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Abstract

Pretrained multilingual language models (LMs)
can be successfully transformed into multilin-
gual sentence encoders (SEs; e.g., LABSE,
XMPNET) via additional fine-tuning or model
distillation with parallel data. However, it re-
mains unclear how to best leverage them to rep-
resent sub-sentence lexical items (i.e., words
and phrases) in cross-lingual lexical tasks. In
this work, we probe SEs for the amount of
cross-lingual lexical knowledge stored in their
parameters, and compare them against the orig-
inal multilingual LMs. We also devise a sim-
ple yet efficient method for exposing the cross-
lingual lexical knowledge by means of ad-
ditional fine-tuning through inexpensive con-
trastive learning that requires only a small
amount of word translation pairs. Using bilin-
gual lexical induction (BLI), cross-lingual lex-
ical semantic similarity, and cross-lingual en-
tity linking as lexical probing tasks, we report
substantial gains on standard benchmarks (e.g.,
+10 Precision@1 points in BLI). The results
indicate that the SEs such as LABSE can be
‘rewired’ into effective cross-lingual lexical en-
coders via the contrastive learning procedure,
and that it is possible to expose more cross-
lingual lexical knowledge compared to using
them as off-the-shelf SEs. This way, we also
provide an effective tool for harnessing ‘covert’
multilingual lexical knowledge hidden in mul-
tilingual sentence encoders.

1 Introduction

Transfer learning with pretrained Language Mod-
els (LMs) such as BERT (Devlin et al., 2019) and
RoBERTa (Liu et al., 2019) offers unmatched per-
formance in many NLP tasks (Wang et al., 2019;
Raffel et al., 2020). However, despite the wealth
of semantic knowledge stored in the pretrained
LMs (Rogers et al., 2020; Vulić et al., 2020b),
they do not produce coherent and effective sen-
tence representations when used off-the-shelf (Liu
et al., 2021c). To this effect, further specializa-

tion for sentence-level semantics – not unlike the
standard task fine-tuning – is needed (Reimers and
Gurevych, 2019; Li et al., 2020; Yan et al., 2021,
inter alia). LMs get transformed into sentence
encoders (SEs) via dual-encoder frameworks that
leverage contrastive learning objectives (van den
Oord et al., 2018; Musgrave et al., 2020), in super-
vised (i.e., leveraging labeled external data such as
NLI or sentence similarity annotations) (Reimers
and Gurevych, 2019; Vulić et al., 2021b; Liu et al.,
2021a) or, more recently, fully unsupervised fine-
tuning (Liu et al., 2021c; Gao et al., 2021) setups.

Following the procedures from monolingual se-
tups, another line of research has been transform-
ing multilingual LMs into multilingual SEs (Feng
et al., 2022; Reimers and Gurevych, 2020), which
enable effective sentence matching and ranking
in multiple languages as well as cross-lingually
(Litschko et al., 2022). The transformation is
typically done by coupling 1) LM objectives on
monolingual data available in multiple languages
with 2) cross-lingual objectives such as Translation
Language Modeling (TLM) (Conneau and Lam-
ple, 2019) and/or cross-lingual contrastive ranking
(Yang et al., 2020). Such multilingual SEs con-
sume a large number of parallel sentences for the
latter objectives. Consequently, they outperform
multilingual off-the-shelf LMs in cross-lingual sen-
tence similarity and ranking applications (Liu et al.,
2021d; Litschko et al., 2022). However, as we
show in this work, such multilingual SEs may still
lag behind traditional static cross-lingual word em-
beddings (CLWEs) when encoding sub-sentence
lexical items (e.g., words or phrases) (Liu et al.,
2021c) for cross-lingual lexical tasks (e.g., BLI).

In this work, we probe multilingual SEs for
cross-lingual lexical knowledge, relying on stan-
dard semantic similarity tasks in cross-lingual se-
tups as our ‘lexical probes’ (Vulić et al., 2020b).
We demonstrate that, due to their fine-tuning on
multilingual and parallel data, they indeed store a
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wealth of such knowledge, much more than what
‘meets the eye’ when they are used ‘off the shelf’.
However, this lexical knowledge needs to be ex-
posed from the original multilingual SEs, (again)
through additional fine-tuning. In other words, we
show that multilingual SEs can be ‘rewired’ into
effective cross-lingual lexical encoders, as illus-
trated in Figure 1. This rewiring is again done via
a quick and inexpensive contrastive learning proce-
dure: with merely 1k-5k word translation pairs, we
successfully convert multilingual SEs into state-of-
the-art bilingual lexical encoders for any language
pair (present in a specific dataset).1

We probe the original LMs and SEs as well as
demonstrate the usefulness of the proposed con-
trastive procedure for ‘exposing’ cross-lingual lex-
ical knowledge on three standard lexical cross-
lingual tasks using standard evaluation data and
protocols: BLI, cross-lingual lexical semantic sim-
ilarity (XLSIM), and cross-lingual entity linking
(XL-EL). We show that the ‘exposure’ procedure
is highly effective for both vanilla multilingual
LMs (mBERT and XLM-R) and multilingual SEs
(LABSE and XMPNET): e.g., we observe ≈+10
Precision@1 points gains on standard BLI bench-
marks (Glavaš et al., 2019). Multilingual SEs of-
fer substantially better cross-lingual lexical per-
formance than vanilla LMs, both before and after
being subjected to contrastive cross-lingual lexi-
cal fine-tuning (see Figure 1). This indicates that
it is possible to expose more cross-lingual lexical
knowledge from multilingual SEs than from their
vanilla LM counterparts, likely owing to their addi-
tional exposure to parallel data.

Finally, inspired by Li et al. (2022), we validate
that word vectors produced by cross-lingual lexical
encoders (i.e., after the contrastive cross-lingual
lexical ‘exposure’) can be effectively interpolated
with static CLWEs (Artetxe et al., 2018) and offer
even stronger performance in cross-lingual lexi-
cal tasks. Encouragingly, our cross-lingual lexical
specialization of multilingual SEs (as well as the
further interpolation with static CLWEs), yields
particularly massive performance gains for pairs
of low-resource languages, as demonstrated on the
low-resource BLI benchmark (Vulić et al., 2019).

1Note that this is a typical requirement of standard
mapping-based approaches for learning static cross-lingual
word embeddings which excel in the BLI task (Mikolov et al.,
2013; Conneau et al., 2018; Glavaš and Vulić, 2020).
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Figure 1: Illustration of the pipeline of exposing cross-
lingual lexical knowledge from multilingual language
models (LMs) and sentence encoders (SEs) (§2). Mul-
tilingual LMs (①) can be transformed into multilin-
gual SEs (②) as done in previous work (Reimers and
Gurevych, 2020; Feng et al., 2022). A contrastive cross-
lingual lexical fine-tuning procedure (③) (requiring an
external bilingual dictionary) can be applied on both ①
and ② , yielding a fine-tuned cross-lingual lexical en-
coder (④). At inference, a word/phrase is encoded by
the lexical encoder (⑤). In addition, its encoding can be
interpolated with the corresponding static (cross-lingual)
word embedding (⑥), producing the final embedding
of the word/phrase (⑦). Before the interpolation, static
CLWEs must be mapped into the vector space of the
lexical encoder (④): to this end, we learn the standard
orthogonal (Procrustes) projection matrix.

2 From Multilingual Sentence Encoders
to Cross-Lingual Lexical Encoders

Motivation. The motivation for this work largely
stems from the research on probing and analyz-
ing pretrained LMs for various types of knowledge
they (implicitly) store in their parameters (Etha-
yarajh, 2019; Jawahar et al., 2019; Rogers et al.,
2020). In this paper, we focus on a particular
knowledge type: cross-lingual lexical knowledge,
and its extraction from multilingual LMs and SEs.
The work combines two research threads, being in-
spired by the work on probing monolingual PLMs
for lexical knowledge (Vulić et al., 2020b), as well
as on interpreting representations in multilingual
PLMs (Bjerva et al., 2019; Libovický et al., 2020;
Beinborn and Choenni, 2020; Deshpande et al.,
2022; Chai et al., 2022, inter alia).

Previous work also tried to prompt multilingual
LMs for word translations via masked natural lan-
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guage templates (Gonen et al., 2020) and extract
type-level word embeddings from LMs (i) directly
without context (Vulić et al., 2020a, 2021a) or (ii)
by averaging contextual embeddings over a large
auxiliary corpus in the target language (Bommasani
et al., 2020; Litschko et al., 2022). This existing
body of work 1) demonstrated that even sophis-
ticated templates and extraction strategies cannot
outperform cross-lingual word embedding spaces
(e.g., induced from monolingual fastText vectors)
in cross-lingual lexical tasks such as BLI (Vulić
et al., 2020b) and 2) did not attempt to expose cross-
lingual lexical knowledge from multilingual SEs
and compare it against the (same type of) knowl-
edge extracted from vanilla multilingual LMs.

Multilingual Sentence Encoders. Off-the-shelf
LMs contextualize (sub)word representations, but
are unable to encode the precise meaning of in-
put text out of the box. SEs – LMs fine-tuned via
sentence-level objectives – in contrast, directly pro-
duce a precise semantic encoding of input text. A
large body of work focuses on inducing multilin-
gual encoders that capture sentence meaning across
languages (Artetxe and Schwenk, 2019; Feng et al.,
2022; Yang et al., 2020, inter alia).

The most popular approach obtains multilingual
SEs (Reimers and Gurevych, 2020) by distilling
the knowledge from the monolingual English SE
teacher (trained on English semantic similarity
and NLI data) into multilingual LM student (e.g.,
mBERT), using parallel sentences to guide the dis-
tillation process. SEs, being specialized for sen-
tence similarity, encode sentence meaning more
accurately and are useful in various (unsupervised)
text similarity and ranking tasks, monolingually
and across languages (Artetxe and Schwenk, 2019).

While SEs’ primary purpose is sentence en-
coding, they can, in principle, be applied to sub-
sentential text: words and phrases. In this work, we
show that multilingual SEs can be turned into effec-
tive cross-lingual lexical encoders. We achieve this
through additional cross-lingual lexical fine-tuning
(Vulić et al., 2021a), requiring as supervision only
a small set of word translation pairs.

2.1 Cross-Lingual Lexical Fine-Tuning

For a given language pair Ls-Lt, our contrastive
cross-lingual lexical fine-tuning of multilingual en-
coders (LMs and SEs alike) requires a dictionary
spanning N (typically N ≤ 5,000) word transla-

tion pairs, D = {(wi,s, vi,t)}Ni=1.2 We consider the
translation pairs from D to be positive examples
for the contrastive fine-tuning procedure. For each
of the N source language words in the dictionary
(wi,s), we precompute a set of K hard negative
samples: these are the Lt words that are the closest
to wi,s in the representation space of the multilin-
gual encoder, but not its direct translation vi,t. For
one-to-many and many-to-many seed dictionaries
D, the set K does not contain any Lt word paired
with wi,s. Let fθ(·), be the encoding function of
the multilingual LM/SE, with θ as parameters, and
let S(·, ·) be a function of similarity between two
vectors. For a source word wi,s, we select as hard
negatives words vt from Lt that have the highest
S(fθ0(wi,s), fθ0(vt)) score, with θ0 as the original
encoder’s parameters, before fine-tuning.

We encode all training words – those from the
seed dictionary D and (at most) N · K precom-
puted hard Lt negatives – independently and in
isolation. Concretely, for an input w with M sub-
word tokens [sw1] . . . [swM ], we feed the sequence
[SPEC1][sw1] . . . [swM ][SPEC2] into the mul-
tilingual encoder (with [SPEC1] and [SPEC2]
as encoder’s sequence start and end tokens, resp.),
and take the average of the transformed represen-
tation (from the last Transformer layer) of the w’s
subword tokens as the w’s encoding fθ(w). Put
simply, we process sub-sentential text input in the
same way that multilingual SEs handle sentence-
level input. We experimented with other encoding
strategies from prior work, e.g., taking the represen-
tation of the sequence start token [SPEC1] (Liu
et al., 2021b; Li et al., 2022); in preliminary exper-
iments, however, we obtained the best results by
averaging subword representations.3

Following common practice in contrastive learn-
ing (Henderson et al., 2019; Vulić et al., 2021a),
we define S as the scaled cosine similarity:
S(fθ(wi), fθ(wj)) = C · cos(fθ(wi), fθ(wj)), with
C as the scaling constant. We then train in batches
of B translation pairs, with the variant of the widely
used multiple negatives ranking loss (MNEG) (Cer
et al., 2018; Henderson et al., 2019, 2020) as the
fine-tuning objective:

2Note that such bilingual dictionaries are one of the most
widespread and cheapest-to-obtain resources in multilingual
NLP (Ruder et al., 2019; Wang et al., 2022).

3Note that [SPEC1] and [SPEC2] are placeholders for
the encoder’s special tokens: e.g., in case of multilingual
BERT [SPEC1] is the [CLS] token, while [SPEC2] is the
[SEP] token.
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L =−
B∑

i=1

S(fθ(wi), fθ(vi)) (positives)

+
B∑

i=1

log
B∑

j=1,j ̸=i

eS(fθ(wi),fθ(vj)) (in-batch negatives)

+
B∑

i=1

log
K∑

k=1

eS(fθ(wi),fθ(vk,i)) (hard negatives)

where vk,i denotes the k-th hard negative from the
language Lt for the Ls word wi. MNEG combines
the K hard negatives per each positive example
with B-1 in-batch negatives (i.e., for a source lan-
guage word wi,s, each target language word vj,t,
j ̸= i from B is used as an in-batch negative of
wi,s). MNEG aims to reshape the representation
space of the encoder by simultaneously (a) max-
imising the similarity for positive pairs – i.e., bring-
ing closer together (‘attracting’) the words from
the positive pairs and (b) minimising the similarity
for (both in-batch and hard) negative pairs – i.e.,
pushing (‘repelling’) the words from negative pairs
further away from each other).4

2.2 Interpolation with Static CLWEs
Li et al. (2022) recently showed that further perfor-
mance benefits in the BLI task might be achieved
by combining the type-level output of the encod-
ing function f with static CLWEs, but they exper-
imented only with multilingual LMs, and limited
their analyses to the BLI task.

Static CLWEs and multilingual encoder-based
representations of the same set of words can be seen
as two different views of the same data point. Fol-
lowing Li et al. (2022), we learn an additional linear
orthogonal mapping from the static cross-lingual
WE space – e.g., a CLWE space induced from
monolingual fastText embeddings (Bojanowski
et al., 2017) using VECMAP (Artetxe et al., 2018) –
into the cross-lingual space spanned by the multilin-
gual encoder. The mapping transforms ℓ2-normed
d1-dimensional static CLWEs into d2-dimensional
cross-lingual WEs obtained through the multilin-
gual encoder (fine-tuned fθ or original fθ0).

Learning the linear map W∈Rd1×d2 , when
d1 < d2,5 is formulated as a Generalized Pro-
crustes problem (Schönemann, 1966; Viklands,

4In practice, we rely on the implementation of the MNEG
loss from the SBERT repository www.sbert.net (Reimers
and Gurevych, 2019); the default value C = 20 is used.

5The assumption d1 < d2 typically holds as fastText WEs
are 300-dimensional while the dimensionality of standard
multilingual LMs and SEs is d2 = 768 or d2 = 1, 024.

2006). It operates on all (i.e., both Ls and Lt)
words from the seed translation dictionary D. To
learn the mapping W , for pairs from D we de-
couple Ls words wi,s from their Lt translations
vi,t to create vector pairs (clwe(wi,s), fθ(wi,s)) and
(clwe(vi,t), fθ(vi,t)) – with clwe(w) as the static
CLWE of w (e.g., its VECMAP embedding), and
fθ(w) its encoder-based representation – based on
which we learn of the orthogonal mapping W (the
so-called Procrustes method gives a closed-form
solution). Unless noted otherwise, a final represen-
tation of an input word w is then computed as:

(1− λ)
clwe(w)W

∥clwe(w)W ∥2
+ λ

fθ(w)

∥fθ(w)∥2
, (1)

where λ is a tunable interpolation hyper-parameter,
clwe(w) denotes the static CLWE of w, and
fθ(w) the representation of w obtained with the
(contrastively fine-tuned or original) multilingual
LM/SE. This simple procedure yields an ‘interpo-
lated’ shared cross-lingual WE space.

3 Experimental Setup

Multilingual Sentence Encoders. We probe
two widely used multilingual SEs: 1) Language-
agnostic BERT Sentence Embedding (LABSE)
(Feng et al., 2022) which adapts pretrained mul-
tilingual BERT (MBERT) (Devlin et al., 2019)
into a multilingual SE; 2) Multilingual XMP-
NET is a distillation-based adaptation (Reimers
and Gurevych, 2020) of XLM-R (Conneau et al.,
2020) as the student model into a multilingual SE,
based on the monolingual English MPNet encoder
(Song et al., 2020) as the teacher model. LABSE
is the current state-of-the-art multilingual SE and
supports 109 languages, while XMPNET is the
best-performing multilingual SE in the Sentence-
BERT repository (Reimers and Gurevych, 2019):
For further technical details regarding the models
in our comparison, we refer to the original papers.

Along with LABSE and XMPNET as SEs, we
experiment with the original multilingual LMs –
mBERT and XLM-R – using the the same training
and evaluation protocols (see Figure 1 and §2), aim-
ing to quantify: (i) the extent to which cross-lingual
lexical knowledge can be exposed from LMs that
have not been specialized for sentence-level se-
mantics, as well as (ii) the increase in quality of
lexical knowledge brought about with sentence-
level specialisation (i.e., when multilingual LMs
get transformed into multilingual SEs).

2092

www.sbert.net


Evaluation Tasks. We evaluate on the standard
and diverse cross-lingual lexical semantic tasks
treated as ‘cross-lingual lexical probes’. In other
words, we fine-tune the models to steer them to-
wards becoming better lexical encoders and then
we check how well they fare across a set of rep-
resentative (intrinsic) lexical tasks which could be
seen as such ‘lexical probes’.

Task 1: Bilingual Lexicon Induction (BLI), a
standard task to assess the “semantic quality” of
static cross-lingual word embeddings (CLWEs)
(Ruder et al., 2019), allows us to 1) directly as-
sess the extent to which cross-lingual word transla-
tion knowledge can be exposed from multilingual
LMs and SEs and 2) immediately test the ability
to transform multilingual sentence encoders into
bilingual lexical encoders. We run a series of BLI
evaluations on two standard BLI benchmarks. 1)
GT-BLI (Glavaš et al., 2019), constructed semi-
automatically from Google Translate, comprises
28 language pairs with a good balance of typologi-
cally similar and distant languages (Croatian: HR,
English: EN, Finnish: FI, French: FR, German:
DE, Italian: IT, Russian: RU, Turkish: TR). 2)
PanLex-BLI (Vulić et al., 2019) focuses on BLI
evaluation for lower-resource languages, deriving
training and test data from PanLex (Kamholz et al.,
2014). We evaluate on 10 pairs comprising the
following five typologically and etymologically di-
verse languages: Bulgarian (BG), Catalan (CA),
Estonian (ET), Hebrew (HE), and Georgian (KA).

Standard BLI setups and data are adopted: 5k
training word pairs are used as seed dictionary
D, and another 2k pairs as test data. Note that
D is used to (i) contrastively fine-tune multilin-
gual encoders (§2.1), (ii) learn the (baseline) static
VECMAP CLWE space, as well as to (iii) learn
the projection between the static CLWE space and
the representation spaces of multilingual encoders
required to obtain the interpolated representations
(§2.2). The evaluation metric is standard Preci-
sion@1 (P@1).6 For PanLex-BLI, we also run
experiments using smaller D, spanning 1k pairs.

Task 2: Cross-Lingual Lexical Semantic Simi-
larity (XLSIM) tests the extent to which lexical
representations can capture the (human perception
of) fine-grained semantic similarity of words across
languages. We use the comprehensive XLSIM
benchmark Multi-SimLex (Vulić et al., 2020a),

6We observed very similar performance trends for P@5
and Mean Reciprocal Rank (MRR) as BLI measures.

which comprises cross-lingual datasets of 2k-4k
scored word and phrase pairs over 66 language
pairs. We evaluate on a subset of language pairs
shared with the GT-BLI dataset: EN, FI, RU, FR.

The evaluation metric is the standard Spear-
man’s rank correlation between the average of gold
human-elicited XLSIM scores for word pairs and
the cosine similarity between their respective word
representations. To avoid any test data leakage, we
remove all XLSIM test pairs from the bilingual dic-
tionary D prior to fine-tuning and CLWE mapping.

Task 3: Cross-Lingual Entity Linking (XEL)
is a standard task in knowledge base (KB) con-
struction (Zhou et al., 2022), where the goal is to
link an entity mention in any language to a corre-
sponding entity in an English KB or in a language-
agnostic KB.7 We evaluate on the cross-lingual
biomedical entity linking (XL-BEL) benchmark of
Liu et al. (2021d): it requires the model to link
an entity mention to entries in UMLS (Bodenrei-
der, 2004), a language-agnostic medical knowledge
base. We largely follow the XL-BEL experimental
setup of Liu et al. (2021d) and probe the encoders
first without any additional task-specific fine-tuning
on UMLS data, and then with subsequent UMLS
fine-tuning (i) only on the EN UMLS data, (ii) on
all the UMLS data in 10 languages of the XL-BEL
dataset.8 Due to a large number of experiments, we
again focus on the subset of languages in XL-BEL
shared with GT-BLI: EN, DE, FI, RU, TR.

Static CLWEs and Word Vocabularies. As mono-
lingual static WEs, we select CommonCrawl fast-
Text vectors (Bojanowski et al., 2017) of the top
200k most frequent word types in the training data,
following prior work on learning static CLWEs
(Conneau et al., 2018; Artetxe et al., 2018; Hey-
man et al., 2019).9 Static CLWEs are then induced
via the standard and popular supervised mapping-
based VECMAP method (Artetxe et al., 2018),
leveraging the seed dictionary D. These CLWEs
are used for interpolation with encoder-based WEs
(see §2.2) but also as the baseline approaches for
BLI and XLSIM tasks. We compute the type-level
WEs from multilingual LMs and SEs for the same

7Following prior work (Liu et al., 2021b; Zhou et al., 2022),
XEL in this work also refers only to entity mention disam-
biguation; it does not cover the mention detection subtask.

8See (Liu et al., 2021d) for additional details.
9CommonCrawl-based fastText WEs typically outperform

other popular choice for monolingual WEs: Wikipedia-based
fastText (Glavaš et al., 2019; Li et al., 2022). We note that the
main trends in our results also extend to the Wiki-based WEs.

2093



200K most frequent words of each language.

Technical Details and Hyperparameters. The
implementation is based on the SBERT framework
(Reimers and Gurevych, 2019), using the suggested
settings: AdamW (Loshchilov and Hutter, 2018);
learning rate of 2e-5; weight decay rate of 0.01.
We run contrastive fine-tuning for 5 epochs with
all the models, with the batch size of B = 128 pos-
itives for MNEG. The number of hard negatives per
each positive is set to K = 10 (see §2.1).10 Since
standard BLI and XLSIM datasets lack a validation
portion (Ruder et al., 2019), we follow prior work
(Glavaš et al., 2019) and tune hyperparameters on
a single language pair from each dataset, and use
those values in all other runs. The randomly se-
lected language pairs are EN-TR for GT-BLI and
CA–ET for PanLex-BLI.

All reported scores are the averages over 5 runs
with 5 fixed random seeds.

Model Configurations. They are labelled as fol-
lows: ENC-{noCL,+CL} (λ), where (i) ENC de-
notes the input multilingual Transformer, which
can be a multilingual LM (MBERT, XLM-R), or a
multilingual SE (LABSE, XMPNET), (ii) ‘noCL’
refers to using the input model ‘off-the-shelf’ with-
out any contrastive lexical fine-tuning, while ‘+CL’
variants apply the contrastive fine-tuning, and (iii)
λ is the factor that defines the interpolation with
the static CLWE space, obtained with VECMAP

(see Figure 1 and §2.2). Note that λ = 1.0 implies
no interpolation with static CLWE space, i.e., WEs
come purely from the multilingual LM/SE.

Important Disclaimer. We note that the main pur-
pose of the chosen evaluation tasks and experi-
mental protocols is not necessarily achieving state-
of-the-art performance, but rather probing differ-
ent model variants in different cross-lingual lexical
tasks, and offering fair and insightful comparisons.

4 Results and Discussion

Bilingual Lexicon Induction (BLI). Table 1 dis-
plays our main BLI results, aggregated over all 28
language pairs of GT-BLI. Two trends hold across
the board. First, multilingual SEs, LABSE and
XMPNET, substantially outperform their multi-
lingual LM counterparts, MBERT and XLM-R.
The gains are visible in all four experimental con-
figurations (with/without contrastive cross-lingual

10We also tested K={20, 30, 50}. They slow down fine-
tuning while yielding small-to-negligible performance gains.

lexical specialisation × with/without interpolation
with the VECMAP CLWE space). This confirms
our intuition that multilingual SEs, having been
(additionally) trained on parallel data (Feng et al.,
2022; Reimers and Gurevych, 2020), should better
reflect the cross-lingual alignments at the lexical
level than off-the-shelf multilingual LMs, which
have not been exposed to any cross-lingual signal
in pretraining. The poor cross-lingual lexical align-
ment in the representation spaces of MBERT and
XLM-R also reflects in the fact that with those
encoders, we only surpass the baseline VECMAP

performance by a small margin (+1.1 for XLM-R,
+1.6 for MBERT) after subjecting them to con-
trastive lexical fine-tuning and interpolating their
word encodings with VECMAP WEs.

The behavior of SEs, on the other hand, is much
more favorable. LABSE, for example, surpasses
baseline VECMAP performance with interpolation
alone, even without the contrastive lexical fine-
tuning. When contrastively fine-tuned (and then in-
terpolated with VECMAP) both LABSE and XMP-
NET surpass the baseline VECMAP performance
by a much wider margin (+6.4 and +5.2, respec-
tively). This implies that contrastive fine-tuning
exposes more of the high quality cross-lingual lexi-
cal knowledge from multilingual SEs.

Both (i) contrastive cross-lingual lexical learn-
ing (+CL) and (ii) interpolation with VECMAP

consistently improve the performance for all four
encoders: we reach peak scores by combining con-
trastive fine-tuning and interpolation with static
CLWEs (+CL (λ)). Contrastive fine-tuning cru-
cially contributes to the overall performance: com-
pared to interpolation alone (noCL (λ)), +CL (λ)
brings an average gain of over 6 BLI points.

Table 2 shows the BLI results on 10 low(er)-
resource language pairs from PanLex-BLI. While
overall relative trends are similar to those observed
for high(er)-resource languages from GT-BLI (Ta-
ble 1), the gains stemming from cross-lingual con-
trastive lexical fine-tuning are substantially larger
in this case. The best-performing configuration
– contrastive fine-tuning and interpolation (+CL
(0.4)) applied on LaBSE – surpasses VECMAP by
11 BLI points on average (compared to 6 points
on GT-BLI), with gains for some language pairs
(e.g., HE-KA, ET-HE) approaching the impressive
margin of 20 BLI points. This finding indicates
that cross-lingual lexical knowledge stored in mul-
tilingual SEs is even more crucial when dealing
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Multilingual LMs MBERT XLM-R

Config −→ VECMAP noCL (1.0) noCL (λ) +CL (1.0) +CL (λ) noCL (1.0) noCL (λ) +CL (1.0) +CL (λ)

[BLI] λ=0.3 42.7 9.0 39.2 22.3 44.3 6.4 33.7 21.2 43.8
[XLSIM] λ=0.5 45.8 5.7 35.4 38.4 48.1 1.7 23.5 46.1 51.8

Multilingual SEs LABSE XMPNET

Config −→ VECMAP noCL (1.0) noCL (λ) +CL (1.0) +CL (λ) noCL (1.0) noCL (λ) +CL (1.0) +CL (λ)

[BLI] λ=0.3 42.7 21.4 45.7 30.8 49.1 17.0 41.7 28.6 47.9
[XLSIM] λ=0.5 45.8 50.4 54.9 48.8 54.1 51.3 56.6 49.6 54.5

Table 1: (a) P@1 scores (×100%) averaged across all 28 language pairs in the GT-BLI dataset ([BLI] rows); (b)
Spearman’s ρ correlation scores (×100) averaged across a subset of 6 language pairs from Multi-SimLex ([XLSIM
rows]). See §3 for the description of different model configurations/variants. |D| = 5k. The number in the
parentheses denotes the value for λ (see §3), which differs between the two tasks (0.3 for BLI and 0.5 for XLSIM).
The λ value of 1.0 effectively means ’no interpolation’ with static VECMAP CLWEs. Individual results per each
language pair in both tasks and with other λs are in Appendix B and Appendix C.

MBERT XLM-R LABSE XMPNET

Pair ↓ / Config −→ VECMAP +CL (1.0) +CL (0.4) +CL (1.0) +CL (0.4) +CL (1.0) +CL (0.4) +CL (1.0) +CL (0.4)

BG–CA 34.4 9.6 31.9 13.2 33.3 17.9 38.0 15.9 35.7
BG–ET 30.0 17.1 32.6 21.3 34.1 29.9 42.7 26.1 38.9
BG–HE 26.1 9.9 21.1 10.5 26.3 23.7 37.2 10.9 27.2
BG–KA 26.8 16.0 29.8 15.9 30.5 27.2 37.4 18.7 32.4
CA–ET 26.3 26.8 32.9 23.5 34.1 28.8 38.6 29.0 38.9
CA–HE 23.3 2.3 12.5 4.9 18.5 12.7 28.9 8.5 22.7
CA–KA 20.7 1.5 10.3 4.7 20.0 9.6 26.1 6.4 21.8
ET–HE 18.6 15.0 21.9 17.7 26.0 31.0 37.8 18.5 27.0
ET–KA 16.5 7.2 18.2 12.7 24.3 19.3 30.3 12.5 25.8
HE–KA 12.7 15.6 23.8 13.3 23.1 25.3 30.2 15.1 24.4

Average 23.5 12.1 23.5 13.8 27.0 22.5 34.7 16.2 29.5

Table 2: P@1 scores over a representative subset of 10 language pairs from the PanLex-BLI dataset of Vulić et al.
(2019). See §3 for the description of different model configurations/variants. |D| = 5k. Highest scores per row
are in bold. Respective average scores for the noCL (1.0) config (i.e., without contrastive learning and without
interpolation with static VECMAP CLWEs) are: 4.2 (MBERT), 3.1 (XLM-R), 17.0 (LABSE), 8.3 (XMPNET).

LABSE

Pair ↓ VECMAP noCL (1.0) +CL (1.0) +CL (0.5)

BG–CA 15.2 14.0 18.0 28.9
BG–ET 12.5 20.3 25.5 35.1
BG–HE 5.6 18.3 20.8 24.7
BG–KA 9.1 16.0 21.6 29.7
CA–ET 9.8 24.8 25.6 31.2
CA–HE 5.0 10.6 12.2 15.6
CA–KA 5.5 5.7 8.3 14.8
ET–HE 3.1 27.7 25.1 25.4
ET–KA 4.6 13.2 16.0 21.1
HE–KA 3.2 19.0 22.0 25.4

Average 7.4 17.0 19.5 25.2

Table 3: P@1 scores over 10 language pairs from the
PanLex-BLI dataset of Vulić et al. (2019) when |D| =
1k, with different model variants based on LABSE (see
§3). Highest scores per row are in bold.

with lower-resource languages.

In Table 3 we compare the results of LaBSE
(as the best-performing multilingual SE) against
VECMAP on PanLex-BLI in a scenario with less
external bilingual supervision: |D| = 1k. Inter-
estingly, in this setup LABSE already substan-
tially outperforms VECMAP out of the box (noCL

(1.0)); contrastive lexical fine-tuning (+CL (1.0))
and interpolation with VECMAP embeddings (+CL
(0.5)) again bring further substantial gains, and we
again observe a strong synergistic effect of the two
components: +CL (1.0) yields gains over noCL
(1.0) for 9/10 language pairs, and +CL (0.5) re-
sults in further boosts for all 10 pairs. Further,
the contrastively fine-tuned LABSE seems to be
much more resilient to training data scarcity than
VECMAP: reduction of the training dictionary size
from 5k to 1k reduces the performance of LABSE
+CL (λ) by 27% (from 34.7 to 25.2 P@1 points)
compared to a massive performance drop of almost
70% for VECMAP (from 23.5 to mere 7.4 P@1).
In sum, the BLI results already indicate the wealth
of lexical knowledge ’hidden’ in multilingual SEs,
which must be ‘exposed to surface’.

Cross-Lingual Lexical Semantic Similarity (XL-
SIM). The average XLSIM results are summarized
in Table 1. They again corroborate one of the main
findings from BLI experiments: multilingual SEs
store more cross-lingual lexical knowledge than
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Figure 2: Average scores across different interpolation values λ for the BLI task on (a) GT-BLI and (b) PanLex-BLI,
and (c) the XLSIM task on Multi-SimLex. |D| = 5k. Additional results are in Appendix B and C.

Config ↓ / Language Lt −→ DE FI RU TR

P@1 P@5 P@1 P@5 P@1 P@5 P@1 P@5

XLM-R +noCL 0.0 0.1 0.1 0.2 0.1 0.2 0.4 0.5
XLM-R +noCL+UMLSEN 27.6 32.0 12.2 14.7 21.8 25.9 29.3 35.9
XLM-R +noCL+UMLSall 31.8 37.3 18.6 22.2 35.4 41.2 42.8 48.9
XLM-R +CL 14.1 17.1 5.0 6.5 8.7 11.2 21.6 27.1
XLM-R +CL+UMLSEN 25.2 29.0 12.1 14.1 19.8 25.0 31.1 36.1
XLM-R +CL+UMLSall 32.1 36.7 19.1 23.8 34.9 42.4 43.4 49.0
XMPNET +noCL 19.5 25.9 12.2 14.8 19.2 24.3 28.9 36.3
XMPNET +noCL+UMLSEN 25.1 29.2 17.8 21.5 21.9 26.9 30.0 36.5
XMPNET +noCL+UMLSall 33.4 37.8 23.6 27.7 39.8 45.4 44.6 51.4
XMPNET +CL 20.8 26.5 9.1 12.5 12.8 17.1 30.4 36.5
XMPNET +CL+UMLSEN 25.1 28.7 11.4 14.0 21.8 27.2 31.0 37.5
XMPNET +CL+UMLSall 32.0 38.7 22.9 27.5 39.2 45.7 44.3 51.0

Table 4: A summary of results in the XEL task on the biomedical XL-BEL benchmark of Liu et al. (2021d). We
show the results of the better-performing LM (XLM-R), and the more lightweight multilingual SE (XMPNET).

multilingual LMs. This is validated by substantial
gains of SEs over corresponding LMs across all
configurations in Table 1. Interestingly, due to their
contrastive learning objectives on sentence-level
parallel data (Feng et al., 2022), LABSE and XMP-
NET provide very strong XLSIM results when
used off-the-shelf (noCL (1.0)), outperforming the
CLWE VECMAP embeddings. Contrastive lexical
fine-tuning with 5k word translation pairs (+CL
(1.0)) in this case does not bring any gains. How-
ever, the opposite is true for multilingual LMs: con-
trastive cross-lingual lexical fine-tuning on only
5k word translation pairs brings large benefits in
the XLSIM task (e.g., compare noCL (1.0) and
+CL (1.0) configurations for MBERT and XLM-
R), and turns them into more effective lexical en-
coders. This result corroborates a similar finding
from prior work in monolingual setups (Vulić et al.,
2021a). Finally, interpolation with static CLWEs
benefits the final XLSIM performance of all four
underlying multilingual encoders: interpolated vec-
tors (λ = 0.5) yield highest scores across the board,
substantially surpassing gains both VECMAP and
WEs from fine-tuned encoders (λ = 1.0).

Interpolation with Static CLWEs. A more de-
tailed analysis over different λ values for BLI and
XLSIM, summarized in Figure 2, reveals that inter-
polation can bring large performance gains, espe-

cially for λ in the [0.3, 0.5] interval. The optimal λ
value is, however, task- and even dataset-dependent.
For instance, for low-resource BLI on PanLex-BLI
more knowledge comes from the multilingual en-
coders as VECMAP CLWEs are of lower quality
for such languages: in consequence, the optimal λ
value ‘moves away’ from the static CLWEs towards
encodings obtained by fine-tuned multilingual SE.
We also note that larger benefits from interpolation
are observed when VECMAP CLWEs are combined
with contrastively fine-tuned multilingual SEs than
with LMs: cf., the large gains in Figure 2b and in
Table 3 for the LABSE +CL model variant.

Cross-Lingual Entity Linking (XEL). Experi-
ments on XL-BEL (Liu et al., 2021d), summa-
rized in Table 4, demonstrate that additional con-
trastive tuning with word or phrase pairs can greatly
boost performance of multilingual LMs: even fine-
tuning with 5k word translation pairs without any
domain-specific knowledge yields strong benefits
for XLM-R. As expected, using a much larger and
domain-specific external database UMLS yields
much higher scores and is more crucial for per-
formance. In fact, contrastively fine-tuning on
UMLS generally improves XEL performance with
all four underlying models. Again, we observe
that SE-based (XMPNET) configurations outper-
form the respective LM-based (XLM-R) configura-
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tions across the board. This finding again indicates
that multilingual SEs store more cross-lingual lex-
ical knowledge than multilingual LMs: this dif-
ference is particularly salient when the models
are used off-the-shelf without any additional con-
trastive fine-tuning, and XMPNET retains the edge
over XLM-R even after task-specific fine-tuning
with the UMLS-based domain-specific knowledge.

What is more, for FI, RU, and TR, the multilin-
gual XMPNET-based variants match or surpass
the performance of respective XEL models trained
on top of monolingual LMs (e.g., for FI, a model
based on the Finnish BERT) reported by Liu et al.
(2021d). This further validates our hypothesis that
multilingual SEs store rich multilingual lexical
knowledge, which is then also exposed in domain-
specific (multilingual) UMLS fine-tuning, yield-
ing performance gains. Contrastive fine-tuning
on UMLS synonyms (+CL+UMLS variants) ex-
pectedly outpeforms fine-tuning on (5k) general-
domain word translations (+CL), indicating that in
specialized domains, if available, in-domain cross-
lingual lexical signal should be exploited.

4.1 Summary and Discussion

Since the exposure of knowledge is done through
very knowledge-light tuning which also improves
representations of lexical items not covered in the
dictionaries used for the adaptive fine-tuning, this
suggests that the knowledge is stored in the param-
eters of the large models (both LMs and SEs), but it
is more easily ‘re-purposed’ through fine-tuning for
SEs. One might posit that the SEs have an ‘unfair’
advantage over LMs as the primary purpose of the
SEs, even before is encoding text items (i.e., sen-
tences) for semantic similarity and search. In this
paper, we verify the extent of that advantage for
lexical-level encodings/embeddings (as representa-
tions of lexical knowledge): while exposing (i.e.,
re-purposing) works for both model types, they do
not reach the same performance peaks and benefits
for lexical tasks where such lexical encodings are
a paramount. We leave fine-tuning with LM-style
objectives for other types of tasks beyond lexical
similarity and search for future work.

5 Conclusion and Future Work

We investigated strategies to probe and expose
cross-lingual lexical knowledge from pretrained
models, including multilingual language models
(LMs) and multilingual sentence encoders (SEs).

Based on an extensive probing experiments on a
suite of cross-lingual lexical tasks, we verified that
multilingual SEs (e.g., LABSE, XMPNET) are
superior to multilingual LMs (MBERT, XLM-R)
in terms of stored cross-lingual lexical knowledge.
We empirically validated that the SEs store more
lexical knowledge than ‘what meets the eye’ when
they are used off-the-shelf, but this knowledge must
be exposed from them. To this end, we proposed
new methods to further fine-tune their represen-
tations based on contrastive learning to ‘rewire’
the models’ parameters and transform them from
LMs and SEs into more effective cross-lingual lex-
ical encoders. These lexical encoders yield gains
for all underlying models, and are especially sig-
nificant for resource-poor languages and in low-
data learning regimes. While this work focused on
two widely used state-of-the-art multilingual SEs,
the contrastive framework is versatile and model-
independent and can be applied on top of other
multilingual SEs in future work. We will also inves-
tigate other more sophisticated contrastive learning
strategies, look into ensembling of knowledge ex-
tracted from different SEs, and expand our probing
experiments to more tasks and languages.
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Limitations

This work focuses on lexical specialization of mul-
tilingual encoders, off-the-shelf LMs (experiments
with mBERT and XLM-R Base) and, in particu-
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lar multilingual encoders specialized for sentence-
level semantics (experiments with LABSE and
XMPNET). While these are all widely used mod-
els, they are arguably among the smaller pretrained
multilingual encoders. Due to computational con-
straints, we have not evaluated the effectiveness of
the proposed cross-lingual lexical specialisation for
larger multilingual LMs, e.g., XLM-R-Large (Con-
neau et al., 2020) or mT5 (Large, XL, and XXL)
(Xue et al., 2021). It is possible that these larger
multilingual LMs would close (some of) the per-
formance gap w.r.t. multilingual SEs. Such large
LMs, however, are effectively available to fewer re-
searchers and practitioners. Our work includes less
resource-demanding LMs and SEs, making their
lexically specialized variants that we offer more
widely accessible.

Lexical input (i.e., words or phrases) are pro-
vided to each multilingual encoder fully “in iso-
lation” (see §2), without any surrounding context.
However, the alternative of using external corpora
and averaging-over-context (Litschko et al., 2022),
which we have not evaluated in this work for clar-
ity and space constraints, might yield slightly im-
proved task performance. Nonetheless, the ’in iso-
lation’ approach has been verified in previous work
(Vulić et al., 2021a; Litschko et al., 2022; Li et al.,
2022) as very competitive, and is more lightweight:
1) it disposes of any external text corpora and is
not impacted by the external data; 2) it encodes
words more efficiently due to the absence of con-
text. Moreover, it allows us to directly study the
richness of cross-lingual information stored in the
encoders’ parameters, and its interaction with addi-
tional cross-lingual signal from bilingual lexicons.

The contrastive cross-lingual lexical fine-tuning
we proposed in this is work is bilingual. It lever-
ages a small bilingual dictionary D for each lan-
guage pair and specializes the multilingual en-
coders (LMs and SEs) independently for each lan-
guage pair. Assuming interest in cross-lingual
lexical tasks between all pairs of NL languages,
this entails NL·(NL−1)

2 fine-tuning procedures and
as many resulting bilingual models. Although
our contrastive fine-tuning is relatively fast and
lightweight, given that it leverages at most 5k trans-
lation pairs, for large NL it could easily exceed
the computational and time budget for most users.
On a high level, our work again outlines the ad-
vantages as well as disadvantages between 1) more
versatile massively multilingual models that serve

multiple languages without any further adaptation,
and 2) better-performing but typically less modular
and less versatile models adapted (i.e., bilingually
specialized) from the multilingual models (Bapna
and Firat, 2019; Parović et al., 2022).

Intuitively, for each bilingually fine-tuned model,
we evaluate the performance for that respective lan-
guage pair. Currently, we do not investigate the
spillover effects that a bilingual lexical fine-tuning
of multilingual encoders could have on lexical rep-
resentations of other languages. Such an analysis,
planned for future work, would be particularly in-
teresting in the context of low-resource languages,
unseen from the point of view of cross-lingual lex-
ical fine-tuning, and in particular closely related
low-resource languages. For instance, if we are
doing cross-lingual lexical fine-tuning for language
pairs involving Turkish, are there spillover bene-
fits for low(er)-resource Turkic languages such as
Uyghur or Kazakh?

Finally, we acknowledge that our choice of lex-
ical tasks as probing tasks is non-exhaustive: we
put focus on standard tasks from previous work
on (multilingual) lexical semantics that are espe-
cially convenient as cross-lingual lexical probes:
such tasks directly test and compare the quality of
cross-lingual lexical representations obtained via
different methods; see §4.1 again.
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Casanueva, Paweł Budzianowski, Sam Coope, Geor-
gios Spithourakis, Tsung-Hsien Wen, Nikola Mrkšić,
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Ivan Vulić, Pei-Hao Su, Samuel Coope, Daniela
Gerz, Paweł Budzianowski, Iñigo Casanueva, Nikola
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Languages in: GT-BLI, Multi-SimLex, XL-BEL
EN English
DE German
TR Turkish
FI Finnish
HR Croatian
RU Russian
IT Italian
FR French

Languages in: PanLex-BLI
BG Bulgarian
CA Catalan
ET Estonian
HE Hebrew
KA Georgian

Table 5: Languages and their ISO 639-1 codes.

A List of Languages

The list of languages used in this work, along with
their ISO 639-1 codes, is available in Table 5.

B BLI Results across Individual
Language Pairs

Additional experiments and analyses over individ-
ual language pairs and other λ values, which further
support the main claims of the paper, have been rel-
egated to the appendix for clarity and compactness
of the presentation in the main paper:

Table 6. It provides results over all 28 language
pairs in GT-BLI with 2 multilingual LMs and 2
multilingual SEs in the noCL variant without con-
trastive fine-tuning.

Table 7. It provides results over all 28 language
pairs in GT-BLI with 2 multilingual LMs and 2 mul-
tilingual SEs in the +CL variant with contrastive
fine-tuning.

Table 8. It provides results over all 28 language
pairs in GT-BLI and across different λ values with
the LABSE +noCL variant.

Table 9. It provides results over all 28 language
pairs in GT-BLI and across different λ values with
the LABSE +CL variant.

C XLSIM Results across Individual
Language Pairs

Table 10. It provides results over selected 6 lan-
guage pairs from Multi-SimLex with 2 multilingual
LMs and 2 multilingual SEs in the noCL variant
without contrastive fine-tuning.

Table 11. It provides results over selected 6 lan-
guage pairs from Multi-SimLex with 2 multilingual

LMs and 2 multilingual SEs in the +CL variant
with contrastive fine-tuning.

Table 12. It provides results over selected 6 lan-
guage pairs from Multi-SimLex and across differ-
ent λ values with the XMPNET +noCL variant.

Table 13. It provides results over selected 6 lan-
guage pairs from Multi-SimLex and across differ-
ent λ values with the XMPNET +CL variant.

D Models and Evaluation Data

URLs to the models used in this paper are provided
in Table 14. Training and test data for all three
tasks (BLI, XLSIM, XEL) is available online:

• GT-BLI is available here: https://github.com/

codogogo/xling-eval

• PanLex-BLI: https://github.com/

cambridgeltl/panlex-bli

• Multi-SimLex [XLSIM]: https://multisimlex.
com/

• XL-BEL [XEL]: https://github.com/

cambridgeltl/sapbert

Our code is based on PyTorch, and relies on the
following two widely used repositories:

• sentence-transformers: www.sbert.net

• huggingface.co/transformers/
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MBERT XLM-R LABSE XMPNET

Pair ↓ / Config −→ VECMAP +noCL
(1.0)

+noCL
(0.3)

+noCL
(1.0)

+noCL
(0.3)

+noCL
(1.0)

+noCL
(0.3)

+noCL
(1.0)

+noCL
(0.3)

EN–DE 55.6 15.6 50.7 12.7 45.5 25.4 54.1 22.0 47.7
EN–TR 40.4 7.2 34.9 6.0 28.9 23.6 42.1 16.1 33.7
EN–FI 45.6 7.9 38.7 6.6 33.4 19.3 45.1 14.8 39.5
EN–HR 37.5 8.9 31.8 6.8 25.6 24.7 45.3 18.5 38.9
EN–RU 45.6 3.2 40.7 0.9 34.7 24.7 49.9 17.6 41.7
EN–IT 60.2 12.3 57.1 9.3 53.0 26.4 62.3 23.5 58.8
EN–FR 64.1 25.2 62.5 19.5 56.6 34.2 67.5 29.2 61.7
DE–TR 32.5 9.1 28.9 6.9 24.4 17.7 33.0 13.1 29.7
DE–FI 39.7 9.2 34.1 7.3 30.1 16.0 37.4 13.3 34.7
DE–HR 33.3 11.5 31.0 9.7 25.7 19.2 38.5 14.9 34.1
DE–RU 40.0 4.2 36.4 0.9 32.4 14.3 41.5 9.5 37.7
DE–IT 49.5 10.9 45.9 8.1 42.7 19.4 51.4 18.3 49.1
DE–FR 50.0 15.8 49.7 10.5 42.3 22.5 53.2 20.2 49.8
TR–FI 31.3 6.7 26.2 5.2 22.0 15.5 31.7 11.3 30.9
TR–HR 25.4 10.8 24.3 8.3 20.5 18.7 33.1 14.4 28.2
TR–RU 32.9 2.6 29.1 0.8 25.5 14.1 36.9 11.3 33.5
TR–IT 37.1 7.9 34.7 5.5 27.4 17.0 38.9 14.8 38.3
TR–FR 39.4 7.8 37.3 5.7 30.9 20.9 43.1 16.6 39.4
FI–HR 30.4 7.2 26.6 5.5 22.8 17.4 36.4 12.2 32.7
FI–RU 38.2 2.6 34.0 0.9 30.5 15.1 41.0 9.0 37.1
FI–IT 39.9 7.9 36.7 6.8 30.4 18.1 43.4 16.4 41.8
FI–FR 42.8 7.5 38.9 5.9 32.2 18.6 45.9 16.2 42.2
HR–RU 40.6 6.0 35.8 1.6 30.4 24.5 45.7 16.3 41.4
HR–IT 40.4 11.2 39.0 8.4 31.3 24.5 47.9 22.4 44.5
HR–FR 43.6 9.7 42.3 6.1 30.6 25.7 50.0 19.8 43.9
RU–IT 46.6 3.1 42.2 1.5 36.4 21.8 47.6 18.4 46.5
RU–FR 48.7 4.1 44.3 1.5 38.4 26.6 50.9 18.9 47.5
IT–FR 64.1 16.6 62.8 9.3 58.6 33.9 65.6 27.5 63.1

Average 42.7 9.0 39.2 6.4 33.7 21.4 45.7 17.0 41.7

Table 6: Individual P@1 scores (×100%) for all 28 language pairs in the GT-BLI dataset of Glavaš et al. (2019),
with multilingual LMs and SEs used ‘off-the-shelf’ without contrastive fine-tuning (§2). See §3 for the description
of different model configurations/variants. |D| = 5k. The number in the parentheses denotes the value for λ (see
§3): the value of 1.0 effectively means ’no interpolation’ with static VECMAP CLWEs.

MBERT XLM-R LABSE XMPNET

Pair ↓ / Config −→ VECMAP +CL (1.0) +CL (0.3) +CL (1.0) +CL (0.3) +CL (1.0) +CL (0.3) +CL (1.0) +CL (0.3)

EN–DE 55.6 26.4 59.2 24.5 56.3 31.6 61.1 30.2 58.7
EN–TR 40.4 17.4 39.3 19.2 42.0 33.1 50.1 30.4 45.7
EN–FI 45.6 18.6 45.6 20.2 45.7 30.8 53.3 28.7 50.4
EN–HR 37.5 23.6 44.3 21.8 44.3 36.9 53.9 31.8 49.6
EN–RU 45.6 23.9 48.9 28.3 48.8 46.4 55.8 37.9 53.1
EN–IT 60.2 26.8 64.0 25.4 61.7 33.3 66.9 33.0 65.3
EN–FR 64.1 34.4 67.7 33.0 65.4 42.1 71.2 39.5 68.5
DE–TR 32.5 19.5 32.8 15.5 33.5 24.4 37.6 22.7 36.2
DE–FI 39.7 20.3 38.5 19.0 37.5 25.0 43.3 24.4 42.1
DE–HR 33.3 24.2 37.3 22.4 36.9 27.9 42.9 27.2 41.8
DE–RU 40.0 21.2 42.0 19.1 41.5 27.5 45.6 26.8 44.1
DE–IT 49.5 23.0 49.9 19.0 48.6 24.6 52.5 25.6 51.4
DE–FR 50.0 27.4 52.5 24.3 51.5 31.3 54.5 30.0 53.9
TR–FI 31.3 18.0 29.6 15.9 31.7 22.2 34.9 22.4 35.9
TR–HR 25.4 21.8 30.2 19.0 30.8 27.4 36.8 26.0 36.4
TR–RU 32.9 16.2 33.9 15.7 33.5 24.7 37.4 24.7 37.8
TR–IT 37.1 17.4 37.8 15.4 36.8 22.8 41.6 22.2 41.0
TR–FR 39.4 18.4 40.4 17.4 38.9 29.4 43.9 26.3 43.6
FI–HR 30.4 20.2 32.7 17.4 32.5 27.4 39.7 24.3 38.4
FI–RU 38.2 17.6 37.3 18.0 38.7 27.6 42.4 27.6 41.3
FI–IT 39.9 18.4 40.5 17.6 40.0 25.2 45.3 24.0 44.9
FI–FR 42.8 17.5 43.0 18.2 41.9 26.4 47.6 26.1 45.8
HR–RU 40.6 26.4 41.4 29.5 43.9 36.1 46.4 33.3 46.4
HR–IT 40.4 24.6 44.0 22.8 42.8 32.3 49.7 30.2 49.2
HR–FR 43.6 24.1 46.5 23.4 44.1 35.0 51.8 29.3 50.7
RU–IT 46.6 22.0 46.9 19.4 45.0 32.0 50.2 28.4 51.1
RU–FR 48.7 22.1 49.1 20.5 47.6 37.0 53.5 28.9 51.2
IT–FR 64.1 33.4 65.5 32.9 64.3 42.2 66.0 39.0 66.4

Average 42.7 22.3 44.3 21.2 43.8 30.8 49.1 28.6 47.9

Table 7: Individual P@1 scores (×100%) for all 28 language pairs in the GT-BLI dataset of Glavaš et al. (2019),
with model variants with contrastive fine-tuning (§2). |D| = 5k.
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LABSE +noCL

Pair ↓ / λ =−→ VECMAP(0.0) 0.1 0.2 0.3 0.4 0.5 0.7 1.0

EN–DE 55.6 57.3 56.3 54.1 50.9 47.8 40.6 25.4
EN–TR 40.4 42.0 41.9 42.1 41.6 40.2 35.9 23.6
EN–FI 45.6 46.1 46.1 45.1 44.4 42.8 34.4 19.3
EN–HR 37.5 39.8 43.0 45.3 46.5 46.5 41.3 24.7
EN–RU 45.6 46.5 48.0 49.9 50.5 50.2 46.1 24.7
EN–IT 60.2 61.6 63.0 62.3 61.3 60.1 49.9 26.4
EN–FR 64.1 66.0 67.1 67.5 65.9 64.8 55.3 34.2
DE–TR 32.5 33.6 33.4 33.0 32.3 30.2 24.4 17.7
DE–FI 39.7 39.7 39.3 37.4 35.9 34.3 25.8 16.0
DE–HR 33.3 35.8 37.0 38.5 38.8 36.1 29.2 19.2
DE–RU 40.0 40.9 41.2 41.5 41.1 38.4 29.6 14.3
DE–IT 49.5 51.3 51.3 51.4 49.4 46.3 36.4 19.4
DE–FR 50.0 52.2 53.2 53.2 51.8 49.1 37.8 22.5
TR–FI 31.3 32.3 31.6 31.7 31.2 29.8 24.8 15.5
TR–HR 25.4 28.3 31.2 33.1 34.1 33.6 28.9 18.7
TR–RU 32.9 34.9 35.5 36.9 36.5 34.0 29.0 14.1
TR–IT 37.1 38.7 39.6 38.9 38.8 37.7 31.5 17.0
TR–FR 39.4 41.4 42.1 43.1 43.4 41.9 34.6 20.9
FI–HR 30.4 32.3 34.7 36.4 36.9 36.3 28.6 17.4
FI–RU 38.2 39.5 40.0 41.0 40.5 37.6 28.9 15.1
FI–IT 39.9 42.9 42.9 43.4 44.2 41.5 34.0 18.1
FI–FR 42.8 44.7 45.9 45.9 46.1 43.6 34.6 18.6
HR–RU 40.6 41.8 43.9 45.7 45.8 45.0 39.0 24.5
HR–IT 40.4 43.5 46.0 47.9 48.6 47.6 41.8 24.5
HR–FR 43.6 46.8 48.6 50.0 50.1 47.9 42.0 25.7
RU–IT 46.6 48.1 48.1 47.6 46.8 44.5 38.7 21.8
RU–FR 48.7 50.2 51.0 50.9 50.0 49.0 43.6 26.6
IT–FR 64.1 64.9 65.8 65.6 64.9 63.0 54.0 33.9

Average 42.7 44.4 45.3 45.7 45.3 43.6 36.5 21.4

Table 8: Individual P@1 scores (×100%) for all 28 language pairs in the GT-BLI dataset of Glavaš et al. (2019),
across different values for λ. The model variant is LABSE +noCL (see §3); similar patterns are observed with
another multilingual SE in our evaluation (XMPNET). |D| = 5k.

LABSE +CL

Pair ↓ / λ =−→ VECMAP(0.0) 0.1 0.2 0.3 0.4 0.5 0.7 1.0

EN–DE 55.6 59.4 61.2 61.1 60.1 56.8 46.5 31.6
EN–TR 40.4 43.9 46.8 50.1 51.0 49.9 45.4 33.1
EN–FI 45.6 48.6 51.0 53.3 54.1 53.9 46.1 30.8
EN–HR 37.5 44.1 49.7 53.9 56.7 57.1 49.7 36.9
EN–RU 45.6 50.1 52.5 55.8 58.5 59.0 56.2 46.4
EN–IT 60.2 62.5 65.3 66.9 67.2 66.2 55.7 33.3
EN–FR 64.1 66.3 69.5 71.2 71.1 69.5 59.5 42.1
DE–TR 32.5 35.4 36.5 37.6 36.7 35.6 31.8 24.4
DE–FI 39.7 41.6 42.5 43.3 42.2 39.5 32.7 25.0
DE–HR 33.3 37.9 40.8 42.9 43.1 41.6 35.9 27.9
DE–RU 40.0 43.1 44.0 45.6 45.9 44.7 37.3 27.5
DE–IT 49.5 51.3 52.0 52.5 50.9 47.7 38.9 24.6
DE–FR 50.0 52.4 53.7 54.5 53.6 50.3 42.7 31.3
TR–FI 31.3 33.3 34.3 34.9 35.0 33.7 30.2 22.2
TR–HR 25.4 30.4 34.2 36.8 38.5 38.2 35.8 27.4
TR–RU 32.9 35.2 36.6 37.4 37.5 36.1 32.5 24.7
TR–IT 37.1 39.0 41.2 41.6 41.5 39.9 34.4 22.8
TR–FR 39.4 41.8 43.0 43.9 43.8 43.3 38.6 29.4
FI–HR 30.4 34.0 37.5 39.7 41.2 40.2 36.4 27.4
FI–RU 38.2 40.2 41.1 42.4 42.6 40.2 36.2 27.6
FI–IT 39.9 43.3 44.3 45.3 45.9 44.7 38.2 25.2
FI–FR 42.8 44.5 46.3 47.6 47.8 46.0 40.0 26.4
HR–RU 40.6 42.0 44.9 46.4 47.5 48.3 44.7 36.1
HR–IT 40.4 43.3 47.7 49.7 50.6 50.4 46.1 32.3
HR–FR 43.6 47.2 49.0 51.8 52.0 51.0 46.4 35.0
RU–IT 46.6 48.8 49.6 50.2 50.4 48.7 44.9 32.0
RU–FR 48.7 51.0 51.9 53.5 53.1 52.1 47.1 37.0
IT–FR 64.1 64.9 65.9 66.0 66.0 64.6 56.9 42.2

Average 42.7 45.6 47.6 49.1 49.4 48.2 42.4 30.8

Table 9: Individual P@1 scores (×100%) for all 28 language pairs in the GT-BLI dataset of Glavaš et al. (2019),
across different values for λ. The model variant is LABSE +CL (see §3); similar patterns are observed with another
multilingual SE in our evaluation (XMPNET). |D| = 5k.
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MBERT XLM-R LABSE XMPNET

Pair ↓ / Config −→ VECMAP +noCL
(1.0)

+noCL
(0.5)

+noCL
(1.0)

+noCL
(0.5)

+noCL
(1.0)

+noCL
(0.5)

+noCL
(1.0)

+noCL
(0.5)

EN–FI 42.2 1.1 30.9 1.4 21.4 46.8 51.6 47.7 53.4
EN–RU 39.7 5.2 30.1 2.5 21.3 53.5 52.3 57.5 55.2
EN–FR 64.8 11.3 52.8 2.2 29.6 68.5 74.2 64.7 73.9
FI–RU 33.0 4.3 25.3 3.2 20.7 38.4 41.6 42.7 45.6
FI–FR 46.7 3.6 35.3 0.3 22.8 43.1 52.6 42.9 53.2
RU–FR 48.2 8.6 37.9 0.8 25.3 52.2 57 52.3 58.4

Average 45.8 5.7 35.4 1.7 23.5 50.4 54.9 51.3 56.6

Table 10: Individual Spearman’s ρ correlation scores (×100) on the XLSIM task (Multi-SimLex) for a subset of
language pairs in our evaluation, with multilingual LMs and SEs used ‘off-the-shelf’ without contrastive fine-tuning
(§2). See §3 for the description of different model configurations/variants. |D| = 5k, with XLSIM test pairs
removed from the dictionary. The number in the parentheses denotes the value for λ (see §3).

MBERT XLM-R LABSE XMPNET

Pair ↓ / Config −→ VECMAP +noCL
(1.0)

+noCL
(0.5)

+noCL
(1.0)

+noCL
(0.5)

+noCL
(1.0)

+noCL
(0.5)

+noCL
(1.0)

+noCL
(0.5)

EN–FI 42.2 32.4 43.5 42.3 48 45.6 50.6 48.1 51.5
EN–RU 39.7 34.8 42.1 45.8 47.3 47.1 49.2 50.5 50.4
EN–FR 64.8 56.5 67.4 57.9 69.2 64 72 64.1 71.9
FI–RU 33.0 28.4 35.9 38.3 40.8 38.3 42.3 40.1 43.1
FI–FR 46.7 34.7 47.3 41.7 50.6 45.9 53.5 46.6 54.2
RU–FR 48.2 43.6 52.1 50.4 55.1 51.8 56.8 48.5 55.6

Average 45.8 38.4 48.1 46.1 51.8 48.8 54.1 49.6 54.5

Table 11: Individual Spearman’s ρ correlation scores (×100) on the XLSIM task (Multi-SimLex) for a subset of
language pairs in our evaluation, with model variants with contrastive fine-tuning (§2). |D| = 5k.

XMPNET +noCL

Pair ↓ / λ =−→ 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 1.0

EN–FI 42.2 45.2 48.2 50.7 52.6 53.4 53 52.2 47.7
EN–RU 39.7 43.1 46.6 49.9 52.9 55.2 56.7 57.5 57.5
EN–FR 64.8 67.6 70.1 72.2 73.5 73.9 73.2 71.7 64.7
FI–RU 33 36.1 39.3 42.5 44.7 45.6 45.5 45.4 42.7
FI–FR 46.7 49.2 51.5 53.1 53.6 53.2 51.5 49.6 42.9
RU–FR 48.2 51.1 53.8 56.2 57.7 58.4 58.1 57.2 52.3

Average 45.8 48.7 51.6 54.1 55.8 56.6 56.3 55.6 51.3

Table 12: Individual Spearman’s ρ correlation scores (×100) on the XLSIM task (Multi-SimLex) for a subset of
language pairs in our evaluation, across different values for λ. The model variant is XMPNET +noCL (see §3);
similar patterns are observed with another multilingual SE in our evaluation (LABSE). |D| = 5k.

XMPNET +CL

Pair ↓ / λ =−→ 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 1.0

EN–FI 42.2 44.2 46.4 48.6 50.4 51.5 51.8 51.3 48.1
EN–RU 39.7 41.6 43.9 46.3 48.6 50.4 51.6 52 50.5
EN–FR 64.8 66.9 69 70.7 71.8 71.9 71 69.5 64.1
FI–RU 33.0 35.1 37.5 39.9 41.9 43.1 43.5 43 40.1
FI–FR 46.7 48.9 51.2 53.1 54.2 54.2 53.3 51.7 46.6
RU–FR 48.2 50.1 52.1 53.8 55.2 55.6 55.1 53.8 48.5

Average 45.8 47.8 50 52.1 53.7 54.5 54.4 53.6 49.6

Table 13: Individual Spearman’s ρ correlation scores (×100) on the XLSIM task (Multi-SimLex) for a subset of
language pairs in our evaluation, across different values for λ. The model variant is XMPNET +CL (see §3); similar
patterns are observed with another multilingual SE in our evaluation (LABSE). |D| = 5k.

Name URL

MBERT huggingface.co/bert-base-multilingual-uncased
XLM-R huggingface.co/xlm-roberta-base
LABSE huggingface.co/sentence-transformers/LaBSE
XMPNET huggingface.co/sentence-transformers/paraphrase-multilingual-mpnet-base-v2

Table 14: URLs of the multilingual Transformer models used in this work.
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huggingface.co/bert-base-multilingual-uncased
huggingface.co/xlm-roberta-base
huggingface.co/sentence-transformers/LaBSE
huggingface.co/sentence-transformers/paraphrase-multilingual-mpnet-base-v2

