evaluation results using %N/T-sro,
%N/T-o, and %N/U-o.

one is GPT-2 (Radford et al., 2019) based and an-
other is BART (Lewis et al., 2020a) based. Both
GPT-2 and BART are more powerful pretrained
language models than GPT. We leave the details of
hyperparameters in §A.1.

5.4 Main Results

Automatic evaluation results on BLEU-2 and per-
plexity are shown in Table 2. We present results
with human evaluations in Table 3. Automatic eval-
uation of novelty is shown in Table 5. Table 2
shows that random mask is constantly helpful for
ECBRF when the train set is equal or larger than
160. Therefore we adopt random mask for ECBRF
when the train set is equal to or larger than 160 in
Table 3 and Table 5.

Table 2 shows that regardless of the selection
of base models, ECBRF consistently outperforms
the COMET baseline in almost all perplexity mea-
sures and most BLEU measures. We argue that
BLEU is not a perfect metric for CKBC (Sai et al.,
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sub: PersonX wants to play with PersonY
rel: Before, this person needed

One retrieved case by ECBRF:
PersonX plays tennis with PersonY’s friend,
Before, this person needed, get a tennis racket

COMET’s generation: to have a game
ECBRF’s generation: to find a tennis court

Table 6: An example to show how the retrieved cases
influence the generated obj.

2023), since each sub and rel pair can lead to more
than one feasible obj, and BLEU can only refer
to a limited set of ground truth obj. Even if a
model generates a reasonable obj, it may yield a
low BLEU, because the generated obj is not in the
ground truth set.

Table 4 shows one typical example from
ATOMIC that shows although ECBRF’s genera-
tions are reasonable, they only receive low BLEU
scores (More examples in §A.2). Table 3 shows
that ECBRF consistently outperforms COMET in
preference score, validness, and informativeness in
human evaluation, especially in few-shot setting. In
practice, we observe that in few-shot setting, BART
without retrieval tends to repeat the query during
generation, while retrieved cases seem to be able to
provide knowledge and guidance to generate more
proper obj.

Table 5 shows that the generated obj of ECBRF
are generally novel especially in few-shot set-
tings. We empirically attribute the lower novelty
of ECBRF in full train set to that ECBRF some-
times tends to copy proper retrieved obj as genera-
tion. The reason %N/T-sro score is always 100.0 in
ATOMIC is that the (sub, rel) pairs in ATOMIC’s
train set and test set do not overlap.

We attribute the different conclusions reached
on whether in-context demonstrations (ICD) with
finetuning can be beneficial to CKBC (Wang et al.,
2021) to that (1) ICD is more useful in few-shot
settings, so that investigation on full train set set-
ting might not discover this advantage; (2) human
evaluation is the most precise metric for the task
while BLEU is not so only evaluating with auto-
matic metrics could not be precise; (3) ECBRF
uses random mask, which is empirically found to
be helpful in performance when using a large train
set.

5.5 Ablation Study of ECBRF

In Table 2, we show some ablation studies of
ECBRF. “w/ rand mask” stands for the ECBRF

model using random mask (pmask = 30%); “w/o
reverse demonstrations” stands for the ECBRF
model without using reverse demonstrations; and
“w/ rand retrieval” represents an ECBRF model
that uses randomly searched cases instead of MIPS
search.

Both tables for automatic evaluation show that
using random mask can generally lead to better per-
formance for ECBRF in both perplexity and BLEU
when the training set is larger, while lead to worse
performance when the number of training set is less
than 160. Our interpretation is that, when the train
set is very small, the model can benefit from over-
relying to the retrieved cases; while when the train
set is large, PLM can still benefit from the retrieved
cases but the over-relying could be harmful.

The tables also show that “reverse demonstra-
tion” only leads to comparable performance, which
might indicate that the order of retrieved cases
does not make a difference in a generative task
(as CKBC).

From the tables, we also observe that ECBRF
with MIPS retrieval consistently leads to bet-
ter performance than ECBRF with random re-
trieval in terms of perplexity in ConceptNet exper-
iments, while performs comparably with ECBRF
in ATOMIC experiments. Notice that the required
generation in ConceptNet is usually shorter and
more similar compared to ATOMIC. Therefore
our interpretation is that, only when the retrieved
cases are enough similar to the input query and
its designed golden generation, can the retrieved
cases significantly benefit the generation process
(towards golden generation).

5.6 Qualitative Analysis on How Retrieved
Cases Influence obj Generation

Table 6 shows one example of the generation of
ECBRF and COMET (more examples are shown
in §A.3). It shows that ECBRF’s generation is
related to the retrieved case, exhibiting the case-
based reasoning ability of reusing the retrieved old
experience to solve new problems.

6 Further Analysis from Perspective of
CBR

CBR methodology contains 4 sub-processes, which
are retrieve, reuse, revise and retain. More specifi-
cally, when given a new problem, the method first
retrieves the most similar cases, then reuses the in-
formation in that case to solve the new problem by
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Figure 2: ECBRF’s performance (perplexity (↓) /
BLEU (↑)) with regard to different numbers of demon-
strations and different pmask. Experiments on the left
figure use ConceptNet 40-shot train set, and the right
figure use ConceptNet 320-shot train set (since random
mask is only helpful on large train set).

proposing a new solution, then revises the proposed
solution according to the feedback of adopting it
in real application scenarios (revise step usually
involves human’s effort), and finally select high
quality revised solutions together with their prob-
lems as new cases to retain to case base.

We provide an analysis of how the high-level
methodology of CBR (retrieve, reuse, revise and
retain) shapes the design and how the selection
details of CBR-related components improve the
performance of our end-to-end DL framework.

Step 1: Retrieve Retrieve is an important step
since the effectiveness of a CBR system largely
relies on its ability to retrieve useful previous
cases (Montazemi and Gupta, 1997). Here we use
neural knowledge retriever (DPR) for retrieving
the most similar cases. Table 2 shows the results of
ECBRF using MIPS retrieval and random retrieval.
As illustrated in §5.5, from the experimental results
we hypothesize that ECBRF tends to make gener-
ations that are similar to the retrieved cases. This
hypothesis is consistent with insights from CBR
that the retrieve step is essential for guiding the
reuse step. However, the difference lies in that
CBR insights rely on retrieve step more (with ir-
relevant retrieval it would be particularly hard for
reuse), while PLM seems to be able to benefit
from even random retrieval.

Step 2: Reuse Here we use case-augmented en-
coder to automatically reuse the retrieved cases.

Figure 2a shows the effects of number of
retrieved cases. We observe that when case-
augmented encoder uses 3 cases, it reaches the best
perplexity, and nearly the best BLEU performance.

Figure 2b shows the effects of pmask. Only when
pmask is 1.0, in-context demonstrations are not
used at test time, which makes the model the same

Perplexity BLEU

ECBRF 8.70 3.17
w/ only objr 8.90 3.26
w/o prompt 9.01 3.44
w/ larger case base 7.90 3.69

Table 7: Ablation Study: effect of subr, prompt, and
the retain step (perplexity (↓) / BLEU (↑)). Results of
this table use ConceptNet 40-shot train set.

as COMET. As we gradually increase pmask, per-
plexity keeps improving and BLEU-2 reaches the
global maximum when pmask is 0.3. It is also inter-
esting to see empirically how the case-augmented
encoder gradually learns to reuse the retrieved
cases to increase the performance of the deep learn-
ing model as we gradually decrease pmask.

In CBR, the reuse of the retrieved case’s solution
contains two steps: (a) find the difference between
the past and the current queries and (b) adapt the
retrieved solution to the current query (Aamodt and
Plaza, 1994). So it is important to know the dif-
ference between the past queries and the current
input query for better adaptation. Table 7 shows the
comparison between the result of only using objr
(the retrieved cases’ object phrases) as in-context
demonstrations and the result of ECBRF (uses both
subr, relr and objr), and we observe that ECBRF
performs better in perplexity. but a little bit worse
in BLEU. This result indicates that deep learning
based case-augmented encoder is possible to au-
tomatically learn and reason from the difference
between the past queries and the current input
query for reuse. We leave further investigations
on whether PLMs can learn to compare the differ-
ence between the past queries and the current input
query as an open research question.

We use prompts to indicate the role of retrieved
cases and current query in input. Table 7 shows that
case-augmented encoder with the prompt performs
better in perplexity while a bit worse on BLEU,
indicating that usage of a prompt is possible to help
the model better reuse the retrieved cases.

Step 3 & 4: Revise and Retain Since revise
typically involves human efforts, here we simulate
revise and retain and see their effect on our frame-
work. The result of revise and retain is a larger
case base with more high quality data, and the pa-
rameters of the model for reuse are not necessarily
updated according to the new data. Here we simu-
late the effect of revise and retain by first training
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ECBRF in a low-resource experiment (with a small
case base), then at test time we expand the case
base to the full train set. Table 7 shows that, at test
time, ECBRF with access to a larger case base sub-
stantially outperforms ECBRF (with access to only
a small case base), although the parameters have
not been updated with the new data. This result
demonstrates that our framework can benefit from
CBR’s methodology as revise and retain.

7 Conclusion

Drawing insights from CBR, we propose an end-
to-end framework for the CKBC task. We demon-
strate through automatic and human evaluations
that our framework generates more valid knowl-
edge than the state-of-the-art COMET model in
both the fully supervised and few-shot settings.
From the perspective of CBR, our framework ad-
dresses a fundamental question on whether CBR
methodology can be utilized to improve deep learn-
ing models.

8 Future Works and Challenges

In general, we hope this work could provide some
insights to bridge the two research areas, clas-
sic AI (Case-Based Reasoning) and deep learning
based NLP methods together, and therefore to ad-
vance the research of both fields from each other’s
research developments.

From the aspect of NLP methods, for example,
new prompting methods could be further developed
based on insights from CBR research; The concept
of revise and retain from CBR could be paid more
attention to investigate their interaction with in-
context demonstrations (prompting).

From the aspect of CBR, this work provides a
tentative answer to the two long-remaining chal-
lenges — (1) whether CBR can be used to comple-
ment DL (Leake and Crandall, 2020), given that
the latest work even suggests that in many tasks
NN itself outperforms CBR-complemented NN (Ye
et al., 2022); (2) the adaptation (reuse step) of pre-
vious cases to the current case is a very challenging
problem, so that in many fields the CBR method-
ology is used only as a retriever (Choudhury and
Begum, 2016). How to further answer these two
questions could be a challenging research topic.

9 Limitations

From the perspective of CBR, we have shown
through experiments that our framework can per-

form retrieve and reuse steps, and can benefit from
revise and retain steps. But the revise step in CBR
typically involves human efforts, and this paper
does not focus on addressing this challenge. As
a result, our framework might still need manual
efforts to benefit from revise and retain.

However, human efforts could be more effi-
ciently utilized for revise than writing new data
from scratch. Since comparing with requesting the
workers to write the knowledge from scratch, re-
vising the existing generations of ECBRF could be
much faster.
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A Appendix

A.1 Hyperparameters
We use a common training hyperparameters setup
for PLM, and the variance of hyperparameters such
as batch size is mainly determined by the computa-
tional resources.

Specifically, batch size is 32 for all ATOMIC
experiments; is 16 for all BART-based ConceptNet
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experiments; is 8 for all GPT2-based ConceptNet
experiments. Learning rate is 1e-5 for all exper-
iments. The remainder of our training hyperpa-
rameters is the same as COMET (Bosselut et al.,
2019) for full train set experiments. For few-shot
experiments, we adapt the warm up steps accord-
ingly (more details can be found in our public re-
lease code).

For decoding hyperparameters, we use greedy
decoding for all BART experiments (since Bosse-
lut et al. (2019) suggests that greedy decoding can
lead to the best human evaluation results); and
use topk (k=50) decoding for all GPT2 experi-
ments (since with greedy decoding many gener-
ations of GPT2 model is only the end of text to-
ken; with randomly sampling a concrete generation
could be made via multiple attempts).

A.2 Examples that BLEU not a Perfect Metric
Table 8 shows three examples with three different
rel from ATOMIC that shows although ECBRF’s
generations are reasonable, but they only receive
low BLEU scores.

This table shows that sometimes a good gen-
eration is assigned with a low BLEU score, espe-
cially when the generation is novel and unseen from
the ground truth set. Table 5 shows that ECBRF
produces more novel generations compared with
the COMET baseline, which might make ECBRF
suffer more from the imperfectness of the BLEU
score.

A.3 Examples on How Retrieved Cases
Influence ECBRF

Table 9 shows three examples of the generation of
ECBRF and COMET.

This table shows that many ECBRF’s genera-
tions are related to the retrieved case, exhibiting
the case-based reasoning ability of reusing the re-
trieved old experience to solve new problems.

A.4 More Related Works on CBR
Leake and Crandall (2020) advocate using CBR to
complement the challenges in deep learning (e.g.,
few-shot learning). However, past works on us-
ing CBR to complement DL only limit to shallow
Neural Networks (NN) (Liao et al., 2018; Leake
et al., 2021; Ye et al., 2021, 2022). The latest work
even suggests that in many tasks NN itself outper-
forms CBR-complemented NN (Ye et al., 2022),
which raises fundamental questions on whether
CBR methodology is useful for DL. Other relevant

works include only use CBR to improve the ex-
plainability of deep learning models (Keane et al.,
2021), or use CBR to improve the performance of
symbolic reasoning (Das et al., 2020a,b).

A.5 Future Applications of ECBRF

Although experiments in this paper are only con-
ducted under the commonsense knowledge base
completion task, ECBRF could potentially be
utilized by other commonsense reasoning tasks,
such as temporal commonsense reasoning (Yang
et al., 2020), commonsense based sentiment analy-
sis (Cambria et al., 2022), and metaphor process-
ing (Mao et al., 2018) (similar to CBR, metaphor
is also highly related to analogical reasoning).

A.6 Human Evaluation Details

Inter-annotator agreement Since we have three
annotators for human evaluation, and the spearman
correlation is to compare two rank lists, we cal-
culate the averaged spearman correlation for each
metric. Specifically, the average spearman correla-
tion for “validness” is 0.71, and the average spear-
man correlation for “informativeness” is 0.66; For
the “preference score”, since it’s to compare each
ECBRF’s generation with one baseline (COMET)
generation, we can’t rank generations according to
the value of the preference score. So following Pan
et al. (2011), we use Cohen’s kappa coefficient in-
stead. The kappa coefficient for “preference score”
is 0.81.

Instructions for human evaluators There are
3 evaluation metrics: preference score, validness
score and informativeness score.

Preference score: a valid generation with more
information provided will be assigned 1.0 point,
and a generation that is not valid or with less infor-
mation with being assigned 0.0 instead. However,
if the two generations perform comparably, both
generations will be assigned 0.5 points.

Validness score: Validness score is given in a
5-point scale (1 5) obviously true (5) generally true
(4) plausible (3) neutral or unclear or basically a
repetition (sub-sentence) of the query (2) doesn’t
make sense (1). Examples for validness: (5): Per-
sonX wants to learn piano, others want, to teach
personX; (4): PersonX wants to learn piano, others
want, to hear peronX play; (3): PersonX wants to
learn piano, others want, to sell piano to peronX;
(2): PersonX wants to learn piano, others want, to
turn their music on; (1): PersonX wants to learn
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Example 1 sub: PersonX spends ___ working
rel: As a result, others feel
ground truth: [’happy’, ’happy to have x in their life’]
COMET’s generation: happy (BLEU score: 31.62)
ECBRF’s generation: satisfied with personx’s work (BLEU score: 0.00)

Example 2 sub: PersonX expects another ___
rel: This person then
ground truth: [’prepares themselves’, ’gains knowledge’]
COMET’s generation: gains knowledge (BLEU score: 100.00)
ECBRF’s generation: wants to find out what it is that they are going to do next (BLEU score: 0.00)

Example 3 sub: PersonX spends the ___ working
rel: This person is seen as
ground truth: [’diligent’, ’tired’, ’hardworking’]
COMET’s generation: hardworking (BLEU score: 31.62)
ECBRF’s generation: dedicated (BLEU score: 0.00)

Table 8: Examples to show that BLEU is not a perfect metric for CKBC. This table shows that sometimes a good
generation is assigned with a low BLEU score, especially when the generation is novel and unseen from the ground
truth set. Table 5 shows that ECBRF produces more novel generations compared with the COMET baseline, which
might make ECBRF suffer more from the imperfectness of the BLEU score.

Example 1 sub: PersonX wants to play with PersonY
rel: Before, this person needed
COMET’s generation: to have a game
Retrieved cases by ECBRF include:

(PersonX plays tennis with PersonY’s friend, Before, this person needed, get a tennis racket)
ECBRF’s generation: to find a tennis court

Example 2 sub: PersonX advances another ___
rel: This person then
COMET’s generation: PersonX gains knowledge
Retrieved cases by ECBRF include:

(PersonX marries the king’s ___, This person then, he becomes king)
ECBRF’s generation: becomes more powerful

Example 3 sub: PersonX smiles broadly
rel: As a result, this person wants to
COMET’s generation: to smile back
Retrieved cases by ECBRF include:

(PersonX grins like a cheshire cat, As a result, this person wants to, express their feelings)
ECBRF’s generation: to tell others about the good time they had

Table 9: Examples to show how the retrieved cases influence the generated obj. This table shows that many
ECBRF’s generations are related to the retrieved case, exhibiting the case-based reasoning ability of reusing the
retrieved old experience to solve new problems.

piano, others want, to wait for the dinner.
Informativeness score: Informativeness score

is given in a 5-point scale (1 5) rich in relevant
details (5) has relevant details (4) it seems some
details is provided (3) not related information or
basically a repetition (sub-sentence) of the query
(2) unfinished generation or doesn’t make sense
(1) Examples for informativeness: (5): PersonX
wants to learn piano, others want, to teach personX
the basic usage of piano and how to buy a suitable
piano; (4): PersonX wants to learn piano, others
want, to teach personX on how to use piano; (3):
PersonX wants to learn piano, others want, to teach

personX; (2): PersonX wants to learn piano, others
want, to turn their music on; (1): PersonX wants to
learn piano, others want, to teach.

A.7 Other Details on Data Pre-processing

We observe that in Table 2, our GPT experi-
ment results are lower than Bosselut et al. (2019).
We attribute the reason to our different data pre-
processing method — we filter all the “.” in the
obj in ATOMIC and ConceptNet datasets since we
observe that only a part of obj are equipped with
“.”, which might confuse the model on whether to
generate “.” or not.
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Without “.”, a fixed token in generation, it would
be harder for a model to reach higher perplexity and
BLEU. In our preliminary experiments that do not
especially filter “.”, our re-implemented COMET’s
results are comparable to Bosselut et al. (2019).

A.8 Other Details on Retrieval
For ECBRF, we empirically find that not retrieving
cases that share the same subr with sub is benefi-
cial for the performance. The intuition behind this
mechanism is that when one of the retrieved cases
has the same subr with sub, then it should be nat-
ural to copy the corresponding objr as generation.
However, it is common that obj is different from
objr, which might confuse the model.
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