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Abstract

In this paper, we prove that separable nega-
tive log-likelihood losses for structured predic-
tion are not necessarily Bayes consistent, or, in
other words, minimizing these losses may not
result in a model that predicts the most proba-
ble structure in the data distribution for a given
input. This fact opens the question of whether
these losses are well-adapted for structured pre-
diction and, if so, why.

1 Introduction

Modern natural language processing (NLP) heavily
relies on machine learning (ML), where prediction
models are learned by minimizing a loss function
over the training data. As such, loss functions play
a central role in the design of these systems and it is
important to understand their statistical properties
in order to guarantee that the corresponding train-
ing objectives are well defined. Although this topic
is well studied in the ML community (Lugosi and
Vayatis, 2004; Lin, 2004; Zhang, 2004a,b; Bartlett
et al., 2006; Gneiting and Raftery, 2007; Liu, 2007;
Tewari and Bartlett, 2007; Reid and Williamson,
2010; Williamson et al., 2016; Duchi et al., 2018;
Blondel et al., 2020; Nowak et al., 2022), inter alia,
there has been less focus on the structured predic-
tion setting apart from a few recent works (Blondel,
2019; Nowak et al., 2019, 2020).

In this paper, we emphasize the fact that, de-
spite achievements in terms of accuracy, statisti-
cal behavior of loss functions used in practice for
structured prediction in NLP are not always well
understood. We illustrate this fact by proving that
commonly used separable loss functions for named
entity recognition (NER) and dependency parsing
are not Bayes consistent, meaning that training a
model with these loss functions will not necessar-
ily result in the prediction of the most the probable
output for a given input in the data distribution.

2 Bayes consistency

We denote inputs and outputs as x ∈ X and y ∈ Y ,
respectively. We assume each y ∈ Y is a binary
vector whose elements are indexed by a set C, i.e.
y ∈ {0, 1}C , where C is problem dependent. For
example, in the k multiclass classification case,
we have C = [k], where we use the shorthand
[k] = {1, 2, ..., k}, and Y is defined as the set of
standard bases (one-hot vectors) of dimension k,
meaning that |Y | = k. More generally, the vector
y is an indicator of “selected” parts in C and, in
the structured prediction case, several parts can be
jointly selected. Note that it is usual to assume that
the parts in C can depend on the input x. Without
loss of generality, we omit this detail as we will
study loss functions in the pointwise setting.

A scoring model f ∈ F is a function f : X →
RC that returns scores associated with each part
in C for a given input, e.g. the score of each class
in a multiclass classification model. The actual
prediction of the model is the output of maximum
linear score:

ŷ(x) ∈ argmax
y∈Y

⟨y, f(x)⟩, (1)

where ⟨·, ·⟩ denotes the inner product. We refer to
computing Equation 1 as maximum a posteriori
(MAP) inference.

A loss function compares a vector of scores with
an expected output. Importantly, the 0-1 loss func-
tion is defined as follows:

ℓ(w,y) =

{
0 if y ∈ argmaxy′∈Y ⟨w,y′⟩,
1 otherwise,

where w ∈ Rk is a vector of part scores, i.e. w =
f(x) for a given input x. In order to choose a
scoring function f ∈ F , it is appealing to select one
that minimizes this loss over the data distribution:

r∗ = inf
f∈F

r(f) = inf
f∈F

Ex,y[ℓ(f(x),y)],
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where x and y are random variables over inputs
and outputs, respectively, and inf denotes the infi-
mum. The value r(f) is the Bayes risk of function
f and r∗ is the optimal Bayes risk. For theoretical
purposes, it is often assumed that the class of func-
tions F is rich enough (the set of all measurable
mappings) to obtain the best possible risk. Then,
the optimal Bayes risk is equal to:

r∗ = Ex[1−max
y∈Y

p(y = y|x)],

or, in other words, it is the probability of making an
error when the classifier predicts the most probable
class for each input.

Unfortunately, in practice it is not convenient to
use the 0-1 loss ℓ as it is nonconvex and has null
derivatives almost everywhere. Instead, a surrogate
ℓ̃ can be used as a loss function:

r̃∗ = inf
f∈F

r̃(f) = inf
f∈F

Ex,y[ℓ̃(f(x),y)],

where r̃(f) is the surrogate risk of function f and
r̃∗ is the optimal surrogate risk. An important
desired property of surrogate losses is their consis-
tency with the 0-1 loss, i.e. the fact that minimizing
the surrrogate risk leads to a prediction model of
optimal Bayes risk (Lugosi and Vayatis, 2004; Lin,
2004; Zhang, 2004a; Bartlett et al., 2006; Liu, 2007;
Tewari and Bartlett, 2007).

Definition 1. A surrogate loss ℓ̃ is said to be Bayes
consistent1 if:

f∗ ∈ argmin
f∈F

r̃(f) =⇒ r(f∗) = r∗.

Note that this property can be checked indepen-
dently for each input x (called pointwise Bayes
consistency) as we assume a rich enough class of
functions F . In other words, we redefine the point-
wise (optimal) surrogate risk as:

r̃∗ = inf
w∈RC

r̃(w) = inf
w∈RC

Ey|x=x[ℓ̃(w,y)],

for any x such that p(x = x) > 0, and similarly
for the optimal Bayes risk. The vector w should be
interpreted as the model scores, i.e. w = f(x).

1This property is also referred to as Fisher consistency
(Lin, 2004; Bartlett et al., 2006; Liu, 2007) and classification
calibration (Williamson et al., 2016).

3 Negative log-likelihood loss

The negative log-likelihood loss (NLL), also known
as the conditional random field loss (Lafferty et al.,
2001), is defined as follows:

ℓ̃(nll)(w,y) = −⟨w,y⟩+ log
∑

y′∈Y
exp⟨w,y′⟩.

In the following, we will refer to computing the
log-sum-exp term of the NLL loss as marginal in-
ference due to its connection with marginal proba-
bilities (Wainwright and Jordan, 2008).

Theorem 1. Under mild conditions on the data
distribution, the surrogate loss ℓ̃(nll) is Bayes con-
sistent.

Proof. The optimal pointwise surrogate Bayes risk
is defined as:

r̃∗(nll) = inf
w∈RC

−Ey|x=x[⟨w,y⟩]
+ log

∑
y′∈Y exp⟨w,y′⟩.

We substitute w(y) = ⟨w,y⟩ for all y ∈ Y :

= inf
∀y∈Y :
w(y)∈R

−Ey|x=x[w(y)]

+ log
∑

y′∈Y expw(y′).

We denote ŵ(y), ∀y ∈ Y , an optimal solution of
the minimization. By first order optimality condi-
tions, we have:

∂

∂ŵ(y)

( −Ey|x=x[ŵ(y)]

+ log
∑

y′∈Y exp(ŵ(y′))

)
= 0

=⇒ exp ŵ(y)∑
y′∈Y exp ŵ(y′)

= p(y = y|x = x)

(2)

which implies Bayes consistency under the condi-
tion that there exists a vector w ∈ RC such that
∀y ∈ Y : ⟨w,y⟩ = ŵ(y).

To understand why Equation 2 implies Bayes
consistency, note that:

exp ŵ(y)∑
y′∈Y exp ŵ(y′)

∝ exp ŵ(y′),

and the exponential function is strictly increasing.
This means scores of outputs y ∈ Y defined as
⟨y, ŵ⟩ are ordered in the same way as probabilities
in the data distribution p(y|x = x). In other words,
the most probable output in the data distribution
will have the highest score with respect to ŵ.
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The proof is a straightforward extension of the
derivation for the multiclass classification case, see
for example Blondel et al. (2020, Section 4.2). In-
terestingly, Equation 2 also implies that the NLL
loss is strictly proper (Williamson et al., 2016), i.e.
the Boltzmann distribution over structures in Y pa-
rameterized by minimizer ŵ is equal to the data
distribution p(y|x = x). Note that Theorem 1 is
not novel per se and a more in-depth study of NLL
losses for structured prediction can be found in
(Nowak et al., 2019).

One limitation of the NLL loss is that it is not
(additively) separable2 because of the log-sum-exp
term. As such, this term is a bottleneck for parallel
computation of the objective and doubly stochastic
estimation of the training objective (Titsias, 2016).
A well-known solution is to rely on independent
binary classification objectives, also known as one-
vs-all losses (Blondel et al., 2020, Section 6.1):

ℓ̃(one−vs−all)(w,y)

= −⟨w,y⟩+
∑

y′∈Y
log

(
1 + exp⟨w,y′⟩

)
.

In the case of multiclass classification problems, it
can be shown that this objective is Bayes consis-
tent using similar arguments as in Theorem 1. A
different approach is the one-vs-each loss function
that is also Bayes consistent (Titsias, 2016).

Unfortunately, these separable surrogates cannot
be applied to structured prediction problems as the
set Y is often of exponential size with respect to
the input length. Although tractable algorithms
for marginal inference exist for many cases, there
are no known algorithms to compute the one-vs-
each or one-vs-all losses in an easily parallelizable
fashion. As such, the NLP community often relies
on token-separable losses, that is a NLL objective
that decomposes as a sum of independent losses,
one per token in the input sentence. Although these
losses are easy to implement, we prove in the next
sections that they are not Bayes consistent for two
common NLP problems.

4 Named-entity recognition

Problem definition. In this Section, we focus on
the flat NER problem using BIO tags (Ratinov and
Roth, 2009). Without loss of generality, we assume
there is a single mention label and that the input

2A function f is additively separable if it can be written as
f =

∑
i fi.

sentence x contains n words. The set of parts is
defined as C = [n] × {B, I, O} and Y is defined
as the set of vectors y ∈ {0, 1}C satisfying the
following conditions:

1. ∀i ∈ [n] :
∑

t yi,t = 1 (one tag per word);

2. y1,I = 0 (forbid inside tag for the first word);

3. ∀i > 1 : yi,I = 1 =⇒ yi−1,B + yi−1,I = 1
(I tag can only follow a B or I tag).

We do not include parts corresponding to transi-
tions (this is a unigram model), otherwise it would
not be possible to derive a token-separable loss.

Inference algorithms. MAP and marginal in-
ference can be realized using the Viterbi and the
forward-backward algorithms, respectively. Al-
though the time complexity of these algorithms
is O(|L|2n) where L is the set of mention labels,
they can be optimized to have a O(|L|n) time com-
plexity as there is no transition score. The dynamic
programming algorithm is nonetheless required in
order to guarantee that condition (3) is satisfied.

Separable loss. As the dynamic programming
algorithm is not parallelizable over input tokens,
token-separable losses are often used in practice.3

That is, the loss is reduced to a set of n multiclass
classification losses:

ℓ̃(sep-bio) = −⟨w,y⟩+
n∑

i=1

log
∑

t

expwi,t,

where t ranges over all tags, except I if i = 1.
The optimal pointwise surrogate Bayes risk for

the separable loss is defined as:

r̃∗(sep−bio) = inf
w∈RC

−Ey|x=x[⟨w,y⟩]
+
∑n

i=1 log
∑

t expwi,t.

Let ŵ be an optimal solution. Then, by first order
optimality conditions:

∂

∂ŵi,t

(
−Ey|x=x[⟨w,y⟩]
+
∑n

i=1 log
∑

t expwi,t

)
= 0

=⇒ ŵi,t = log p
(
yi,t = 1|x = x

)
(3)

where p
(
yi,t = 1|x = x

)
denotes the marginal dis-

tribution of tag t at position i in data distribution.

Theorem 2. The token-separable loss for NER via
BIO tagging is not Bayes consistent.

3See for example https://github.com/huggingface/
transformers/blob/v4.23.1/src/transformers/
models/bert/modeling_bert.py#L1771
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B I O

1 1 0 0

2 0 1 0

B I O

1 1 0 0

2 1 0 0

p(y = a|x = x) = 0.3 p(y = b|x = x) = 0.2

B I O

1 1 0 0

2 0 0 1

B I O

1 0 0 1

2 1 0 0

p(y = c|x = x) = 0.15 p(y = d|x = x) = 0.2

B I O

1 0 0 1

2 0 0 1

p(y = e|x = x) = 0.15

Figure 1: Example of distribution over BIO sequences
for a sentence of 2 words. The set of sequences is
defined as Y = {a, b, c,d, e}. The matrices represent
values in elements of Y .

Proof. Let n = 2 and assume that the distribution
p(y|x = x) is defined as depicted in Figure 1.
Then, by Equation 3 we have ŵ1,B = log 0.65,
ŵ1,O = log 0.35, ŵ2,B = log 0.4, ŵ2,I = log 0.3
and ŵ2,O = log 0.3. As such:

log 0.65 + log 0.3 = ⟨ŵ,a⟩
< ⟨ŵ, b⟩ = log 0.65 + log 0.4,

but a ∈ argmaxy∈Y p(y = y|x = x) and p(y =
a|x = x) > p(y = b|x = x). Therefore, the
token-separable loss is not Bayes consistent for
NER, i.e. a scoring model minimizing the surrogate
risk may not lead to predicting the most probable
output in the data distribution.

Note that the inconsistency is not due to the fact
that the parameterization of the model is “poor” (no
transition scores). Indeed, by Equation 2, optimal
scores ŵ for the NLL loss satisfy the following
condition for all y ∈ Y :

exp⟨ŵ,y⟩∑
y′∈Y exp⟨ŵ,y′⟩ = p(y = y|x = x)

=⇒ ⟨ŵ,y⟩ = log p(y = y|x = x)

The following assignment for ŵ satisfies this con-
dition: ŵ1,B = 0, ŵ1,O = 0, ŵ2,B = log 0.2,
ŵ2,I = log 0.3, and ŵ2,O = log 0.15. That is, min-
imizing the NLL loss on this distribution results in
a Bayes consistent classifier, as expected.

5 Syntactic dependency parsing

Problem definition. We consider a sentence of
n words and, without loss of generality, restrict
to the unlabeled case to simplify notations. In
dependency parsing, the set of parts is defined
as the set of possible bilexical dependencies be-
tween words, including a fake root at position 0
used to identify root word(s) of the sentence, i.e.
C = {(h,m) ∈ {0, 1, ..., n}× [n]|h ̸= m}, where
(h,m) denotes a dependency with the h-th word as
head and the m-th word as modifier. The set Y is
restricted to vectors y ∈ {0, 1}C that can be inter-
preted as forming a 0-rooted spanning arborescence
where words are vertices and dependencies are arcs
(McDonald et al., 2005). In some cases, e.g. the
Universal Dependency format, it is required that
the fake root position has a single outgoing arc.4

Inference algorithms. MAP inference can be re-
alized via the maximum spanning arborescence al-
gorithm, which has a O(n2) time complexity (Chu
and Liu, 1965; Edmonds, 1967; Tarjan, 1977). The
single root constraint can be taken into account
using the same algorithm via the big-M trick (Fis-
chetti and Toth, 1992, Section 2). Marginal infer-
ence can be realized via the matrix tree theorem
(MTT, Koo et al., 2007; McDonald and Satta, 2007;
Smith and Smith, 2007), which has O(n3) time
complexity.

Separable loss. The cubic-time complexity of
MTT may be prohibitive in practice for training a
model. Moreover, the MTT relies on a computa-
tionally unstable matrix inversion and is arguably
non-trivial to implement. Hence, there has been
interest in using simpler token-separable NLL loss
functions (Zhang et al., 2017):

ℓ̃(sep−dep)(w,y)

= −⟨w,y⟩+
∑

m∈[n]
log

∑

h∈[n]\{m}
expwh,m,

also called head selection loss. This loss is a sum of
multiclass classification NLL losses, one per word
in the sentence, and is therefore token-separable.
As such, it can be efficiently parallelized on GPU
and is trivial to implement in any ML framework.

The optimal pointwise surrogate Bayes risk for
the token-separable loss is defined as:

r̃∗(sep−dep) = inf
w∈RA

−Ey|x=x[⟨w,y⟩]
+

∑
m∈[n]

log
∑

h∈[n]\{m}
expwh,m.

4https://universaldependencies.org/u/overview/
syntax.html
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0 1 2 0 1 2

p(y = a|x = x) = 0.4 p(y = b|x = x) = 0.3

0 1 2

p(y = c|x = x) = 0.3

Figure 2: Example of distribution over trees for a
sentence of 3 words. The set of trees is defined as
Y = {a, b, c}.

Let ŵ be an optimal solution. Then, by first order
optimality conditions:

∂

∂ŵh,m




−Ey|x=x[⟨ŵ,y⟩]
+

∑
m∈[n]

log
∑

h∈[n]\{m}
exp ŵh,m


 = 0

=⇒ ŵh,m = log p
(
yh,m = 1|x = x

)
(4)

where p
(
yh,m = 1|x = x

)
denotes the marginal

distribution of the dependency between words at
position h and m, i.e. the sum of the conditional
probability of trees this dependency appears in.

Theorem 3. The loss ℓ̃(sep-dep) is not Bayes consis-
tent for distributions over dependency trees.

Proof. Let n = 2 and assume that the distribution
p(y|x = x) is defined as depicted in Figure 2.
Then, by Equation 4 we have: ŵ0,1 = log 0.7,
ŵ0,2 = log 0.6, ŵ1,2 = log 0.4 and ŵ2,1 = log 0.3.
As such:

log 0.7 + log 0.4 = ⟨ŵ,a⟩
< ⟨ŵ, b⟩ = log 0.7 + log 0.6,

but a ∈ argmaxy∈Y p(y = y|x = x) and p(y =
a|x = x) > p(y = b|x = x). Therefore, the
token-separable loss is not Bayes consistent, i.e. a
scoring model minimizing the surrogate risk may
not lead to predicting the most probable tree in the
data distribution.

Note that using the (non-separable) NLL loss
will lead to a Bayes consistent model on this distri-
bution. Indeed, by Equation 2, optimal scores ŵ
satisfy the following condition for all y ∈ Y :

exp⟨ŵ,y⟩∑
y′∈Y exp⟨ŵ,y′⟩ = p(y = y|x = x)

=⇒ ⟨ŵ,y⟩ = log p(y = y|x = x)

The following assignment for ŵ satisfies this con-
dition: ŵ0,1 = 0, ŵ0,2 = log 0.3, ŵ1,2 = log 0.4
and ŵ2,1 = 0. That is, minimizing the NLL loss
on this distribution results in a Bayes consistent
classifier, as expected.

The single root constraint case is reported in
Appendix A.

6 Conclusion

Studying statistical properties of surrogate loss
functions has not been a major interest in the NLP
community, although there are exceptions (Ma and
Collins, 2018; Effland and Collins, 2021). We
proved that token-separable losses for NER and de-
pendency parsing are not Bayes consistent, which
means that minimizing these losses will not nec-
essarily lead to models that will predict the most
probable output for a given input in the data distri-
bution, even with infinite training data.

In the dependency parsing case, Zhang et al.
(2020) experimentally observed that the structured
NLL loss leads to better results than the token-
separable head selection loss. As such, our analy-
sis provides a better theoretical understanding of
these experiments. However, separable losses are
widely used in state-of-the-art models, which sug-
gests that future research should study why they
work in practice.

Other types of separability have also been used
for constituency parsing (Corro, 2020) and seman-
tic parsing (Pasupat et al., 2019), inter alia.

Limitations

Arguably, these separable loss functions perform
well in practice, which questions the appropriate-
ness of the Bayes consistency property. For ex-
ample, Long and Servedio (2013) argued that as-
sumptions usually made are too unrealistic (e.g.
considering that F is the set of all measurable map-
pings) and leads to misleading theoretical knowl-
edge when it comes to actual implementation and
experiments. Maybe this is also the case of the
demonstration we made in this paper. However, all
in all, we hope that this work will motivate future
fundamental research on ML for NLP and espe-
cially on properties of loss functions.
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A Inconsistency of the separable loss for
single root dependency parsing

Theorem 4. The loss ℓ̃(sep-dep) is not Bayes consis-
tent for distributions over single-root dependency
trees.

Proof. Let n = 4 and assume that the distribution
p(y|x = x) is defined as depicted in Figure 3.
Then, by Equation 4 we have, among others:

ŵ0,1 = log 0.55, ŵ1,2 = log 0.55,

ŵ1,3 = log 0.4, ŵ2,3 = log 0.45.

As such, we have:

⟨ŵ,a⟩ = log 0.55 + log 0.55 + log 0.40,

⟨ŵ, b⟩ = log 0.55 + log 0.55 + log 0.45,

which means that ⟨ŵ,a⟩ < ⟨ŵ, b⟩ but a ∈
argmaxy∈Y p(y = y|x = x) and p(y = a|x =
x) > p(y = b|x = x). Therefore the separable
loss is not Bayes consistent for single-root depen-
dency parsing.

0 1 2 3 0 1 2 3

p(y = a|x = x) = 0.3 p(y = b|x = x) = 0.2

0 1 2 3 0 1 2 3

p(y = c|x = x) = 0.05 p(y = d|x = x) = 0.2

0 1 2 3 0 1 2 3

p(y = e|x = x) = 0.05 p(y = f |x = x) = 0.05

0 1 2 3 0 1 2 3

p(y = g|x = x) = 0.05 p(y = h|x = x) = 0.05

0 1 2 3

p(y = i|x = x) = 0.05

Figure 3: Example of distribution over trees for a sen-
tence of 3 words and the single-root constraints. The set
of trees is defined as Y = {a, b, c,d, e,f , g,h, i}.
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