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Abstract

Recent advances in discourse parsing perfor-
mance create the impression that, as in other
NLP tasks, performance for high-resource lan-
guages such as English is finally becoming re-
liable. In this paper we demonstrate that this
is not the case, and thoroughly investigate the
impact of data diversity on RST parsing sta-
bility. We show that state-of-the-art architec-
tures trained on the standard English newswire
benchmark do not generalize well, even within
the news domain. Using the two largest RST
corpora of English with text from multiple gen-
res, we quantify the impact of genre diversity
in training data for achieving generalization
to text types unseen during training. Our re-
sults show that a heterogeneous training regime
is critical for stable and generalizable models,
across parser architectures. We also provide
error analyses of model outputs and out-of-
domain performance. To our knowledge, this
study is the first to fully evaluate cross-corpus
RST parsing generalizability on complete trees,
examine between-genre degradation within an
RST corpus, and investigate the impact of genre
diversity in training data composition.

1 Introduction

Discourse parsing is the task of identifying and
classifying the coherence relations that hold be-
tween different parts of a text, such as recognizing
that one sentence specifies the cause of events in
another, or that a subordinate clause indicates the
purpose of a main clause. In hierarchical frame-
works, such as the Rhetorical Structure Theory
(RST, Mann and Thompson 1988), parsers con-
struct a labeled constituent tree of discourse units
as shown in Figure 1. Such trees have numerous
applications: retrieving specific relations (e.g. all
CONCESSIONS made in any speech by some politi-
cian, e.g. unit 26-27 in Figure 1), or hierarchically
finding the most central unit in an arbitrary span
of text (unit 24 in Figure 1). They can also con-
tribute to downstream tasks such as text generation
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Figure 1: RST Fragment from GUM (Zeldes, 2017).

(Maskharashvili et al., 2021) and summarization
(e.g. Louis et al. 2010; Li et al. 2016; Xu et al. 2020;
Hewett and Stede 2022) and to qualitative analysis
and comparison of texts (Wan et al., 2019).!

Recent advances in NLP have resulted in increas-
ingly accurate systems for tasks such as part-of-
speech tagging (Heinzerling and Strube, 2019) and
dependency parsing (Mrini et al., 2020), which
are now commonly applied with confidence to
novel data, at least for high-resource languages
such as English. At the same time, rising scores
on the main standard English RST benchmark, the
RST Discourse Treebank (RST-DT, Carlson et al.
2003), with data from the 1989 Wall Street Journal
(WSJ), create the impression that discourse parsing
too is becoming reliable, and by proxy, applica-
ble to arbitrary text. This has resulted in use of
automatic RST parsing to automatically generate
large-scale datasets, such as MEGA-DT (Huber
and Carenini, 2020) or AMALGUM (Gessler et al.,
2020). However, there are some indications that
this picture is too optimistic, with some studies re-
vealing problems in RST-DT-based parsing once
the target domain changes (Ferracane et al. 2019;
Wang et al. 2019; Linscheid et al. 2021; Atwell
et al. 2021, 2022; Nishida and Matsumoto 2022;
Yu et al. 2022), and qualitative inspection of parser
outputs casting doubt on their reliability.

I"This applies to other discourse frameworks too, such as
PDTB (Prasad et al., 2019) or SDRT (Asher and Lascarides,
2003), but we limit the scope of this paper to RST parsing.
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A problem in evaluating the stability of RST
parsing for English is the scarcity of out-of-domain
(OOD) data, as well as potential differences be-
tween the annotation schemes of different corpora.
Recently, the availability of increasing amounts of
non-newswire data, as well as non-WSJ news data,
in the English GUM corpus (Zeldes, 2017) has
made some detailed comparisons possible, which
we explore below. Beyond evaluating OOD degra-
dation, the existence of these large datasets for
English RST allows us to test different joint train-
ing strategies to increase both the accuracy and
generalizability of RST parsing for English.

Our main goals here are: 1) to demonstrate the
generalizability limitations of English RST pars-
ing based on RST-DT and quantify them for users;
2) to explore reasons for generalizability issues,
with a focus on the genre composition of training
sets, pointing the way to the kind of data that ro-
bust discourse parsing requires; and 3) to promote
multi-genre benchmarks for RST parsing based on
our experimental results. Overall we find that di-
verse training data leads to better generalization on
unseen genres regardless of model architecture.

2 Related Work

2.1 English RST Corpora

The RST Discourse Treebank (RST-DT, Carlson
et al. 2003) is the standard English RST benchmark,
with data from the WSJ section of the Penn Tree-
bank (PTB, Marcus et al. 1993). Another human-
annotated English RST corpus is the Georgetown
University Multilayer (GUM) corpus, which is
freely available online and covers 12 written and
spoken genres (Zeldes, 2017). GUM is continu-
ously growing, with new data added in each ver-
sion. For this paper, we used Version 8 of the
corpus, which is described in Table 1 next to in-
formation about RST-DT (the current version of
GUM, V9, was not yet available at submission time,
and now contains 213 documents, 203K tokens and
26K EDUs, and the next version 10 is set to add 4
additional new genres).

As Table 1 shows, although GUM V8 is smaller
than RST-DT in number of tokens and documents,

Though we focus on English in this paper, understanding
the size and nature of data needed in English will hopefully
shed light on what other languages may require.

3There is no established dev partition for RST-DT.

*Previous work has identified 4 sub-genres in the WSJ
data (Webber, 2009), but these are very unevenly distributed,
and 29 RST-DT documents were not included in that analysis.

RST-DT GUM V8

documents 385 193

train/dev/test 347/-3/38 145/24/24
tokens 203,352 180,851
EDUs 21,789 23,107
relation instances 20,163 21,903
relation labels 78 /17 classes 32/ 15 classes
genres 14 12

Table 1: Overview of the English RST Corpora.

it contains more instances of elementary discourse
units (EDUs) and relations, since newswire units
from RST-DT are longer on average. EDU segmen-
tation guidelines are identical for the two corpora,
and the label set is very similar, with both corpora
using the SAME-UNIT pseudo-relation for discon-
tinuous EDUs. GUM’s 12 genres make it possible
to conduct experiments to investigate parsing gen-
eralizability (see Table 12 in Appendix B for their
exact size breakdowns). Virtually all work on RST
constituent parsing uses only the collapsed coarse
relation classes (i.e. 17 labels for RST-DT); we will
follow this practice for the evaluation below, but
will refer to some issues relating to fine-grained
labels in our analysis as well. In addition, we con-
ducted an analysis of satellite-nuclearity patterns in
the two corpora, confirming that they are quite sim-
ilar: NS dominates with 77.7% in RST-DT, similar
to 74.8% in GUM news; interestingly, proportions
in GUM overall are somewhat lower (70.1%).
There are also other corpora annotated in RST
dependencies, such as SciDTB (Yang and Li, 2018)
and full RST constituent treebanks in other lan-
guages (see Zeldes et al. 2021 for an overview);
since we focus on hierarchical English RST con-
stituent parsing, we will use the corpora in Table
1 for the experiments below: they differ in con-
tent, vocabulary, domains, and more importantly,
underlying communicative intents mirroring dis-
course relations, all of which are the backbone of
our experiments to investigate English RST parsing
generalizability as a function of training data.

2.2 RST Discourse Parsers

Several approaches have been proposed for RST
parsing, primarily distinguished by a BOTTOM-UP
vs. TOP-DOWN approach, and the algorithm used
(often a neural shift-reduce architecture). Table 2
compares recent high scoring parsers on three met-
rics: Span (whether subtrees span the right EDUs),
Nuclearity (whether edges point the right way), and
Relation (whether labels are correct). Following
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Neural Model
(Y/N)  Architectures

Additional Pre-trained
Features / Resources LM

BOTTOM-UP

Ji and Eisenstein (2014)* 64.1 542 46.8 N transition-based + SVMs lexical, dependency, graphical features -

Yu et al. (201 8)O 714 603 49.2 Y transition-based + Bl-LST.M; implicit syntactic features —
encoder-decoder + dynamic oracle

Guz and Carenini (2020)* | 76.5 659 54.8 Y transition-based + MLPs organizational features (Wang et al., 2017) SpanBERT-base
Yu et al. (2018) + 2 pre-training tasks: Next EDU

P * -
Yuetal. (2022) 764 66.1 545 Y Prediction; Discourse Marker Prediction XLNet
| TOP-DOWN

Koto et al. (2021)* 73.1 623 515 Y LSTM + dynamic oracle sentence and paragraph boundaries -

Bi-LSTM encoder +
al. (21 - — -bas

Nguyen et al. (2021)f 743 643 51.6 Y unidirectional LSTM decoder XLNet-base

Zhang et al. (2021)% 763 655 s56| y  SPli-pointencodingand ranking + . XLNet-base
adversarial learning

Liu et al. 2021)* 76.5 652 542 Y pointer-network decoder + depth-first span splitting + biaffine classifiers — XLM-RoBERTa-base

Table 2: Micro-averaged Parser Scores on RST-DT with Gold Segmentation. * = scores from Morey et al. (2017).
= converted Parseval scores for Yu et al. (2018)’s parser reported by Koto et al. (2021). ® =5 run average Original
Parseval replication of respective work. * = scores from the original paper (not necessarily averaged scores).

Morey et al. (2017), we use the more stringent orig-
inal Parseval procedure on binary trees.

As Table 2 shows, BOTTOM-UP and TOP-DOWN
approaches are currently very close, and all state-of-
the-art (SOTA) systems rely on transformer word
embeddings as the primary input. To rule out
an impact of parser architecture, we test both the
BOTTOM-UP from Guz and Carenini (2020), using
their best SpanBERT-NoCoref setting, and the TOP-
DOWN from Liu et al. (2021) as their code is public
and both have near-SOTA S and N metrics, which
are more robust to differences between label in-
ventories across corpora (relevant hyperparameters
and dev performance are provided in Appendix C).

2.3 Cross-Genre Variation in RST

Previous work suggests RST trees vary widely
across text types,> in relation distributions
(Taboada and Lavid, 2003; Zeldes, 2018), ways
they are signaled (e.g. Eggins and Martin 1997; Liu
2019; Demberg et al. 2019), and variation across
languages (Cao et al. 2018; Stede and Neumann
2014; Iruskieta et al. 2013; Redeker et al. 2012;
da Cunha et al. 2011; Pisarevskaya et al. 2017).
These differences suggest OOD parsing will
be challenging: For example, Taboada and Lavid
(2003) showed that in appointment-scheduling con-
versations, CONCESSION, CONDITION, CAUSE,
and RESULT were disproportionately frequent due
to the nature of the data, correlating with stages
of a conversation (i.e. Opening, Task Performance,
Closing): e.g. more RESTATEMENT, EVALUATION,
and SUMMARY in the Closing stage. Similarly,
Zeldes (2018) showed MOTIVATION often encodes
how-to guides influencing one’s willingness to act,

SWe use “text type”, “genre”, and “domain” interchange-
ably here to mean different kinds of data, though they are not
exactly the same (e.g. see Biber 1988 and Lee 2001).

which almost never occurs in the objective style
of news. We therefore expect parsers trained on a
single domain to generalize poorly to novel ones.

2.4 Generalizability in RST Parsing

Although some first studies are beginning to ap-
pear, generalizability in full RST parsing remains
understudied. Three recent papers include some
cross-dataset numbers, but not a systematic analy-
sis of full RST constituent parser generalizability.
Atwell et al. (2021) examined the subtask of re-
lation classification between PDTB (Prasad et al.,
2019) and RST annotated data, and included F1
scores for identifying relations in GUM V5 using
the RST-DT training data for relations that appear
in both datasets (however, GUM V5’s EDU seg-
mentation differed strongly from RST-DT and the
parser in the paper was an older non-neural one).
Yu et al. (2022) evaluate a neural parser on RST-
DT and report scores on 11/12 genres in GUM
V7 (same segmentation as RST-DT, but only 25
relations and less data than V8); however because
their focus is not on cross-genre generalization,
they do not report micro-averaged scores on the
whole GUM corpus, do not evaluate training on
GUM or joint training, and do not test held-out
genres within GUM. Finally, Atwell et al. (2022)
used GUM V6 (with RST-DT’s segmentation and
8 genres) to identify relation types between pairs
of provided argument spans, similar to PDTB-style
shallow discourse parsing in the CoNLL’ 16 shared
task (Xue et al., 2016) and recent DISRPT shared
task on relation classification (Zeldes et al., 2021).
This study is therefore the first to fully evalu-
ate cross-genre RST parsing generalizability on
complete trees in datasets with the same EDU seg-
mentation. To our knowledge, no previous work
has tested an OOD-trained parser on RST-DT, at-
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tempted joint training on both corpora, evaluated
between-genre degradation within an RST corpus,
or the impact of training data genre composition.

3 Experiments

In this section we conduct four experiments. First,
we want to find out how compatible the two English
RST corpora are, and how well they generalize to
each other’s domains (§3.1). Second, we want
to test whether we can incorporate training data
from GUM in order to exceed SOTA performance
on RST-DT, with one of three approaches: joint
training, model stacking, and pretraining (§3.2).
Third, we would like to know whether generaliz-
ability issues are mainly due to differences between
corpora (details of annotation guidelines or com-
mon practices) or the nature of the texts’ genres
and domains themselves (§3.3). We test this by
leaving out different subsets of GUM genres from
training, and quantify OOD degradation for each
genre, which also informs users of SOTA parsers
of what degradation they can expect on genres
‘in the wild’. The final experiment (§3.4) tests
whether, given a fixed training set size, having rel-
atively many ‘small’ genres leads to better OOD
stability than having few genres with more material
each, when the target is a totally disjoint set of gen-
res. The code, trained and finetuned models, and
predicted GUM parses are available at https://
github.com/janetlauyeung/crossGENRE4RST.

3.1 Cross-Corpus Generalization

In this section we hypothesize that, since GUM
contains many genres, models trained on it will
degrade less when testing on RST-DT than in the
opposite scenario. This is non-trivial, since the
corpora are very close in total size, and it is possible
that diverse training genres with little data each
will prevent effective learning for any genre. We
train the two parsers identified in §2.2 from Guz
and Carenini (2020) (BOTTOM-UP) and Liu et al.
(2021) (TOP-DOWN) on the train partition of each
dataset, and report scores on the test set (since
RST-DT has no dev partition, we follow previous
work in using 10% of training data stratified by the
number of EDUs in each document as a dev set,
which remains the same in the training).

A possible limitation of our experiment is anno-
tation differences between the corpora, especially
for their relation inventories, which are similar, but
not identical. We therefore omit R scores in Ta-

bles 3 and 4, though we will return to relations
in more detail below. For S and N, however, we
expect differences to be small: both corpora use
the same segmentation guidelines, and the same
guideline of subordinating less prominent satellite
units to more prominent nuclei using tests such as
deletability and subjective prominence. Although
EDU segmentation is not our focus, we can con-
firm the compatibility of segmentation guidelines
by cross-testing the current SOTA EDU segmenter
from Gessler et al. (2021). The results show fairly
modest degradation training on RST-DT and test-
ing on GUM, from 94.9 to 89.9, while the opposite
direction shows a 92.9 to 91 drop (see Table 11 in
Appendix A for full numbers). We speculate that
segmentation generalizes well due to the syntactic,
and hence less sparse and domain-specific nature
of the task, which resembles clause boundary de-
tection.

For cross-corpus S and N scores, both parsers
show a very significant degradation when train-
ing on RST-DT to parse OOD data from GUM,
as shown in Tables 3 and 4. For instance, there
is a degradation of ~-11 points for S and ~-16
for N using the the BOTTOM-UP architecture. We
were also curious whether this applies to GUM’s
news genre too: indeed, testing only on GUM
news reduces degradation by about 50% using the
BOTTOM-UP parser, but still shows a substantial
performance hit, even if the model is trained exclu-
sively on news (albeit from much older, WSJ news
data). By contrast, the GUM-trained model actu-
ally scores better on RST-DT than on GUM, with
minor improvements of +2.8 on S and +0.4 on N us-
ing the BOTTOM-UP parser. The same degradation
pattern is observed in the TOP-DOWN parser perfor-
mance: substantial degradation overall, and worse
when training on news and testing other genres.®

train test S N R

RST-DT RST-DT 76.5 65.9 54.8
GUM 653 (-11.2) 49.5(-16.4) -
GUM news 71.0(-5.5) 57.5(-84) -

GUM GUM 69.9 57.0 48.5
RST-DT 727 (+2.8) 574 (+04) -
GUM news 171.6 58.5 49.5

Table 3: Cross-Corpus Results (5 run average) of the
BOTTOM-UP Parser from Guz and Carenini (2020).

We further analyzed left vs. right-branching trees during
testing. In both corpora, NS outperformed SN: RST-DT in-
domain scores are F1=82.6% vs. 73.4% for NS vs. SN; GUM
V8 has 81.6% vs. 72.4%, meaning SN transitions are ‘easier’.
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train test S N R

RST-DT RST-DT 76.5 65.2 54.2
GUM 66.2 (-10.3) 50.8 (-14.4) -
GUM news 679 (-8.6) 55.8(-94) -

GUM GUM 68.6 54.9 46.1
RST-DT 71.1 (+2.5) 559 (+1.0) -
GUM news 173.4 63.3 57.2

Table 4: Cross-Corpus Results (5 run average) of the
TOP-DOWN Parser from Liu et al. (2021).

We interpret this result to mean that unlike in
EDU segmentation, where results are close in both
directions, genre composition of the train and
test data plays a crucial role in the generalizability
of RST constituent parsing, regardless of parser
architecture. Thus, we opt for the BOTTOM-UP
parser for the experiments presented in the rest of
the paper as it outperformed the TOP-DOWN parser
on both corpora.

To be clear, the results do not suggest that train-
ing on GUM is a way of achieving top performance
on RST-DT: the GUM model’s scores are still al-
most 4 and 8 points below the RST-DT trained
model for S and N. However, it seems that RST-DT
news data is less surprising for the GUM model
which has already seen some news, and in sum,
RST-DT data appears to be a comparatively ‘easy’
target given the broad genre inventory that the
GUM model is trained to tackle.

These results also confirm that training on mul-
tiple genres, each with comparatively fewer doc-
uments, can lead to good performance with only
minor degradation on the very narrow WSJ do-
main from RST-DT. While we think this result by
itself is important and suggests that RST parsing
work should devote more attention to multi-genre
corpora as benchmarks, it leaves a question open:
Can we combine data from both corpora to boost
English RST parsing performance on RST-DT?

3.2 Joint Training

If RST parsing generalizes across domains, it may
be possible to see gains through joint training. For
this we compare three approaches: naive concate-
nation, model stacking, and pretraining, which we
evaluate on the RST-DT benchmark.

For concatenation (CONCAT) we must map re-
lations across corpora. As in previous work,
we target coarse relation classes, most of which
are identical in both corpora. Exceptions in-
clude GUM’s PHATIC relation used for dysfluen-
cies and back-channeling (due to conversational

data), GUM’s PREPARATION, and the mapping be-
tween RST-DT’s TEMPORAL and COMPARISON
classes, which map differently onto GUM’s CIR-
CUMSTANCE and SEQUENCE, or GUM’s ANTITHE-
SIS, depending on the precise senses. Although the
number of relation instances affected by these mis-
matches is modest, it is not negligible (13.3%),
and we do not expect this approach to outperform
in-domain training, and mainly report on it for com-
pleteness. Our mapping is given in Appendix D.

For model stacking, we test three variants: 1)
FLAIR-LABEL: train an LSTM using FLAIR (Ak-
bik et al., 2019) to predict EDU dependency labels:
the LSTM receives text for three-EDU chunks, set
apart by separators, and predicts the middle EDU’s
label in the GUM corpus scheme (using the RST de-
pendency conversion from Li et al. 2014). We then
train the parser on RST-DT with predicted GUM
labels for each EDU as an additional feature en-
coded as a dense embedding, requiring no relation
mapping. 2) SR-LABEL: train a full shift-reduce
parser on GUM, generate predictions for RST-DT
in the GUM scheme, and collapse these into de-
pendencies to create the same kind of features; this
approach gives the GUM classifier more access
to global context than the previous LSTM’s EDU
triples, but may be more vulnerable to sparseness.
3) SR-GRAPH: because it is possible that incom-
patibility of RST-DT and GUM labels may cause
confusion, we also attempted using the same parser
as in the previous approach, but featurizing each
EDU’s predicted dependency attachment direction,
and EDU distance to the parent EDU, instead of
the label itself. Finally, we test a simple pretrain-
ing approach, in which we finetune the underlying
SpanBERT model (Joshi et al., 2020) on full pars-
ing of the GUM corpus, then load the fine-tuned
SpanBERT, and train again on RST-DT (SR-FT).

Table 5 shows that SR-FT achieved the best per-
formance compared to the other approaches and is
on par with the pure in-domain training on RST-DT
for S and R compared to previous work. There is a
minor but stable gain on average (65.9—66.2) for
N in SR-FT, which was verified by rerunning the ex-
periment, as well as the selected SOTA system from
Guz and Carenini (2020), 5 times. The remaining
scenarios are virtually equivalent to training on
RST-DT alone, suggesting that added features are
more distracting than helpful.

This result is somewhat surprising given that
scores are not very high, and there should still be
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‘ S N R architecture
Zhang et al. (2021)* 763 655 55.6 | TOP-DOWN
Liu et al. (2021)% 76.5 652 542 | TOP-DOWN
Guz and Carenini (2020)¢ 76.5 659 54.8 | BOTTOM-UP
this paper (CONCAT)® 759 648 54.1
this paper (FLAIR-LABEL)® | 75.8 65.6 55.3
this paper (SR-LABEL)® 76.2 66.0 55.3 | BOTTOM-UP
this paper (SR-GRAPH)® 758 655 547
this paper (SR-FT)< 763 66.2 55.5

Human (Morey et al., 2017) | 78.7 66.8 57.1 | -

Table 5: Joint Training Performance on RST-DT. * =
original paper score. ¢ =5 run avg.; ® = 3 run avg.

headroom for improvement; however, we suspect
some of the missing information responsible for
errors may relate to global structure and pragmatic
understanding which cannot easily be compensated
for by adding more genres with potentially dis-
joint vocabulary. A further surprising result is that
CONCAT is not much worse than the base system,
suggesting that most of the score comes from ob-
vious cases (e.g. relative and infinitival clauses)
which do not differ substantially across corpora or
genres, and were already learned without the added
data. Similar results have been found for other
NLP tasks where adding a second dataset for joint
training creates a ‘break-even’ effect: the benefit
of more data helps about as much as the disparate
domains harm within-corpus performance, e.g. for
dependency parsing in Hebrew (Zeldes et al., 2022)
and English (Zeldes and Schneider, 2023), English
coreference resolution (Zhu et al., 2021), and very
recent similar results for RST parsing for Chinese
(Peng et al., 2022).

3.3 O0OD Multi-Genre Degradation

In this section we explore our next question: How
badly will a multi-genre trained model degrade
on unseen genres, when the annotation scheme re-
mains identical? This question is important for
applied, methodological, and ethical reasons. From
the practical perspective, while we already know
that training only on news leads to severe degrada-
tion, we want to inform users of discourse parsing
about expected performance on unseen domains if
training data is already domain-rich. Methodologi-
cally, we want to test the benefit of adding multiple
genres and weigh the differences between a few-
genre corpus design and a many-genres design,
given a fixed total data size capacity for dataset
creation. Finally from an ethical perspective, OOD
degradation has real life implications for less com-
mon types of data, whether they come from un-

derrepresented genres, communicative situations,
or speaker demographics (Mengesha et al., 2021).
While we cannot fix these problems without more
data, we can point them out and increase awareness
of skewed data biases at the discourse level.

To explore OOD degradation, we conducted 10
experiments, comparing the normal genre-balanced
scenario (GUM test) with testing on each genre
when it is not in ‘train’ (ONE-VS-ALL or OVA). For
consistency, we test OVA for the 8 roughly equal
sized non-growing genres in GUM. Since data for
the smaller 4 growing genres may be less reliable
and non-comparable, we separately report scores
for training on all 8 large genres (ALL-LARGE),
tested on each of the four growing genres.

In the last scenario in particular, we would like
to see whether small test genres, for which we can-
not obtain enough training data, perform better if
a training genre exists which may offer a near sub-
stitute. For instance, the small textbook and speech
genres have structural organization and formal lan-
guage similar to academic and news respectively,
and there is some overlap between speech vocab-
ulary and inferviews with politicians. By contrast,
vlog and conversation are highly informal and col-
loquial, perhaps closest to the reddit or interview
genres, but still likely more challenging. For re-
producibility, exact training data compositions are
given in Table 17 in Appendix E.

Table 6 shows the results, with the same 4 doc-
uments from each held-out genre used to evaluate
each OVA model (these are not included in any
training set for consistency). The degradation col-
umn shows that the parser suffers when a genre is
removed from training across the board, except for
news and the Span level of reddit; bio and how-
to genres suffer the most: qualitative inspection
reveals that this is due to frequent errors on ORGA-
NIZATION and EXPLANATION, which tend to lack
explicit cues and require understanding of macro-
structure and global topic or pragmatic reasoning to
interpret. It is likely that lack of a similar substitute
to these genres contributes to the degradation.

By contrast, degradation on interview is low (per-
haps covered by conversation and news in training),
and the inverse result for news suggests that col-
lecting more news data may not be a priority. The
minimal degradation for reddit is surprising, and is
likely due to more instances of explicitly signaled
and ‘easy’ relations such as PURPOSE (e.g. in or-
der to) and CONTINGENCY (e.g. if), but we note
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that ordinary scores on reddit are low to begin with
(second worst after fiction, which degrades more).
The bottom of the table shows smaller genres suf-
fering, except for a minor gain in speech at the
Span level. It is unsurprising that conversation de-
grades the most, especially at the R level, since it
contains challenging phenomena absent in other
genres, such as back-channeling, dysfluencies, and
abrupt topic changes. This is mirrored in bad per-
formance on the ORGANIZATION and TOPIC rela-
tion classes (see more detailed analysis in §4).

‘ GUM test ‘ ova ‘ degradation
non-growing| S N R | S N R |S N R
academic 770 685 598|752 662 557 | 1.7 23 4l
bio 704 582 512|688 539 432| 16 43 8.0
fiction 66.3 53.1 437|645 50.1 421 | 18 30 17
interview 733 590 509|730 567 49.7| 03 22 12
news 71.7 584 49.1 722 592 513 |-05 -08 -22
reddit 66.0 523 442|666 519 433| 06 04 08
voyage 783 62.1 51.8 774 597 493 | 09 24 24
how-to 76.5 63.6 546|671 543 448 | 93 93 99

‘ GUM test ‘ ALL-LARGE ‘ degradation
growng | S N R|S N R|S N R
conversation | 454 345 267 | 427 314 218 | 27 31 49
speech 76.0 644 552|764 629 548 |-04 15 04
textbook 774 668 573|762 643 545| 12 26 29
viog 648 49.0 428|633 490 404 | 15 00 25

Table 6: Per Genre Scores for GUM test vs. the OVA
or ALL-LARGE Experiments (3 run average).

3.4 Genre Variety in a Fixed-Size Sample

While §3.3 shows how genres differ in degrada-
tion, it falls short of proving that genre diversity
promotes generalization when all other things are
equal, since train sets for each genre are not iden-
tical in size. Our final experiment addresses this:
ideally, we want to compare scores on a fixed OOD
test set for equal-sized training corpora, divided
into fewer or more genres. Although we might
expect more genres to be helpful for generaliza-
tion, this is not trivial or inevitable: If there are not
enough recurring examples of infrequent phenom-
ena, because data is so diverse, learning might fail
due to sparseness; that is, more genres could be
distracting rather than helpful in a meaningful way,
which could hurt performance.

Because genres in GUM are small (~2K EDUs)
and we want a critical mass of 5K+ EDUs for rea-
sonable parser performance, our combinatory op-
tions are limited to 3+ training genres. The parser
can only be trained on complete documents (we
cannot select n EDUs from each genre — genres
must comprise coherent texts), i.e. we must find
permutations of the data which total roughly the
same number of training instances, but with dif-

ferent genres. Table 7 gives details on the 3 best
training cohorts based on these criteria.

ID genres docs EDUs ‘ ID genres docs EDUs

Cl1 academic 18 1,970 | C3 academic 9 1,004
bio 19 1,981 bio 9 930
news 23 1,760 news 10 635
total 60 5711

C2  fiction 15 1,941 fiction 8 1,027
interview 15 1,931 interview 8 1,199
how-to 15 1,840 how-to 8 917
total 45 5712 ‘ total 52 5712

Table 7: Composition of 3 Fixed-Size Training Cohorts
with Different Genre Contents.

As Table 7 shows, the greatest care was taken
to ensure that the cohorts sum up to almost ex-
actly as many training instances (~5,712 EDUs),
at the price of somewhat diverse amounts of EDUs
and documents per genre. If we cannot control all
factors, we prefer to constrain the amount of shift-
reduce operations learned, in order to prevent any
alternative explanation in which total size effects
outweigh genre diversity. Additionally, we assume
that EDU count per genre will vary in any multi-
genre corpus due to complete document constraints;
corpus developers are more likely to target a total
fixed size budget. If having too many small gen-
res is harmful, we expect cohort 3 (C3) to perform
worst; by contrast, if diversity is helpful, C3 should
perform best. In either case, we compare how the
S/N/R metrics behave in each training regime.

Table 8 shows 5-run averages on each OOD
genre, as well as total micro- and across-genres
macro-averaged performance. The 3-genre cohorts,
C1 and C2, perform similarly overall, though C2
outperforms C1 on test data (which is held constant
for all cohorts). R scores are very close on macro-
average, but C1 is particularly bad on conversation,
where C2 is tied with C3 on R (possibly because
both have interview data). Conversely, C1 is better
on textbooks and travel guides (voyage) than C2
(possibly because C1 has academic, which predicts
textbooks reasonably well, and bios — a descriptive
informational genre, something missing from C2).

Overall best performance is obtained by C3, with
6 training genres, but the least data in each. Al-
though C3 loses to C2 in the dialogue-oriented
conversation and reddit genres, degradation is very
modest and does not affect all metrics (e.g. C3 has
a better N score on reddit). C3 also outperforms
C1 on academic and voyage, giving the best perfor-
mance on both. The average gain for C3 across all
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C1 C2 C3 C3-C1 C3-C2 mean_C3_gain
test S N R S N R S N R S N R S N R S N R
conversation | 34.8 234 139 403 279 18.0 379 264 18.0 30 3.0 4.1 25 -1.5 00 03 07 20
reddit 60.3 453 36.0 63.5 469 37.6 61.8 476 373 1.5 23 14 -7 07 -03 01 1.5 06
speech 72.5 582 469 72.6 593 47.7 71.6  57.1 48.0 09 -1.1 1.1 1.0 21 03 09 -1.6 07
textbook 73.6 59.0 489 709 55.0 45.6 740 60.5 514 0.5 1.5 25 3.1 55 59 1.8 35 42
viog 57.8 413 350 58.8 445 353 577 434 3438 0.1 21 -02 -1 -1.1 -05 06 05 -03
voyage 76.6 58.1 475 76.5 574 464 78.0 59.1 50.2 1.5 1.0 27 1.6 1.7 338 1.5 14 33
macro_avg | 62.6 47.6 38.0 63.8 485 384 63.5 49.0 40.0 09 15 19 03 05 15 03 1.0 17
micro_avg 587 442 348 60.5 457 35.7 59.8 459 36.9 .1 1.7 21 06 02 12 02 1.0 16

Table 8: Performance of 3 Fixed-Size Train Cohorts with Different Genre Contents (5 run average).

metrics (3-metric average) is around +1%—taking
individual scores from each of five runs, and each
genre test set as a data-point, this improvement is
significant at p < 0.05. For individual metrics, we
see ~+1.7% on R, +1% on N, and just under +0.3%
for S (significant at p < 0.05 except for S).
Although all scores are rather low due to the
small corpus sizes (about %4 of GUM), they sug-
gest that more training genres with smaller portions
each promotes OOD generalization, though not by
a lot. It is an open question whether this gap would
increase or decrease with corpus size: on the one
hand, more data would allow for more lexical di-
versity even with few genres. On the other, it is
likely that scores in small data are driven by easy to
learn cases (e.g. relative clauses as ELABORATION,
or PURPOSE infinitives), which stand to gain less
from diversity. If more data means models will
tackle more sparse phenomena, then genre diver-
sity should matter more for OOD material as the
training set grows. To an extent, results in §3.1
showing worse generalization from the large but
homogeneous RST-DT to GUM seem to support
this hypothesis. We interpret the present results to
mean that development of more diverse multi-genre
data should take priority over building up material
in existing genres to promote generalizable parsing.

4 Error Analysis

Due to space, we limit our error analysis to exam-
ining dependency conversions of gold vs. predicted
trees, which allow us to break down OOD errors
by coarse relation class in Table 9 from all test
sets in §3.3. We select models with scores clos-
est to average run scores. It is clear that even in
the more modest degradation within GUM, over
half of relation classes have < 50% accuracy, with
the document ROOT being the hardest to identify—
i.e. the Central Discourse Unit (CDU)—followed
by RESTATEMENT and EVALUATION, which re-
quire reasoning over many EDUs and lack con-
sistent overt signals, as opposed to relations such
as ATTRIBUTION (marked by speech verbs), PUR-

POSE (marked by purpose infinitives or in order
to0), and CONTINGENCY (usually if); interrupted
clauses (SAME-UNIT) are easier as well. For CDU
identification (Iruskieta et al., 2016), which can
benefit summarization or long-form QA systems,
half of the genres (academic, fiction, interview, voy-
age, how-to, vlog) score 0%; the highest accuracy
is only 50% (bio, news, reddit and speech). More
alarmingly, in the cross-corpus setting (§3.1), an
RST-DT trained model captures only a single GUM
CDU correctly (ACC=0.042 vs. 0.375 for a GUM-
trained model); scores on RST-DT are much higher:
ACC=0.842 for SR-FT trained on RST-DT vs. 0.553
for a GUM-trained model.

gold coarse gold coarse

relation class acc relation class ace
ATTRIBUTION  0.875 | CONTEXT 0.471
PURPOSE 0.861 | ADVERSATIVE  0.467
SAME-UNIT 0.814 | ORGANIZATION 0.463
CONTINGENCY 0.794 | EXPLANATION  0.431
ELABORATION 0.666 | CAUSAL 0.384
JOINT 0.654 | EVALUATION 0.362
ToriC 0.574 | RESTATEMENT  0.308
MODE 0.504 | ROOT 0.208

Table 9: OOD Accuracy by Relation Class in GUM.

genre gold coarse relation class abs(resid)
textbook CONTEXT 3.64
speech EXPLANATION 3.14
reddit EXPLANATION 3.02
fiction EVALUATION 2.59
bio CAUSAL 2.26
vlog CAUSAL 2.23
conversation ORGANIZATION 2.14
voyage CONTEXT 2.13
academic ORGANIZATION 1.84
how-to ORGANIZATION 1.62
news EXPLANATION 1.38
interview EVALUATION 0.89

Table 10: Max Absolute Error Residuals by Genre.

Errors are also skewed by genre: Table 10 gives
the gold label most surprisingly associated with
errors per genre, given global error distributions,
based on absolute x? residuals. While EVALUA-
TION is problematic in fiction and interview, EX-

3119



PLANATION and ORGANIZATION are surprisingly
hard to predict in 3 genres each: the former is used
e.g. in speeches and news for supporting evidence
or justifications which are difficult to identify using
lexical items, while the latter is used in conversa-
tions for phatic responses and back-channeling.

To further investigate genre-specific phenomena,
we analyzed OOD parsing errors for how-to guides,
which had the worst OOD performance in Table 6,
using a model not trained on this genre from §3.3.
Figure 2 shows a confusion matrix produced by
converting the automatic parses into the RST de-
pendency representation following Li et al. (2014).
We focus on relation instances with correct attach-
ment predictions, although we also discuss cases
involving attachment errors as well (Figure 5h in
Appendix G). We first observe in Figure 2 that there
are five gold CONTINGENCY instances predicted
to be CONTEXT: four out of five EDUs begin with
a discourse marker (DM), ‘once’ or ‘until’, e.g.:

(1) [Don’t use a joke] gg{ggg?: ONTINSENCY until
you’re completely comfortable with it.]

According to The Penn Discourse Treebank
(PDTB3, Prasad et al. 2019), these prototypically
signal spatio-temporal circumstances: 94% of ex-
plicit instances with the DM ‘once’ are annotated
as TEMPORAL.ASYNCHRONOUS while less than
5% of the instances (4/85) are annotated as CON-
TINGENCY.CONDITION. Similarly, 85% of ex-
plicit instances with the DM ‘until’ are annotated
as TEMPORAL.ASYNCHRONOUS while 10% are
CONTINGENCY.CONDITION. However, Liu (2019)
found that these two DMs are frequently associated
with CONTIGENCY-CONDITION in how-fo guides
because they are essentially never narrative and al-
ways part of an instruction which is uncommon in
news. This suggests that although DMs are usu-
ally considered useful devices to identify certain
relations, their usage differs across genres and is
sometimes too ambiguous to form a reliable sig-
nal. We also observe that there are four gold RE-
STATEMENT confused with ELABORATION: three
of these go back to ‘definitional’ RESTATEMENTS,
which are likely promoted by the genre’s descrip-
tive and explanatory properties.

Figure 5h shows cases with attachment errors.
One major error concerning global structure is
seven gold ORGANIZATION instances being con-
fused with JOINT. Two of the errors are unexpected
given that there are strong graphical, structural, and

conTiGENCY

GoLD
g

PRED

Figure 2: how-to confusions (no attachment errors).

semantic cues (see an example in Figure 3 in Ap-
pendix F). The remaining cases are harder to pin
down: they are all imperatives, which are atypical
for headings outside of how-to guides, but normal
and frequent in instructional texts (see an example
in Figure 4). For complete by-genre confusion ma-
trices (with attachment errors) of the multi-genre
degradation experiments, see Appendix G.

5 Conclusion

The analyses in this paper are meant to inform
users of current parsers about what to expect from
RST parsing in the wild. Through dozens of exper-
imental runs we have shown a consistent picture:
RST parsing has made impressive progress, but
OOD degradation is still severe. Our results sug-
gest prioritizing genre diversity in training data is
crucial, not only to cover more text types as ‘in do-
main’, but also to increase performance on unseen
text types. Rather than focusing only on the devel-
opment of better models to beat the single genre
RST-DT benchmark, robust RST parsing would be
promoted most by creating more annotated data.
We also hope this paper will motivate researchers
to prioritize multi-genre benchmarks and OOD set-
tings for RST parsing, and to explore algorithms,
representations and features which better capitalize
on joint training and foster generalizability, includ-
ing using data from other sources and theories of
discourse analysis (cf. Braud et al. 2016). We see
great challenges for tackling errors which implicate
complex pragmatic inference or document level rea-
soning, but we are also optimistic that as more data
becomes available, we will be able to learn more
and better representations of discourse structure.
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Limitations

One limitation is that the scope of the error analysis
presented here is limited, primarily due to space
reasons. Although we included full relation confu-
sion matrices (with attachment errors) in Appendix
G, the discussion is too limited to describe them
in detail, and we encourage interested readers to
explore and further compare gold and predicted
trees (available in both .rs3 and . rsd formats) on
the multi-genre data, which we make available in
the repository of this paper.

Another limitation concerns the number of runs
of the experiments: some scores were averaged
over three rather than five runs. This is due to
the fact that SpanBERT-base (Joshi et al., 2020)
is fairly large (110M parameters). Training each
of our 20 models five times would consume very
large amounts of GPU resources, which we feel is
hard to justify both financially and environmentally.
After completing this study we feel that three-run
averaged scores should satisfy the need for repro-
ducibility, though we did use five-run averages for
establishing baseline scores and verifying particu-
larly controversial results, such as the improvement
on Nuclearity in the fine-tuning condition in §3.2
(i.e. SR-FT). Previous work providing this infor-
mation reported three-run averaged scores such
as Koto et al. (2021) while many papers did not
include this information or mention whether the
reported scores were averaged over multiple runs.

Ethics Statement

This work contributes to open source progress
in RST discourse parsing, an area which has re-
ceived less attention than some other NLP tasks,
and which, at least in English, is currently suffer-
ing from a skewed focus towards the ‘standard’
language of 1990-era Wall Street Journal writing.
Previous work has shown that NLP systems re-
tain strong lexical biases mirroring both period and
author demographics (Shah et al., 2020), mean-
ing that if language technologies are not pushed
to cover diverse data types robustly, they will in-
evitably perform more poorly on ‘non-standard’
data, with possible discriminatory effects on under-
represented populations ranging from the political
(think opinion mining social media to guide policy)
to financial (e.g. higher/lower search hit rates for
YouTube videos by small businesses). By promot-
ing higher quality treatments of diverse language
samples in this study covering Reddit, YouTube

vlogs, and demographically diverse conversations,
we hope to help level the playing field across text-
types, demographics, and domains.

We recognize that NLP research has a computing
cost and carbon footprint, which motivates us to
release the trained models in this work (preventing
the need to retrain similar models), and to avoid
extensive hyperparameter optimization which may
not generalize to applications in the wild. Spe-
cific model configurations such as hyperparameters
and validation performance for the reported test
results of RST-DT and GUM are detailed in Ap-
pendix C.

Finally, we also recognize that NLP tools can
be used to do harm. However, we expect that the
type of analysis promoted here will do more good
than harm by steering tool development away from
adhering closely to outdated and narrow-domain
data, which this work aims to broaden. Given that
discourse parsers already exist, we view the push
to reduce topical and authorial bias, as well as the
public release of more resources, as net positives.
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A Cross-Corpus Segmentation Scores

The scores in Table 11 (3 run average) show fairly
modest degradation on cross-corpus EDU segmen-
tation scores in both directions (a little worse
for RST-DT—GUM), using DisCoDisCo (Gessler
et al., 2021), the winning EDU segmentation sys-
tem from the 2021 DISRPT shared task (Zeldes
et al., 2021).

train test P R F1
RST-DT RST-DT 95.16 94.64 94.90
RST-DT GUM V8 90.09 89.69 89.89
GUM V8 GUMVS8 92.09 93.73 92.90
GUM V8 RST-DT 92.55 89.57 91.03

Table 11: Cross-Corpus Segmentation Performance.

B Breakdown of the GUM RST Data

The breakdown of genres in GUM V8 is shown in
Table 12. Four of the genres in the corpus are still
growing, and therefore include less material than
other genres at present.

genres docs tokens EDUs growing
academic 18 17,168 1,969

bio 20 18,209 2,066

fiction 19 17,508 2,458

how-to 19 17,085 2,367
interview 19 18,189 2,404

news 23 16,140 1,760

reddit 18 16,364 2,231

travel 18 16,513 1,785
conversation 9 10,451 1,878 v’
speech 10 10,827 1,249 v’
textbook 10 11,190 1,397 v’
viog 10 11,200 1,543 v’
total 193 180,844 23,107

Table 12: Overview of RST Data by Genre in GUM V8.

C Model Configurations and Training
Details

To ensure reproducibility and following the repro-
ducibility criteria and checklist provided by EACL
2023, we provide model configurations and train-
ing details relevant to the experimental results pre-
sented in this paper.

For the BOTTOM-UP parser, the configurations of
SpanBERT-NoCoref from Guz and Carenini (2020)
was used as our base system, and we followed
the hyperparameters and training settings therein
across the board except the batch size due to mem-
ory limitations and embedding dimensions for or-
ganizational features.” Specifically, AdamW was
used as the optimizer with a learning rate of 1¢™
for SpanBERT-base (Joshi et al., 2020) and 2¢™*
for model-specific components (Guz and Carenini,
2020). Batch size was set to 1 (as opposed to 5
in the original implementation) and there were 20
epochs for each run. The organizational features
used in Guz and Carenini (2020) followed Wang
et al. (2017) and were represented as binary fea-
tures in a learnable 5-dimensional embedding (as
opposed to 10 in the original implementation). A
vector of zeros of the same shape was used when a
given feature is unavailable for the aforementioned
organizational features as well as the categorical
features experimented in §3.2, which all had an
embedding dimension of 10.

For the TOP-DOWN parser, overall we followed
the original hyperparameters and training settings
therein; however, due to memory limitations, we
modified the batch size to 3 from 12. The same
dev set of respective corpora was used during train-
ing as in the training of the BOTTOM-UP parser
from Guz and Carenini (2020). Additionally, XLLM-
RoBERTa-base (Conneau et al., 2020) was used as
the language backbone.

All the training sessions were conducted using
1 NVIDIA Tesla T4 GPU on Google Cloud Plat-
form. Table 13 shows the corresponding validation
performance on RST-DT test and GUM V8 test
reported in Tables 3 and 5 respectively using the
BOTTOM-UP parser. Table 14 presents the corre-
sponding validation performance (averaged over
5 runs) on RST-DT test and GUM V8 test re-
ported in Table 4.

"Based on our reproducible results of this model (see
Table 2) and comparing them to the reported results in the
original paper, we believe that the change of these two config-
urations do not impact model performance significantly.
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‘ S N R #runs
RST-DT BASELINE 76.0 649 552 5
GUM test 67.0 545 459 5
RST-DT CONCAT 764 657 56.0 3
RST-DT FLAIR-LABEL | 76.3 65.1 54.9 3
RST-DT SR-LABEL 76.3 647 552 3
RST-DT SR-GRAPH 76.6 655 555 3
RS-TDT SR-FT 76.3 649 554 5

Table 13: Validation Performance on RST-DT test and
GUM test Results in Tables 3 and 5 (i.e. BOTTOM-UP).

'S N R #runs
RST-DT BASELINE | 75.3 650 559 5
GUM test 71.3 58.6 50.1 5

Table 14: Validation Performance on RST-DT test and
GUM test Results in Table 4 (i.e. TOP-DOWN).

Note that since RST-DT does not have an es-
tablished dev set, 10% of training data stratified
by the number of EDUs in each document is used
as the dev set following Guz and Carenini (2020)
and is held constant across all the RST-DT-related
experiments in this work. The list of the docu-
ment names used in the dev set is provided in the
code repository.® Additionally, since the test doc-
uments used in all the experiments in §3.3 and §3.4
are OOD data, the corresponding validation per-
formance is not applicable and thus not reported.
Information on the average runtime of each epoch
for each model is provided in Table 15 below.

RST-DT
model avg. runtime ‘ model avg. runtime
BASELINE 2 hours 53 mins | SR-LABEL 2 hours 53 mins
CONCAT 5 hours 52 mins | SR-GRAPH 2 hours 50 mins
FLAIR-LABEL 2 hours 55 mins | SR-FT 2 hours 56 mins

GUM

model avg. runtime ‘ model avg. runtime
GUM test 3 hours No Reddit 2 hours 43 mins
ALL-LARGE 2 hours 15 mins | No Voyage 2 hours 47 mins
No Academic 2 hours 43 mins | No How-to 2 hours 45 mins
No Bio 2 hours 45 mins | C1 56 mins
No Fiction 2 hours 44 mins | C2 56 mins
No Interview 2 hours 40 mins | C3 54 mins
No News 2 hours 47 mins

Table 15: Average Runtime of Every Training Session’s

Epoch for Each Model using the BOTTOM-UP Parser.

Shttps://github.com/janetlauyeung/
crossGENRE4RST

D Relation Mapping

In the interest of reproducibility, Table 16 gives
the exact relation mapping used for cross-corpus
experiments in which relation labels were targeted.

GUM V8 GUM V8 Corresponding
Relations Classes RST-DT Classes
adversative-antithesis Adversative ~ Contrast
adversative-concession ~ Adversative ~ Contrast
adversative-contrast Adversative  Contrast
attribution-positive Attribution Attribution
attribution-negative Attribution Attribution
causal-cause Causal Cause
causal-result Causal Cause
context-background Context Background
context-circumstance Context Background
contingency-condition Contingency Condition
elaboration-attribute Elaboration  Elaboration
elaboration-additional Elaboration  Elaboration
explanation-evidence Explanation ~ Explanation
explanation-justify Explanation ~ Explanation
explanation-motivation ~ Explanation  Explanation
evaluation-comment Evaluation Evaluation
joint-disjunction Joint Joint

joint-list Joint Joint
joint-sequence Joint Temporal
joint-other Joint Topic-Change
mode-manner Mode Manner-Means
mode-means Mode Manner-Means
organization-heading Organization Textual-Organization
organization-phatic Organization Topic-Comment
organization-preparation Organization Textual-Organization
purpose-attribute Purpose Elaboration
purpose-goal Purpose Enablement
restatement-partial Restatement ~ Summary
restatement-repetition Restatement ~ Summary
topic-question Topic Topic-Comment
topic-solutionhood Topic Topic-Comment
same-unit same-unit Same-Unit

Table 16: Relation Mapping of GUM V8 to RST-DT.

E Data Description for the GUM OOD
Multi-Genre Experiments

Table 17 details the number of genres, documents,
and EDUs used for training the models in the ten
experiments in §3.3. For maximum reliability, test-
ing was always conducted on the held-out genres’
standard dev+test partitions specified in the offi-
cial GUM V8 release (which is also provided in the
repository of this paper), since the dev set for the
targeted genres cannot be used for early stopping
to simulate real OOD data in the wild.

F An Example OOD Parser Output

Figure 3 provides a comparison of a fragment of
parser output versus the corresponding gold anno-
tation to exemplify the distinction between gold
ORGANIZATION and predicted JOINT discussed
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models genres docs EDUs
No Academic 11 131 16,088
No Bio 11 129 15,901
No Fiction 11 130 15,640
No Interview 11 130 15,599
No News 11 126 16,252
No Reddit 11 131 15,892
No Voyage 11 131 16,133
No How-to 11 130 15,672
ALL-LARGE 8 122 13,703
GUM test 12 145 17,610

Table 17: Training Data Composition used in §3.3.

in Section 4. Additionally, Figure 4 provides a
fragment of parser output from one of the OvA
models, No How-to, which exemplifies some of
the observations and discussions brought up in the
error analysis such as the most erroneous relation
class ORGANIZATION in how-to guides (EDU 107).
Moreover, these figures also demonstrate that al-
though discourse markers (DMs) are cues in many
cases, they can lead to errors if they are ambigu-
ous, by distracting the parser from other (non-DM)
signals such as the misidentified ELABORATION
of EDU 110, where the gold ORGANIZATION is
signaled by the colon and the numerical matching
of “Two parts’ to the two nucleaus EDUs, 3 and
4 in Figure 3; and the CAUSAL of EDUs 112-116
in Figure 4, where an intensifying ‘so’ in 112 (‘so
comfortable’) may have misled the parser into a
resultative ‘so’ reading.

G Confusion Matrices

Figures 5a—5h show confusion matrices for all the
non-growing genres from their corresponding OVA
models, and Figures 5i-51 are for all the growing
genres based on the automatic parses from the ALL-
LARGE model where the training data contains only
the 8 non-growing genres. Note that all the matri-
ces were produced by converting the automatic
parses into the RST dependency representation fol-
lowing Li et al. (2014) and do not reflect attach-
ment errors. The conversion code is available at
https://github.com/amir-zeldes/rst2dep.

} Joint L —
® 2-106 @
®20 ® 3-106 ®
® ® R
Two Parts : -
®340@ B
Elaboratic v I
®30 @40 B
Getti ®h Getti ? o
etting the etting the Evaluatio v
Material Right  Delivery Right valugtio

(a) Parser Output Fragment from the No How-to Model.

®10
How to Tell a
Joke
®24Q@
] @
preparati v

®20@ ®3-40@
® ®

Two Parts : <

sequence v sequence v

®30 ® 40

Getting the Getting the
Material Right Delivery Right

(b) The Corresponding Gold RST Annotation.

Figure 3: An Example of an OOD Parser Output vs. the
Corresponding Gold Annotations from how-to guides:
ORGANIZATION vs. JOINT.

3127


https://github.com/amir-zeldes/rst2dep

g

107
Know your
material . W
108
Practicing your
joke is crucial .
109-119
L//f |
109-116 I
Ade
100-110 111-116 '
mr\nn mm
109 110 1 112-116
You do ntneed — infact,you" butyou need to
to have it should n't " be really Adversative
completely memorize it —  comfortable with
memorized it 112-114 115-116
mye me"t
112 113-114 115 116
so comfortable which i§ very once you 're in
Adveative possible front of an
audience .
113 114
that you can even if you get
continue on with nervous or
telling it sidetracked ,

(a) Parser Output Fragment from the OVA (No How-to) Model in §3.3.

organiz aration

107
Know your
material . ——
- —
108-116
V’m\addmonal
108 109-116
Practicing your
joke is crucial .
adversafive=contrast adversa ontrast
109 110-116
You do n't need

to have it elaboration-additional

completely At

memorized 110-111 112-116

adversativm Manner
110 11 112 113-116
—infact,you" butyouneedto so comfortable
should n't " be really contingendy-condition
memorize it —  comfortable with
it, 113 114-116
that you can
continue on with evaluatiorkcomment
telling it
114 115-116
even if you get
hervous or context-circumstance
sidetracked , Y
115 116
which is very once you re in
possible front of an

audience .

(b) The Corresponding Gold RST Annotation.

Figure 4: An Example of an OOD Parser Output vs. the Corresponding Gold Annotations from how-to guides. This
fragment is selected from the document GUM_whow_joke, which gives advice on how to tell jokes.
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Figure 5: Confusion Matrices for All Genres from their OVA Models or the ALL-LARGE Model from §3.3.
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