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Abstract
We propose a novel gradient-based attack
against transformer-based language models that
searches for an adversarial example in a con-
tinuous space of token probabilities. Our al-
gorithm mitigates the gap between adversarial
loss for continuous and discrete text representa-
tions by performing multi-step quantization in a
quantization-compensation loop. Experiments
show that our method significantly outperforms
other approaches on various natural language
processing (NLP) tasks.

1 Introduction

Deep neural networks achieve impressive results,
but their vulnerability to adversarial attacks causes
major security threats and is a concern when inter-
preting or explaining model predictions.

In computer vision, the most successful at-
tack methods use gradient-based optimization tech-
niques (Carlini and Wagner, 2017; Madry et al.,
2018). They minimize adversarial loss function
that encourages the prediction error and impercep-
tibility of a generated example.

Development of optimization-based attacks in
NLP is much more challenging due to the discrete
nature of text. Recent methods (Guo et al., 2021;
Yuan et al., 2021) overcome this limitation by per-
forming a gradient descent in the continuous space
of token representations and eventually quantizing
them into discrete text.

A quantization of a token can significantly
change its embedding and cause an undesired
change of the loss value, degrading the adver-
sarial example. To our knowledge, all existing
optimization-based NLP attacks quantize all to-
kens in a text at once, which creates a considerable
gap between adversarial loss for continuous and
discrete text representations.

In this paper, we propose MANGO1 (Multi-
step quANtization Gradient-based adversarial Op-

1Code available at github.com/gmum/MANGO.

timizer): a novel optimization-based attack against
Transformer (Vaswani et al., 2017) language mod-
els that mitigates the aforementioned gap by per-
forming multi-step quantization in a quantization-
compensation loop. MANGO quantizes continuous
token representations one by one and reoptimizes
the adversarial example after each quantization to
compensate undesired degradation of adversarial
loss value. The construction of MANGO intro-
duces interesting problems that are addressed in
Section 3. MANGO achieves superior performance
in various NLP tasks, outperforming recent white-
box (optimization-based) and black-box attacks.

2 Related Work

Adversarial attacks can be roughly divided into two
categories: white-box attacks that have access to
the internal model’s states (e.g. gradient) and more
common black-box attacks that only know outputs
of the model. In our paper, we focus on a white-box
version of our MANGO attack. In Appendix D, we
develop a version of MANGO that can be used in
the loosened black-box setting.

Black-Box Methods Most black-box NLP at-
tacks define a space of character or word replace-
ments and heuristically search it for an adversarial
example (Yoo et al., 2020). The search space is lim-
ited with semantic ad hoc constraints (e.g. limiting
edit distance or restricting possible replacements to
synonyms) to preserve the attack’s imperceptibility.
Such constraints disallow some specific perturba-
tions (e.g. replacing a word with its antagonist even
if the semantics is preserved in the context of other
perturbations) and tend to generate semantically
incorrect examples (Morris et al., 2020a).

White-Box Methods Many white-box methods
use gradients to guide a heuristic search in a space
of text perturbations (Ebrahimi et al., 2018; Cheng
et al., 2019; Xu and Du, 2020). Recent methods
take a step further and perform gradient descent
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optimization. They aim to find an example that
minimizes the adversarial loss function, which en-
courages the prediction error and the imperceptibil-
ity of the attack. Because the similarity and fluency
of an example are controlled by a powerful external
model used in the loss, optimization-based methods
do not require hand-crafted semantic constraints,
making them more flexible than black-box ones.

Adapting gradient descent in NLP attacks is a
challenging problem due to the discrete nature of
the optimized text. Yuan et al. (2021) overcome
this issue by performing optimization in the con-
tinuous space of token embeddings and replacing
each token with a possibly new token, which em-
bedding is the closest to the optimized one. An
alternative approach is the GBDA method (Guo
et al., 2021) that optimizes a continuous distribu-
tion of stochastic one-hot vectors and repeatedly
samples adversarial examples from the optimized
distribution until it fools the attacked model.

Quantization Both methods mentioned above
quantize all continuous representations of tokens to
a text at once. Quantization of a single token may
significantly change its embedding and cause an
undesirable change of adversarial loss value. When
quantizing all tokens at once, the changes accu-
mulate to a considerable gap between adversarial
loss for continuous and discrete text representations
(see Section 6). Our MANGO mitigates this gap.

3 MANGO

This section describes our MANGO method. Un-
like other optimization-based methods that quan-
tize all token representations at once, MANGO con-
stitutes an entirely new algorithm that quantizes a
token and compensates for the resulting change in
an adversarial loss value in a step-by-step manner.
The construction of MANGO introduces interest-
ing problems that are addressed in the Optimiza-
tion, Vector Selection and Candidates Selection
paragraphs and are further evaluated in Section 5.

Continuous Token Representation The first
learnable layer of Transformer takes as input a se-
quence of tokens x = (t1, ..., tn), where ti ∈ 2|V |

has a single non-zero binary value at index k indi-
cating that it represents the k-th token in vocabulary
V .

Similarly to Guo et al. (2021), we relax the in-
put sequence x and replace one-hot encodings ti
with probability vectors πi. Because the first learn-

able Transformer layer is a simple linear layer, it
can take probability vectors as input without any
modification.

A probability vector πi constitutes probability
distribution over tokens from V .

In the embedding layer, the Transformer embeds
probability vectors with the function e:

e(πi) =

|V |∑

j=1

(πi)jEj , (1)

where Ej is the embedding vector of the j-th token.
If πi is quantized, meaning it is a one-hot vector
representing some token k, function e simply looks
up the k-th embedding: e(πi) = Ek. In MANGO,
πi is a probabilistic vector, and its embedding e(πi)
is a mixture of embeddings of all tokens weighted
by their probabilities πi. We parameterize πi with
logits Θi and a standard softmax function σ, so that
πi = σ(Θi) and x = σ(Θ) for Θ = (Θ1, ...,Θn).

Loss function Let m : X → R|Y | be a classifier
that outputs logit vectors and properly predicts a la-
bel y ∈ Y for some datapoint x ∈ X , meaning that
argmaxk m(x)k = y. An adversarial example is a
sample x′ ∈ X that is imperceptible (according to
specified criteria) from x but changes the output of
the model. In an optimization-based setting, search-
ing for an adversarial example is usually defined as
a minimization of an adversarial loss function.

Following Guo et al. (2021), we compose our
adversarial loss L as a combination of margin loss
lm, fluency loss lf , and similarity loss ls:

L(x′) = lm(m,x′, y)+λf lf (g, x
′)+λsls(g, x

′, x),
(2)

where λf and λs are the coefficients used to balance
the losses and g is a reference model.

Margin loss lm encourages model m to missclas-
sify x′ by a margin κ:

lm(m,x′, y) = max(m(x′)y−max
k ̸=y

m(x′)k+κ, 0).

Fluency loss lf promotes x′ with a high probabil-
ity of being generated by a causal language model
g that predicts the next token distribution:

lf (g, x
′) = −

n∑

i=1

|V |∑

j=1

(πi)jg(π1, ..., πi−1)j .

Similarity loss ls is based on BERTScore (Zhang
et al., 2020) and captures the semantic similar-
ity between x and x′ using contextualized embed-
dings of tokens ϕg(x) = (v1, ..., vn) and ϕg(x

′) =
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(v′1, ..., v
′
n) produced by the reference model g :

ls(g, x
′, x) = −

n∑

i=1

wimax
j

vTi v
′
j ,

where wi is the inverse frequency of token ti.

Quantization-Compensation Loop MANGO al-
gorithm searches for a x′ that minimizes L, quantiz-
ing and compensating it step by step. Algorithm 1
introduces the idea of MANGO.

In the first line, the parameters Θ of x′ are ini-
tialized, so that Θ′

ij = C · (xi)j for some constant
C. Each loop starts with optimization of x′ with
respect to L. Then vector selection is performed to
select π′

i from x′ which will be quantized in the cur-
rent step. Given π′

i, MANGO performs candidates
selection and selects m the most promising tokens
c1, ..., cm to which x′i can be quantized. In the 6th
line, each candidate cj is evaluated by computing
L for a sequence x′ with vector π′

i quantized to
cj . Finally, π′

i is quantized to the best cj chosen
from the previous step. Quantized π′

i will no longer
be updated during optimization. MANGO repeats
lines 2-7 until all vectors in x′ are quantized.

Algorithm 1: MANGO
Data: adversarial loss L (eq. 2)
Result: sentence x′ that minimizes L

1 initialize x′ = (π′
1, ..., π

′
n)

2 while x′ is not fully quantized do
3 optimization: optimize parameters of x′

4 vector selection: select probabilistic
vector π′

i from x′ for quantization
5 candidates selection: select m tokens

candidates from π′
i

6 evaluate these m candidates with loss L
7 quantize π′

i to best evaluated token

Optimization We optimize x′ with the Adam
optimizer (Kingma and Ba, 2014) which is reset
after each quantization (see Section 5). This allows
x′ to rapidly change its trajectory to compensate
for the degradation of L. The initial number of
optimization steps is S, but it decreases by a factor
of 2 in each loop to reduce computational costs.

Vector Selection In line 4th, we choose vector π′
i

with the highest entropy (see Section 5), because
its quantization will introduce the most significant
change to x′ and is likely to increase the loss value
the most. Intuitively, we want such degrading quan-
tizations to occur early in the algorithm, because

the more vectors are not quantized yet, the larger
capacity x′ has to compensate for degradation by
finding another local minimum of L.

Candidates Selection In this phase, we select m
tokens that can be used to quantize the probability
vector π′

i with possibly a small degradation of L.
Quantization of π′

i with token k is a step qk =
(−(π′

i)1,−(π′
i)2, ..., 1 − (π′

i)k, ...,−(π′
i)n) in the

π′
i space. As π′

i is likely to be in the proximity of
its local minimum with respect to L, we want the
step qk to have (1) the lowest norm ∥qk∥ possible
and (2) follow the direction of the local (minus)
gradient. We use this intuition in the formulation
of the token score sk, which is a weighted mean of
the probability (π′

i)k and the direction score dk:

sk = λprob(π
′
i)k + (1− λprob)dk. (3)

Note that (π′
i)k is inversely proportional to ∥qk∥.

We define dk as cosine similarity between qk and
the local (minus) gradient (see Section 5):

dk =
qk

(
−∇π′

i
L(x′)

)T

∥qk∥ · ∥∇π′
i
L(x′)∥ (4)

We then select m tokens with the highest scores sk.

4 Experiments

In this section, we evaluate MANGO on various
NLP tasks and compare it to recent NLP attacks.

Baselines We compare our method with the latest
white-box GBDA attack (Guo et al., 2021), as well
as recent black-box attacks implemented in Tex-
tAttack (Morris et al., 2020b): BERT-Attack (Li
et al., 2020), BAE (Garg and Ramakrishnan, 2020)
and TextFooler (Jin et al., 2020). To emphasize the
importance of multi-step quantization, we evaluate
the Naive version of MANGO that performs quan-
tization in one step. MANGO, Naive and GBDA
attacks use identical loss. All hyperparameters are
listed in appendix A.

Tasks We attack BERT models from TextAttack
fine-tuned on three text classification tasks: AG
News (Zhang et al., 2015), Yelp Reviews (Zhang
et al., 2015), IMDB (Maas et al., 2011), and MNLI
task for natural language inference, (Williams et al.,
2018). In MNLI p., an attack is allowed to modify
only the premise, and in MNLI h., only the hypoth-
esis. For each task, we randomly select 1000 attack
targets from the training set. We use a training set
as it provides more challenging targets and is more
relevant to Adversarial Training (Bai et al., 2021).
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Task Method Adv. Adv. prob. USE sim. BERTScore ∆ perp. ∆ gram. # queries
A

G
N

ew
s

(9
9.

6)
TextFooler 16.2 43.7 ± 26.0 0.81 ± 0.13 0.83 ± 0.10 373 ± 548 0.26 ± 0.69 334 ± 224
Bert-Attack 20.1 45.7 ± 27.7 0.83 ± 0.11 0.86 ± 0.09 86 ± 133 0.06 ± 0.49 620 ± 472
BAE 12.6 41.1 ± 24.1 0.78 ± 0.16 0.84 ± 0.11 157 ± 289 0.07 ± 0.53 424 ± 353

naive 43.7 44.5 ± 43.1 0.82 ± 0.10 0.87 ± 0.06 67 ± 141 0.13 ± 0.62 102 ± 6
GBDA 12.9 13.7 ± 29.4 0.72 ± 0.13 0.80 ± 0.09 241 ± 382 0.17 ± 0.72 1098 ± 69
MANGO 2.7 3.2 ± 15.3 0.78 ± 0.10 0.83 ± 0.06 30 ± 108 0.10 ± 0.63 496 ± 125

IM
D

B
(9

8.
2)

TextFooler 0.6 34.1 ± 16.9 0.94 ± 0.08 0.93 ± 0.07 108 ± 214 01.03 ± 1.81 761 ± 1 000
Bert-Attack 0.6 28.0 ± 18.6 0.96 ± 0.07 0.96 ± 0.05 19 ± 38 0.05 ± 0.65 900 ± 922
BAE 0.2 29.3 ± 18.3 0.95 ± 0.08 0.95 ± 0.06 27 ± 59 0.10 ± 0.76 651 ± 665

naive 30.5 31.1 ± 42.6 0.86 ± 0.09 0.83 ± 0.10 288 ± 346 1.56 ± 2.75 100 ± 13
GBDA 6.3 7.0 ± 21.3 0.83 ± 0.11 0.79 ± 0.08 294 ± 271 1.44 ± 2.22 1082 ± 146
MANGO 0.3 0.7 ± 5.7 0.88 ± 0.07 0.83 ± 0.08 59 ± 73 0.99 ± 2.15 1647 ± 746

Y
el

p
(9

9.
9)

TextFooler 4.5 31.7 ± 22.6 0.92 ± 0.10 0.93 ± 0.06 90 ± 192 0.50 ± 01.06 495 ± 526
Bert-Attack 1.9 28.3 ± 19.1 0.93 ± 0.09 0.94 ± 0.06 16 ± 38 0.00 ± 0.55 665 ± 713
BAE 2.8 30.5 ± 21.1 0.92 ± 0.11 0.93 ± 0.06 29 ± 130 0.06 ± 0.60 501 ± 525

naive 35.1 35.8 ± 45.4 0.82 ± 0.13 0.84 ± 0.09 25 ± 84 0.75 ± 1.93 102 ± 3
GBDA 4.5 4.9 ± 18.3 0.79 ± 0.12 0.81 ± 0.06 5 ± 42 0.37 ± 1.59 1101 ± 35
MANGO 8.5 8.9 ± 27.4 0.82 ± 0.12 0.80 ± 0.07 -30 ± 38 0.34 ± 1.72 1128 ± 718

M
N

L
Ip

re
m

is
e

(9
4.

7)

TextFooler 94.7 - - - - - -
Bert-Attack 3.9 34.3 ± 23.5 0.93 ± 0.08 0.96 ± 0.04 30 ± 58 0.02 ± 0.26 146 ± 148
BAE 5.0 34.3 ± 23.5 0.92 ± 0.09 0.95 ± 0.04 42 ± 107 0.01 ± 0.26 112 ± 108

naive 31.6 33.9 ± 24.0 0.91 ± 0.07 0.94 ± 0.04 64 ± 116 -0.01 ± 0.50 97 ± 23
GBDA 5.9 30.3 ± 21.9 0.80 ± 0.12 0.87 ± 0.07 301 ± 446 0.09 ± 0.67 1044 ± 247
MANGO 2.4 31.6 ± 23.3 0.88 ± 0.08 0.91 ± 0.05 73 ± 123 0.05 ± 0.60 326 ± 125

M
N

L
Ih

yp
.

(9
4.

7)

TextFooler 6.5 35.5 ± 24.2 0.94 ± 0.07 0.95 ± 0.04 77 ± 139 0.13 ± 0.39 77 ± 44
Bert-Attack 2.6 34.3 ± 24.3 1.00 ± 0.01 0.97 ± 0.03 1 ± 0 0.00 ± 0.06 95 ± 62
BAE 3.5 34.8 ± 24.4 0.95 ± 0.06 0.97 ± 0.03 29 ± 57 0.03 ± 0.25 74 ± 39

naive 8.4 32.1 ± 22.7 0.89 ± 0.08 0.93 ± 0.04 115 ± 209 0.07 ± 0.36 97 ± 23
GBDA 0.6 27.4 ± 21.4 0.81 ± 0.12 0.89 ± 0.06 220 ± 454 0.09 ± 0.42 1044 ± 247
MANGO 0.3 30.0 ± 22.4 0.89 ± 0.09 0.93 ± 0.04 85 ± 155 0.06 ± 0.38 258 ± 68

Table 1: Results for black-box and white-box methods. We report: the initial training accuracy of BERT model
(under Task); training accuracy under attack (Adv.); probability of ground-truth label prediction under attack
(Adv. prob.); similarity between the original and perturbed text computed with USE (Cer et al., 2018) (USE
sim.) and with F1 BERTScore (BERTScore); percent change in perplexity computed with GPT-2 (Radford
et al., 2019) (∆ perpl.); increase in the number of grammar errors (∆ gram.) obtained with LanguageTool
(github.com/jxmorris12/language_tool_python); average number of queries to a victim model (# queries). We
omit results for TextFooler on MNLI p., as it has not generated any adversarial example. We also report standard
deviation for each result, except adversarial accuracy as it is simply the percent of successful attacks. Our MANGO
method achieves superior results on most tasks while maintaining high semantic similarity and grammar fluency.
The best results for Adv. are bold.

Results Results can be found in Table 1. Our
MANGO substantially reduces the training accu-
racy of the BERT model in all tasks, while main-
taining a high level of semantic similarity to the
original input. The attacks of MANGO are diffi-
cult (low Adv. prob., which indicates that model
misclassifies an example by a large margin), fluent
(low ∆ perp.) and do not flaw the grammatical
correctness (low ∆ gram.).

In almost all settings, MANGO outperforms
other attacks in terms of training accuracy, which
we believe to be the fairest metric for comparing
optimization-based methods with black-box ones

due to inherent design biases (see Appendix B).
MANGO surpasses the recent state-of-the-art

optimization-based GBDA attack in terms of most
considered metrics: in terms of Adv. acc. and
BERTScore on 4/5 tasks and in terms of USE sim.,
∆ perpl. and ∆ gram. on 5/5 tasks.

Moreover, MANGO achieves considerably bet-
ter results than its Naive version, emphasizing the
importance of multi-step quantization.

Qualitative Results We provide qualitative anal-
ysis of a few adversarial examples generated by
BAE, GBDA, and MANGO in Appendix C.
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5 Ablation Study

In this section, we evaluate three solutions from
Section 3 that improve the core idea of multi-step
quantization:

1. selection of probability vector to quantization
by maximal entropy (instead of minimal en-
tropy, which seems more natural choice),

2. scoring token candidates by weighted mean of
token probability and gradient direction score
(eq. 4),

3. resetting optimizer after every quantization.

Figure 1 compares different MANGO settings.
We may observe that selection of probability vec-
tor for quantization by maximal entropy ("max en-
tropy") is better than selection by minimal entropy
("min entropy"). Resetting the optimizer after ev-
ery quantization enhances the performance for both
"max entropy" and "min entropy" settings. Finally,
we see that MANGO benefits from using both to-
ken’s probability and gradient direction to score
token candidates.

Figure 1: Final adversarial losses for different MANGO
setting. "max entropy + optimizer resets" stands for a
version of MANGO that selects probability vector for
quantization by maximal entropy and resets optimizer
after every quantization. Rest of the names follow the
same pattern. We also present the influence of the coef-
ficient λprob used in token candidates scoring function
(eq. 4). Loss values are averaged over 10 samples from
IMDB dataset.

6 Visualization of Quantization Gap

To visualize the quantization gap between adversar-
ial loss for continuous and discrete text representa-
tions, we compared adversarial losses of MANGO,
GBDA and a Naive version of MANGO that does

not use multi-step quantization. The comparison
can be found in Figure 2. We observe that the Naive
method converges to the lowest value loss in the
optimization phase, but the value explodes after
quantization. The GBDA method, which samples
probability vectors that resemble discrete one-hot
vectors using Gumbel-softmax (Jang et al., 2017),
reaches a higher minimum, but its quantization gap
is much smaller than that of Naive method. Finally,
in the case of MANGO, we observe sudden peaks
and slow declines of loss values that correspond
to the quantization-compensation loop, in which
the quantization of single tokens is followed by the
compensation of the quantization gap. After opti-
mization, MANGO continues to quantize tokens
step by step further decreasing the loss. MANGO
obtains a significantly lower final adversarial loss
than GBDA and Naive, avoiding the quantization
gap.

Figure 2: Adversarial loss for epochs 50-200 of op-
timization for Naive, GBDA and MANGO methods.
The vertical dashed line shows the end of optimization.
Naive and GBDA methods immediately quantize the
tokens, while MANGO do it step by step. The right-
most points shows the final adversarial loss value. We
observe that after optimization, MANGO continues to
quantize tokens step by step and eventually reaches the
best adversarial loss value. Loss values are averaged
over 9 samples from IMDB dataset.

7 Conclusion

We developed MANGO, a novel optimization-
based attack against Transformer models that
mitigates the gap between adversarial loss for
continuous and discrete text representations us-
ing a quantization-compensation loop. MANGO
achieves superior results on various NLP tasks,
outperforming recent black-box and optimization-
based attacks.
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Limitations

One limitation is that the number of queries of
MANGO to the attacked model depends on the
length of the input sequence. Therefore, MANGO
may suffer a long attack time on datasets with long
sequences (like IMDB or Yelp).

Moreover, MANGO is restricted only to token
replacement. The inability to insert or remove to-
kens can lead to reduced attack performance.

The most important limitation is the white-box
nature of MANGO that excludes it from applica-
tions when the internal model’s states cannot be
known. To partially circumvent this limitation, we
propose Gray MANGO - a version of MANGO
that can be used in the loosened black-box setting,
which we call gray-box setting (see appendix D).
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A Hyperparameters

MANGO To save computational resources dur-
ing candidates selection, we use the dynamic num-
ber of candidates m. We rescale the candidate
scores sk to [0, 1] and take at most M = 5 can-
didates whose scores differ from the best score at
most by a threshold T = 0.5: sk ≥ maxj sj − T .
We use λprob = 0.5 in Equation (4).

White-Box Attacks MANGO, Naive and GBDA
methods use the loss function Equation (2) with the
same parameters λs = 20, λf = 1, κ = 5 (taken
from Guo et al. (2021)) for all tasks, except Yelp,
where they use λs = 10. As a reference model
g, we used the GPT-2 model downloaded from
the official GBDA repository. We set C = 10 for
initialization of the adversarial sample parameters.
The number of optimization epochs S = 100 for
all models and the batch size in GBDA was set to
10.

Black-Box Attacks We take TextFooler, BertAt-
tack, and BAE implementations from TextAttack
(Morris et al., 2020b) along with their original pa-
rameters. For fair comparison, we set the USE
similarity threshold to the lowest value (0.2) used
along these methods. Following the GBDA paper,
we slightly modify the BertAttack method to miti-
gate its problem with subtokens and extremely long
time of attack.

B Comparison Fairness

When comparing the results of optimization-based
(MANGO, GBDA, Naive MANGO) and black-
box methods (TextFooler, Bert-Attack, BAE), we
should note that black-box methods stop perturb-
ing text as soon as they fool the model, while
optimization-based attacks minimize adversarial
loss (that encourage them to fool the model by
some margin) for some fixed number of steps.
The former improves similarity metrics (USE sim.,
BERTScore) and the latter highly decreases the
model’s prediction on ground-truth labels (Adv.
prob.), increasing the difficulty of generated sam-
ple. Therefore, we believe that training accuracy
under attack (Adv.) is the fairest metric to make a
direct comparison between optimization-based and
classic black-box methods.

C Attack Examples

To draw some insights into MANGO performance,
we compared examples generated by BAE, GBDA

and MANGO. We chose all the sentences from AG
News and MNLI hypothesis that were successfully
perturbed by the three considered methods and on
which the methods obtained USE cosine similar-
ity score greater than 0.9. We then sampled two
sentences from AG News and two from MNLI hy-
pothesis tasks. To avoid cherry-picking, we fixed
a seed and sampled only once. Examples can be
found in table 2 and in table 3. We are careful in
drawing any conclusion from the qualitative results,
however, there seems to be a trend consistent with
the result from table 1 and our observations from
appendix B: BAE perturbs less words than GBDA
and MANGO, but also achieves lower confidence
of the mislassified label.

D Gray MANGO

To circumvent the white-box nature of MANGO
attack, we additionally develop Gray MANGO: a
version of MANGO that can be used in the loos-
ened black-box setting, which we call gray-box
setting.

Gray-Box Setting Gray MANGO is not strictly
a black-box attack, as it requires the attacked model
to take probability vectors and needs access to to-
ken vocabulary V . Transformer-based models sat-
isfy these assumptions: they usually share the same
V and their embedding function e can be used for
both one-hot and probability vectors. However, to
avoid misconception, we call this loosened black-
box setting a grey-box setting.

Zeroth-Order Optimization Gray MANGO is
based on Zeroth-Order Optimization (ZOO) (Nes-
terov and Spokoiny, 2017). The idea of ZOO is to
approximate the gradient using only zeroth order
loss values. In computer vision, Chen et al. (2017)
developed a ZOO-based attack that significantly
outperforms other black-box attacks. We believe
that this success can be transferred to the NLP do-
main. Berger et al. (2021) have proposed an NLP
attack that uses a discrete version of ZOO, but the
results were unsatisfactory. Our Gray MANGO
method is the first to successfully adapt the contin-
uous version of ZOO in NLP attacks.

Formulation The main modification with respect
to MANGO is the use of the zeroth-order gradient
approximation of the gradient ∇Θ′L(x′) (Liu et al.,
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Method Prediction Sentence

AG News - Example no 1.

Original world (100%) air india trial witness said motivated by revenge ( reuters ) reuters
- a desire for revenge motivated a prosecution witness to tell the
air india bombing trial he had been asked to carry an mysterious
suitcase on to an airliner, defense lawyers charged on wednesday.

BAE sci/tech (61%) air india trial witness said motivated by revenge ( reuters ) website
- a desire for revenge motivated a prosecution witness to tell the air
india company s he had been asked to carry an mysterious suitcase
on to an account, defense lawyers charged on wednesday.

GBDA business (99%) air india trial witness said motivated by revenge - today
investigative reuters reporting a desire for revenge motivated crim-
inal prosecution witnesses to tell the air canada strike trial he had
been asked to carry an mysterious suitcase on to an airliner, de-
fense lawyers charged on tuesday.

MANGO business (100%) air indies trial witness said motivated by revenge ( reuters ) time
- a desire for revenge motivated a prosecution witness to tell the
air america arson trial he had been asked to carry a mysterious
suitcase on to an airliner, defense lawyers charged on monday.

AG News - Example no 2.

Original business (91%) brazil passes bankruptcy reform brazilian congress gives the green
light to a long awaited overhaul of bankruptcy laws, which it hopes
will reduce business and credit costs.

BAE sci/tech (95%) brazil passes bankruptcy reform brazilian congress gives the green
light to a long awaited overhaul of copyright laws, which it hopes
will reduce business and credit costs.

GBDA world (95%) brazil passes bankruptcy reform brazilian congress gives the green
light to a long awaited overhaul of privacy laws, which it aims will
reduce tourism and population impacts.

MANGO world (99%) brazil passes golf reform brazilian congress gives the green light
to a long awaited overhaul of elections laws, which it hopes will
reduce spending and maintenance costs.

Table 2: Attack examples sampled from AG News dataset.

2020):

∇̃Θ′L(x′) = 1

K

K∑

i=1

L(σ(Θ′ + µui))− L(x′)
µ

ui,

where ui is a noise sampled from the normal distri-
bution, µ is the scale factor and σ(Θ′ + µui) is x′

with noise µui added to its parameters Θ′.
As ∇̃Θ′L(x′) is unstable, we set λprob = 1 and

use AMSGrad variant of Adam (Chen et al., 2019)
without reset after every quantization. To reduce
the high dimensionality of x′, which is an issue in

ZOO (Wang et al., 2018), we disallow replacement
of the original token with tokens that have a co-
sine similarity of GloVe (Pennington et al., 2014)
embedding lower than 0.

Hyperparameters We use almost the same pa-
rameters as for MANGO (see appendix A), but with
λprob = 1, S = 140 and λs = 80. To save compu-
tational resources, we set S = 100 for the IMDB
and Yelp datasets. Based on small grid search, we
set the noise scaling parameter µ = 0.1.
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Method Prediction Sentence

MNLI hypothesis - Example no 1.

Original contraditcion (96%) premise: the houses are built to a long - standing design and are
filled with embroidery, lace, and crochet work.
hypothesis: there is no embroidery in the houses.

BAE neutral (45%) hypothesis: there is no fire in the houses.

GBDA neutral (100%) hypothesis: there is liturgical embroidery in the houses.

MANGO neutral (99%) hypothesis: there is no erosion in the ruins.

MNLI hypothesis - Example no 2.

Original contradiction (100%) premise: whether the service emerges as an adaptation from pri-
mary care or as an innovation from the ed is less important than
whether it can be evaluated to the satisfaction of those who make
key decisions about whether it becomes part of standard practice.
hypothesis: key decision makers are not important to decided
things.

BAE neutral (96%) hypothesis: consensus decision makers are not important to first
things.

GBDA neutral (98%) hypothesis: key decision makers are noted fairchild – emery
associates.

MANGO neutral (99%) hypothesis: older ahlers are also important in this regard.

Table 3: Attack examples sampled from MNLI hypothesis task.

Results We evaluated the Gray MANGO method
and compared it to vanilla MANGO. Results can
be found in table 4.

Gray MANGO, which is the first method to in-
corporate continuous ZOO in NLP attack, performs
competitively with other black-box attacks in terms
of training accuracy reduction, but struggles to keep
adversarial examples similar to original texts. We
believe that the performance of Gray MANGO may
be greatly elevated by a more thorough design of
ZOO components (Liu et al., 2020). This may be
an interesting topic for future research.
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Task Method Adv. Adv. prob. USE sim. BERTScore ∆ perp. ∆ gram. # queries

A
G

N
ew

s
(9

9.
6)

TextFooler 16.2 43.7 ± 26.0 0.81 ± 0.13 0.83 ± 0.10 373 ± 548 0.26 ± 0.69 334 ± 224
Bert-Attack 20.1 45.7 ± 27.7 0.83 ± 0.11 0.86 ± 0.09 86 ± 133 0.06 ± 0.49 620 ± 472
BAE 12.6 41.1 ± 24.1 0.78 ± 0.16 0.84 ± 0.11 157 ± 289 0.07 ± 0.53 424 ± 353
G-MANGO 9.7 11.0 ± 25.8 0.57 ± 0.23 0.67 ± 0.14 16k ± 47k -0.03 ± 0.61 3728 ± 244
MANGO 2.7 3.2 ± 15.3 0.78 ± 0.10 0.83 ± 0.06 30 ± 108 0.10 ± 0.63 496 ± 125

IM
D

B
(9

8.
2)

TextFooler 0.6 34.1 ± 16.9 0.94 ± 0.08 0.93 ± 0.07 108 ± 214 01.03 ± 1.81 761 ± 1 000
Bert-Attack 0.6 28.0 ± 18.6 0.96 ± 0.07 0.96 ± 0.05 19 ± 38 0.05 ± 0.65 900 ± 922
BAE 0.2 29.3 ± 18.3 0.95 ± 0.08 0.95 ± 0.06 27 ± 59 0.10 ± 0.76 651 ± 665
G-MANGO 8.6 10.8 ± 24.3 0.65 ± 0.21 0.66 ± 0.14 16k ± 38k 0.19 ± 1.97 3142 ± 669
MANGO 0.3 0.7 ± 5.7 0.88 ± 0.07 0.83 ± 0.08 59 ± 73 0.99 ± 2.15 1647 ± 746

Y
el

p
(9

9.
9)

TextFooler 4.5 31.7 ± 22.6 0.92 ± 0.10 0.93 ± 0.06 90 ± 192 0.50 ± 01.06 495 ± 526
Bert-Attack 1.9 28.3 ± 19.1 0.93 ± 0.09 0.94 ± 0.06 16 ± 38 0.00 ± 0.55 665 ± 713
BAE 2.8 30.5 ± 21.1 0.92 ± 0.11 0.93 ± 0.06 29 ± 130 0.06 ± 0.60 501 ± 525
G-MANGO 15.7 16.4 ± 32.1 0.62 ± 0.27 0.69 ± 0.15 14k ± 36k -0.01 ± 1.68 2803 ± 516
MANGO 8.5 8.9 ± 27.4 0.82 ± 0.12 0.80 ± 0.07 -30 ± 38 0.34 ± 1.72 1128 ± 718

M
N

L
Ip

.
(9

4.
7)

TextFooler 94.7 - - - - - -
Bert-Attack 3.9 34.3 ± 23.5 0.93 ± 0.08 0.96 ± 0.04 30 ± 58 0.02 ± 0.26 146 ± 148
BAE 5.0 34.3 ± 23.5 0.92 ± 0.09 0.95 ± 0.04 42 ± 107 0.01 ± 0.26 112 ± 108
G-MANGO 35.1 33.4 ± 23.0 0.77 ± 0.18 0.84 ± 0.10 5876 ± 19k -0.06 ± 0.64 3158 ± 761
MANGO 2.4 31.6 ± 23.3 0.88 ± 0.08 0.91 ± 0.05 73 ± 123 0.05 ± 0.60 326 ± 125

M
N

L
Ih

.
(9

4.
7)

TextFooler 6.5 35.5 ± 24.2 0.94 ± 0.07 0.95 ± 0.04 77 ± 139 0.13 ± 0.39 77 ± 44
Bert-Attack 2.6 34.3 ± 24.3 1.00 ± 0.01 0.97 ± 0.03 1 ± 0 0.00 ± 0.06 95 ± 62
BAE 3.5 34.8 ± 24.4 0.95 ± 0.06 0.97 ± 0.03 29 ± 57 0.03 ± 0.25 74 ± 39
G-MANGO 9.1 30.8 ± 22.4 0.83 ± 0.13 0.89 ± 0.07 1402 ± 3272 0.04 ± 0.35 3387 ± 807
MANGO 0.3 30.0 ± 22.4 0.89 ± 0.09 0.93 ± 0.04 85 ± 155 0.06 ± 0.38 258 ± 68

Table 4: Comparison of Gray MANGO with black-box methods and vanilla MANGO. We report: the initial training
accuracy of BERT model (under Task); training accuracy under attack (Adv.); probability of ground-truth label
prediction under attack (Adv. prob.); similarity between the original and perturbed text computed with USE (Cer
et al., 2018) (USE sim.) and with F1 BERTScore (BERTScore); percent change in perplexity computed with GPT-2
(Radford et al., 2019) (∆ perpl.); increase in the number of grammar errors (∆ gram.) obtained with LanguageTool
(github.com/jxmorris12/language_tool_python); average number of queries to a victim model (# queries). We
omit results for TextFooler on MNLI p., as it has not generated any adversarial example. We also report standard
deviation for each result, except adversarial accuracy as it is simply the percent of successful attacks. The best
results for Adv. are bold.
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