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Abstract

This work focuses on in-context data augmenta-
tion for intent detection. Having found that aug-
mentation via in-context prompting of large pre-
trained language models (PLMs) alone does
not improve performance, we introduce a novel
approach based on PLMs and pointwise V-
information (PVI), a metric that can measure
the usefulness of a datapoint for training a
model. Our method first fine-tunes a PLM on a
small seed of training data and then synthesizes
new datapoints — utterances that correspond to
given intents. It then employs intent-aware fil-
tering, based on PVI, to remove datapoints that
are not helpful to the downstream intent clas-
sifier. Our method is thus able to leverage the
expressive power of large language models to
produce diverse training data. Empirical results
demonstrate that our method can produce syn-
thetic training data that achieve state-of-the-art
performance on three challenging intent detec-
tion datasets under few-shot settings (1.28%
absolute improvement in 5-shot and 1.18% ab-
solute in 10-shot, on average) and perform on
par with the state-of-the-art in full-shot settings
(within 0.01% absolute, on average).

1 Introduction

Intent detection, defined as the identification of a
user’s intent given an utterance, is a fundamental
element in task-oriented dialogue systems, usually
occurring within the Natural Language Understand-
ing (NLU) component. One of the practical chal-
lenges of training and deploying NLU modules
is data scarcity, due to various reasons, such as
under-represented languages, privacy and ethical
concerns, or simply the cost of collecting and anno-
tating sufficiently large amounts of data for new in-
tents. Consequently, accurately identifying intents
in limited-resource scenarios has drawn attention
from the community (Papangelis et al., 2021; Mehri
and Eric, 2021; Zhang et al., 2021b, for example).
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There are three main families of approaches that
address the challenge of limited data for intent de-
tection: data augmentation (Peng et al., 2021; Li
et al., 2021), focusing on generating high-quality
synthetic training and evaluation data; few-shot
learning (Zhang et al., 2020, 2021b), focusing on
creating learning algorithms that can cope with lim-
ited amounts of data; and transfer learning (Namaz-
ifar et al., 2021), focusing on learning algorithms
that can generalize across domains (therefore not
requiring in-domain data). In this work, we fol-
low the data augmentation approach, which is a
general method that attempts to augment a human-
authored dataset with a large set of synthetically-
generated instances. Most recent work has sug-
gested using Pre-trained Language Models (PLMs)
for data augmentations under various setups, €.g.,
(Peng et al., 2021), showing great improvements in
performance. However, simply generating a large
number of synthetic data points is not enough; we
need to consider the quality of each data point, i.e.,
how beneficial it would be to the model’s perfor-
mance if that synthetic data point is added to the
training set. This is an important issue since the
model might learn to overfit to synthetic datapoints
(which may be low quality, represent specific use
cases, etc.) and thus under-perform on real data.

In this work, we propose to apply Pointwise
V-Information (PVI) (Ethayarajh et al., 2022) for
data augmentation, in a way that leverages a PLM
to generate synthetic examples that are relevant
and beneficial for training the downstream model,
which in our case is an intent classifier. Our contri-
butions are as follows:

* We propose a novel filtering method based
on PVI (Ethayarajh et al., 2022) to filter out
examples that are not relevant or helpful to the
desired intent.

* We conduct experiments on three challenging
intent detection datasets and show that our
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method achieves state-of-the-art performance.

* We conduct an in-depth study and present a
comprehensive analysis of the factors that in-
fluence performance, including ablation stud-
ies and comparisons with alternative methods.

The rest of the paper is organized as follows: In
Section 2 we present relevant work and in Section 3
we introduce our method. In sections 4 and 5 we
discuss training details, experiments, and results.
In section 6, we present our analysis and discuss
alternative approaches we investigated. In section
7 we conclude, and in the following sections we
discuss limitations and ethical considerations.

2 Related Work

Intent Detection Intent detection is the task of
identifying the user’s intent by mapping the user’s
natural language utterance into one of several pre-
defined classes (Hemphill et al., 1990; Coucke
et al.,, 2018). It is a critical component in the
pipeline of task-oriented dialogue systems, as it
is used to determine the user’s goal and to trigger
an appropriate system action (Raux et al., 2005;
Young et al., 2013). Several datasets have been
proposed to evaluate the performance of intent de-
tection models (Casanueva et al., 2020; Liu et al.,
2019a; Larson et al., 2019, for some recent exam-
ples). With the availability of such datasets, intent
detection has been extensively studied in the litera-
ture. Recently, pre-trained language models (e.g.,
BERT (Devlin et al., 2019)) have been shown to
be effective in intent detection (Bunk et al., 2020;
Zhang et al., 2020, 2021a,b; Mehri and Eric, 2021).

Data Augmentation Data augmentation is a
widely-used technique to address the problem of
data scarcity. Paraphrasing the data is one of the
ways frequently used for augmentation and can
produce more diverse synthetic text with differ-
ent word choices and sentence structures while
preserving the meaning of the original text. Para-
phrasing methods have been shown to be effective
in many natural language processing tasks (Gupta
et al., 2018; Edunov et al., 2018; Iyyer et al., 2018;
Wei and Zou, 2019; Cai et al., 2020; Okur et al.,
2022; Panda et al., 2021; Jolly et al., 2020). How-
ever, such methods often fail to generate more chal-
lenging and semantically diverse sentences that are
important for the robustness of the downstream
models.

Recently, conditional generation — using a PLM
to produce text conditioned on some label — has be-
come the dominant paradigm of data augmentation
(Bowman et al., 2016; Kumar et al., 2019; Anaby-
Tavor et al., 2020; Kumar et al., 2020; Yang et al.,
2020a; Lee et al., 2021). This is usually achieved
by fine-tuning a language model to produce the
original text given the label.

In the field of intent detection, previous work has
proposed using data augmentation techniques to
generate synthetic training data (Sahu et al., 2022;
Papangelis et al., 2021). Sahu et al. (2022) also
used PLMs to generate augmented examples, but
they require human effort for labeling. This is a
challenging task since it is expensive to annotate
large amounts of data.

Our approach involves data valuation, similar to
the concepts of Ghorbani and Zou (2019); Minder-
mann et al. (2022). However, our approach differs
from such previous work in two key ways. First,
Ghorbani and Zou (2019) only evaluated the qual-
ity of the training set after training them, whereas
we evaluate the synthetic examples before training
the task model. Second, Mindermann et al. (2022)
selected points that minimize the loss on a holdout
set, whereas we select synthetic examples that are
reasonably challenging to the task model. Our ap-
proach aims to address the problem of data scarcity
by evaluating the synthetic examples generated by
PLMs and selecting the most valuable examples to
augment the training data.

In-context Learning Large language models
such as GPT-3 (Brown et al., 2020) and OPT
(Zhang et al., 2022) have shown to be able to per-
form many natural language processing tasks with
in-context learning. In this paradigm, the model is
provided with a few exemplars based on which it
performs the respective task.

In-context learning is a promising solution for
few-shot learning. Because of the effectiveness
in few-shot performance, in-context learning has
been applied to a wide range of NLP tasks. For
dialogue tasks, in-context learning has been applied
to intent classification (Yu et al., 2021), semantic
parsing (Shin and Durme, 2022), and dialogue state
tracking (Hu et al., 2022).

However, PLMs require a large amount of com-
putational resources and the limitation on input
length restricts the application of PLMs to intent
detection tasks with large numbers of intents (e.g.,
150 intents in CLINC (Larson et al., 2019)), where
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Prompt:

The following sentences belong to the same category as '‘Refund not
showing up':

Example 1:I'm supposed to have a refund but it isn't there

Example 2:My refund is not here yet

Example 10:When will | be able to see the refund

Example 11:

Example Completions:

* It's been weeks since | ordered my items and | still can't seem to see the
funds.

* | am looking for information about when | can expect my refund

* |'ve submitted a refund request but | haven't seen a change in my
account. What's going on?

* Please track my refund!
* the refund has not arrived yet so when will it show?
* Where is my refund? It doesn't appear on my statement.

* There was an error with the refund, when will | receive this amount again

Figure 1: An example of the prompt used to generate
synthetic examples. The intent class is refund not show-
ing up. Completions are generated by a pre-trained
language model via sampling. Note that 5-shot experi-
ments only use 5 examples from the training set.

we cannot fit examples for each intent in the input.
One solution would be to call the model multiple
times, each time with a subset of the possible in-
tents. This would lead to increased inference time
and may also impact performance. Consequently,
Yoo et al. (2021); Sahu et al. (2022) leveraged in-
context learning and PLMs to generate synthetic
examples for intent detection, instead of directly
deploying the PLM. However, they did not consider
the quality of the generated examples, which may
lead to the model overfitting on examples that are
not relevant to the desired intent.

3 In-Context Data Augmentation

In the following section, we describe our pro-
posed two-stage method for data augmentation,
which we refer to as In-Context Data Augmenta-
tion (ICDA). The overall procedure is summarized
in Algorithm 1. We apply ICDA to the task of few-
shot intent detection, which involves classifying a
user utterance x into an intent label y € Y. ICDA
aims to generate synthetic examples z’ such that
they would belong to a given intent y.

3.1 Synthesizing Examples

The core idea is to use a large pre-trained language
model such as GPT-3 (Brown et al., 2020) or OPT
(Zhang et al., 2022) to generate synthetic data in
the context of the training set. In particular, for
each intent class, we create a natural language con-

text (prompt) that contains the intent class name, a
set of real training examples under the same intent
class, and an incomplete example. For instance, the
prompt for the intent class refund_not_showing_up
is shown in Figure 1. We feed the prompt to the
language model and obtain a set of synthetic ex-
amples as outputs. In this work, we use OPT-66B
(Zhang et al., 2022) as the language model to gen-
erate a set of examples for each intent class. We
adopt typical decoding with 7 = 0.9 (Meister et al.,
2022) and set repetition penalty to 1.1 following
Keskar et al. (2019) to generate the synthetic exam-
ples.! Due to the fine-grained nature of intents, and
the sampling-based generation aiming to produce
a set of diverse datapoints, we expect some of the
generated utterances to not match the given intent.

Note that our method leverages PLMs in a way
that is orthogonal to the intent detection model.
Unlike other methods that use the same model to
directly predict the intent class of a user utterance,
we use a PLM to generate synthetic training in-
stances. These instances are then used to augment
the actual training data and train a smaller intent de-
tection model. This approach leverages the power
of PLMs while preserving the independence of the
intent detection model design.

3.2 PVIFiltering

As mentioned above, given the stochastic nature of
synthetic data generation, we expect some of the
synthetic utterances not to match the given intent.
To address this phenomenon, we filter generated
instances and retain only those that are relevant and
helpful to the desired intent classes.

Specifically, we apply Pointwise V-Information
(Ethayarajh et al., 2022) - an idea originally sug-
gested for understanding how difficult a dataset is
- as a filter to discard unhelpful datapoints. PVI
of an utterance = with respect to its corresponding
intent class, y, is defined as:

PVI(x — y) = —log, g*[0](y) + log, ¢'[x](y)

where, in this work, ¢’ and g* are the intent detec-
tion models finetuned with and without the input
x, respectively. () is a special token that is used to
indicate the absence of an input utterance.
Intuitively, PVI measures the amount of informa-
tion that the input = provides to the intent detection

"Implementation ~ details are  available  from
https://huggingface.co/docs/transformers/main_
classes/text_generation
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Algorithm 1: In-Context Data Augmenta-
tion with PVI Filtering
Input: Task Model V, Language Model
PLM, Data Multiplier m, PVI
Threshold Function e
Output: Task Model g
Data: Seed Data Dy =
{(input x;, gold label y;) }}*_,
1 ¢’ <+ Finetune V on Dyin
2 () < empty string
3 g* « Finetune V on {(0, y;)|(x;, v:) €
Dtrain}
4 Dsynthetic < Prompt (PEM, Dtrain)
s for (xia yz) S Dsynthetic do
6 PVI(z; — y;) <
L —logy g™ [0] (i) + logy ¢'[xi] (v:)
7 Dsynthetic < {(l"m yz)‘(xz,yl) €
Dsynthetic & PVI(-%'Z' — yi) > G(yi)}
8 g < Finetune V on Dygin |J Dsynthetic

model (compared to the absence of meaningful in-
put). A high PVI value indicates that the input
x provides a lot of information to the model, and
thus is more likely to be helpful when training the
model to classify instances of the intent class y. On
the contrary, a low PVI value indicates that the in-
put z provides little information to the model, and
thus is likely to be irrelevant to the intent class y
(Ethayarajh et al., 2022).

We set a threshold e (tunable parameter) to de-
termine which z are retained and conduct experi-
ments to study the effect of the threshold in Section
6. Algorithm 1 defines € as a function of y to allow
flexibility in its definition: either a fixed threshold
for all intent classes, or a different threshold per
intent class.

4 Experimental Setup

4.1 Datasets

To evaluate the effectiveness of our approach in
intent detection in cases where we have a large
number of often semantically similar intent labels,
we chose the BANKING (Casanueva et al., 2020),
HWU (Liu et al., 2019a), and CLINC (Larson et al.,
2019) datasets and compare with recent state-of-
the-art baselines. BANKING comprises 13,083
utterances in a single banking domain and 77 in-
tents. HWU includes 25,716 utterances with 64
intents across 21 domains. CLINC contains 23,700

Full-shot mult.  Few-shot mult.

XS - 1x
S Ix 4x
M 2x 16x
L 4x 64x
XL - 128x

Table 1: To assess the impact of the synthetic data size
on performance, we experiment with several data multi-
pliers (synthetic data size = source data size x mult.).

utterances with 150 intents across 20 domains.

4.2 Training

In our experiments, we use ROBERTa-LARGE (Liu
et al., 2019b) as the intent detection model V in Al-
gorithm 1. We use OPT-66B? (Zhang et al., 2022)
as the language model PLM to generate synthetic
examples and set the data multiplier m to be 128,
We set the PVI threshold function € to be the aver-
age PVIunder each intent class in the validation set,
where the PVI is computed using the same models
as in Algorithm 1. We train ROBERTa-LARGE for
40 epochs with a batch size of 16, a learning rate of
le — 5, and the AdamW optimizer (Loshchilov and
Hutter, 2019). We use the HuggingFace Transform-
ers library (Wolf et al., 2020) for all experiments.

4.3 Baseline Models

We compare our proposed method with the follow-
ing baselines:
RoBERTa-BASE + Classifier is a baseline that uses
RoBERTa-BASE (Liu et al., 2019b) with a linear
classifier on top (Zhang et al., 2020).
USE is a universal sentence encoder pre-trained
on 16 languages supporting multiple down-stream
tasks (Yang et al., 2020b).
CONVERT is an intent detection model finetuned
from dual encoder models, which is pre-trained
on (input, response) pairs from Reddit (Henderson
et al., 2020).
CONVBERT fine-tunes BERT on a large open-
domain dialogue corpus with 700 million conversa-
tions (Mehri et al., 2020) .
CONVBERT + Combined is an intent detection
model based on CONVBERT, with example-driven
training based on similarity matching and observers
for transformer attentions. It also conducts task-
adaptive self-supervised learning with masked lan-
guage modeling (MLM) on the intent detection
*We used p3dn.24xlarge AWS EC2 instances for our ex-
periments.

3This means that we generate m times the available train-
ing data, e.g. (5 x 77) x m in the 5-shot BANKING case.
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datasets. Here, “Combined" represents the best
MLM-+Example+Observers setting in the refer-
enced paper (Mehri and Eric, 2021).

DNNC (Discriminative Nearest-Neighbor Classifi-
cation) is a discriminative nearest-neighbor model,
which finds the best-matched example from the
training set through similarity matching. The
model conducts data augmentation during train-
ing and boosts performance by pre-training on
three natural language inference tasks (Zhang et al.,
2020).

CPFT (Contrastive Pre-training and Fine-Tuning)
is the current state-of-the-art in few-shot intent de-
tection on the selected datasets. It is pre-trained
on multiple intent detection datasets in a self-
supervised contrastive manner and then fine-tuned
with supervised contrastive learning (Zhang et al.,
2021b).

S Experimental Results

We conduct experiments on three benchmark
datasets to validate the effectiveness of our pro-
posed method. We first use OPT-66B to generate
augmentation examples and then apply our method
to enhance a RoBERTa-Large model trained on
three datasets. We repeat all experiments with 5
random seeds and report the average performance
in Full-shot and Few-shot settings. To investigate
the effect of the synthetic data size, we experiment
with a variety of multipliers (see Table 1 for nota-
tions). Results are shown in Table 2.

Full-shot settings. In this setting, we use the
entire training set for each domain. The pro-
posed method achieves the best performance on
BANKING and comparable results on HWU and
CLINC. In particular, on BANKING, we improve
the CONVBERT + Combined baseline (Mehri and
Eric, 2021) by 0.59% (absolute) and the RoOBERTa-
Large baseline by 0.72% (absolute). Compared
with the CONVBERT + Combined, which is pre-
trained on intent detection datasets in a self-
supervised fashion and adds examples-driven train-
ing and specific model architectural design, our
method achieves similar results with much simpler
model design. Furthermore, our method is orthog-
onal to model architectures and can be integrated
with any other approach for further improvement.

We also find that ICDA improves the perfor-
mance of the RoBERTa-Large model on HWU
and CLINC. This highlights the effectiveness of
our method for enhancing intent detection models.

Moreover, state-of-the-art performance on BANK-
ING with the proposed method and RoBERTa-
Large shows that our method is capable of gen-
erating high-quality augmentation examples to en-
hance the RoBERTa-Large model on the most fine-
grained intent detection task.

Few-shot settings. In this setting we only use
a small number of instances (datapoints) per class.
We evaluate our method in both 5-shot and 10-
shot settings and compare it with several strong
baselines. Our proposed method outperforms all
baselines on all datasets in both 5-shot and 10-
shot settings. ICDA-M achieves the best perfor-
mance in 5-shot settings on BANKING dataset and
ICDA-XL achieves the best performance on HWU
and CLINC datasets in 5-shot settings and on all
datasets in 10-shot settings. All configurations of
our method significantly improve the performance
of a ROBERTa-Large model trained on any of the
three datasets. Compared with CPFT (Zhang et al.,
2021b), which utilizes contrastive learning for few-
shot intent detection with extra data, our method
achieves better performance without any additional
human-annotated data. This showcases the advan-
tage of our method for few-shot intent detection.

We also observe that our method consistently
improves the performance of the baseline model
as the number of synthetic datapoints increases
from XS to XL. This indicates that the generated
instances from our method can gradually cover
more and more information of real instances and
are capable of providing more useful information
for model training.

6 Analysis and Discussion

In this section, we analyze the performance of
ICDA and other approaches we tried. We first iden-
tify several factors that affect performance, and
then present evidence that ICDA works by trans-
ferring knowledge from the pretrained generator to
the task model. We then discuss a data-relabelling
experiment and an experiment using uncertainty
measures or data cartography (Swayamdipta et al.,
2020) as filters.

6.1 Factors that Affect ICDA Performance

ICDA is effective at various training sizes.
Throughout this work, we conduct experiments
with different seed data sizes* to study the effect of

*By seed data, we mean data taken from each dataset, i.e.
not synthetic data produced by ICDA.

1467



BANKING HWU CLINC
Model 5 10 Full 5 10 Full 5 10 Full
RoBERTa-Base + Classifier 74.04 84.27 - 75.56 82.90 - 87.99 91.55 -
USE 76.29 84.23 92.81 77.79 83.75 9125 87.82 90.85 95.06
CONVERT 75.32 83.32 93.01 76.95 82.65 91.24 89.22 92.62 97.16
USE+CONVERT 71.75 85.19 93.36 80.01 85.83  92.62 90.49 9326 97.16
CONVBERT - 83.63 92.95 - 83.77  90.43 - 92.10  97.07
+MLM - 83.99 93.44 - 84.52 9238 - 9275 97.11
+ MLM + Example - 84.09 94.06 - 83.44  92.47 - 9235 97.11
+ Combined - 85.95 93.83 - 86.28  93.03 - 9397 97.31
DNNC 80.40 86.71 - 80.46 84.72 - 91.02 93.76 -
CPFT 80.86 87.20 - 82.03 87.13 - 92.34 94.18 -
RoBERTa-Large + Classifier ~ 78.99 86.08 9370  74.44 84.11 9213  89.89 93.56  96.80
+ ICDA-XS 80.29 86.72 - 81.32 85.59 - 91.16 93.71 -
+ICDA-S 81.95 87.37 93.66 81.97 86.25 9233 91.22 9398  96.97
+ ICDA-M 84.01  83.64 93.73 81.84 8736 9212 9193 94.71  97.06
+ICDA-L 83.90 89.12  94.42* 81.97 86.94 9257 9241 94.73  97.12
+ ICDA-XL 83.90 89.79" - 82.45* 87.41" - 92.62* 94.84" -

Table 2: Intent Detection Accuracy (in %) in few-/full-shot settings with augmented data from OPT-66B. Numbers
in bold are the best results and numbers with * are statistically significant by t-test (p < 0.05) compared to the

baselines (5 / 10 examples per intent).

Model BANKING HWU CLINC
RoBERTa-Large 86.08 84.11 93.56
All 84.19 84.57 94.24
All w/ relabeling 87.05 8522 93.02
Global Low PVI 73.99  69.61 85.42
= Global High PVI 87.38 86.27 94.27
A Per-Intent Low PVI 7649 71.84 89.33
Per-Intent High PVI 88.64 87.36 94.71

Table 3: Intent Detection Accuracy (in %) for RoOBERTa-
Large model in 10-shot settings with ICDA-M synthetic
instances from OPT-66B. Numbers in bold are statisti-
cally significant by t-test (p < 0.05). “All” represents
using all synthetic data without PVI filtering. and “All
w/ relabeling" represents using “All" and an oracle in-
tent classifier to relabel the synthetic data.

training size. By looking at the results in Table 2,
we observe that our proposed method consistently
improves the accuracy of the downstream model
in all training sizes. Also, as the training size
decreases, we see that the ICDA improvement in-
creases significantly. For example, on BANKING,
the improvement goes from 0.72% in the full shot
setting to 5.02% as the training size decreases to
5-shot. This indicates that ICDA is more effective
when we have few training data available.

PVI filtering threshold. To study the effect of the
threshold function €, we conduct experiments with
two different threshold functions: Global, and Per-
Intent. Global means that the PVI threshold is the
same for all intent classes, which is the average PVI
value in the validation set. Per-Intent means that
the PVI threshold is different for each intent class,
which is the average PVI value under each intent

class in the validation set. As a sanity check, we
also conduct experiments using synthetic instances
with PVI values lower than the threshold (Low PVI)
as opposed to the normal (High PVI) instances.

We show the results in Table 3 (bottom half),
where we see that Per-Intent High PVI filtering
performs the best. Compared to using all synthetic
training data without filtering (referred to as All),
we see that High PVI filtering in general helps in
improving accuracy. In BANKING, for example,
when PVI filtering is applied with Per-Intent High
PVI, the accuracy is 88.64% with 10-shot training
size, which is significantly better than the result
without PVT filtering (84.19%) — the same holds
for the other two datasets. For the Low PVI con-
ditions, we observe that performance drops signif-
icantly. This indicates that the model overfits on
those examples that are not relevant to the desired
intent. We discuss the All w/ relabelling condition
in Section 6.3.

In Figure 2, we plot the F1 score against the PVI
score of the test set instances grouped by intent,
showing that some classes are harder than others,
further supporting why we need a threshold per
class rather than a global one.

6.2 Why Does ICDA Work?

PVI filtering discards mislabeled examples.
We believe that the success of ICDA is because
of not only the high diversity of the synthetic
instances produced by the generator, but also
the fact that PVI filtering effectively discards
digressed instances. To verify this hypothesis,
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Data Prompt Label Generated Sentence PVI
BANKING Refund not showing up I didn’t see my refund appear on my statement.f 6.10
(PVI Threshold: 5.79) Where did your refund end up at? Please send it back immediately since 5.81
I had a return and then refunded your purchase in full and I want it all
returned back to my credit card.
Can we please cancel my return & resend my goods again 3.97
Please confirm what is the reason for delay in payment for my purchase? -3.86
HWU alarm query show me all the alarms and remind me about themf 5.69
(PVI Threshold: 4.28) i want to be notified when alarm goes off.} 4.36
how do i delete or disable alarms. 3.18
list all the events on this date -5.13
CLINC accept reservation does hanover steakhouse take reservationsf 6.74
(PVI Threshold: 6.53) are there any restaurants that take reservations for dinner in philadelphiat 6.58
how many days prior is required for making reservations 5.39
what time does bibiana’s in greenwich open —4.31

Table 4: Synthetic examples generated from OPT-66B. { indicates the sentences that belong to the same intent as
the prompt label from our manual assessment; and bold denotes the PVI values over the threshold for given label.

Banking Intent Prediction Test F1 Score vs. PVI

1.00

0.95

0.90

0.85

fl-score

0.80

0.75

0.70
35 4.0 4.5 5.0 55 6.0 6.5
PVI_mean

Figure 2: Intent Detection F1 score per intent class
(circle) of the BANKING test set, justifying why we
need a PVI threshold per intent.

we randomly sample several synthetic instances
from the OPT-66B generator and manually assess
if each instance follows the same intent as the
prompt label. We show some examples in Table
4. We observe that instances that are relevant to
the desired intent are assigned high PVI values,
and instances that are not relevant to the desired
intent are assigned low PVI values. This further
indicates that the per-intent threshold function
provides an effective indicator of relevance. For
example, in the BANKING dataset, most relevant
instances have PVI values greater than 5.79, and
most non-relevant instances have PVI values less
than 5.79. This indicates that PVI filtering is an
effective method for discarding mislabeled data
points.

ICDA produces fluent and diverse utterances.
We hypothesize that our proposed method is effec-

Self-
Data Split D-17 D-217 BLEUJ] PPL|
Test - - - 12.14
Bank. 10-shot  0.15 0.54 0.24 17.34
ICDA 0.21 0.66 0.11 21.33
Test - - - 14.84
HWU 10-shot  0.25 0.71 0.07 26.97
ICDA 0.30 0.78 0.03 28.52
Test - - - 14.77
CLINC 10-shot 0.15 0.49 0.28 34.23
ICDA 0.20 0.60 0.17 37.34

Table 5: Quantitative metrics of fluency and diversity
of real and synthetic utterances in 10-shot settings as
measured with distinct-1 (D-1), distinct-2 (D-2), self-
BLEU, and perplexity.

tive because it introduces more fluent and diverse
utterances. We therefore compare synthetic data
under the 10-shot XS condition (i.e., we generate
10 synthetic datapoints) with the original 10-shot
datapoints taken from the training data. Then we
use a GPT2 model trained on the test set of each
benchmark dataset to calculate the perplexity of
the generated utterances. We also use the same
synthetic set to calculate the distinct-1, distinct-
2, self-BLEU, and perplexity (PPL) metrics. We
report the results in Table 5 and observe that our
proposed method generates more diverse utterances
as shown by distinct-1, distinct-2, and self-BLEU.
This indicates that our proposed method harnesses
the generation power of the OPT-66B generator.
Additionally, the perplexity of synthetic utterances
is slightly higher than the human-annotated training
set. These results suggest that our proposed method
generates more diverse utterances, which can help
the task model to learn a better representation.
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6.3 Data Relabelling

Following Sahu et al. (2022), we wanted to see
if it is effective to use the available data to train
an intent classifier and then use it to relabel the
synthetic data. Intuitively, such a method would
correct mistakes in the generation process. To test
the feasibility of this approach, we train an ora-
cle classifier using the entire training data of each
dataset and use this as an upper bound. The re-
sults are shown in Table 3 (“All w/ relabeling"),
where we see that while promising, this approach
underperforms ICDA.

7 Conclusion

We introduced In-Context Data Augmentation, a
novel data augmentation framework to generate
synthetic training data, preserving quality and di-
versity. We demonstrate that ICDA is effective on
multiple intent detection benchmarks, with state-of-
the-art few-shot performance. Our analysis shows
that ICDA tends to perform better in low-resource
settings and that our PVI filtering strategy is im-
portant for performance. Future work includes ap-
plying ICDA to other conversational understanding
tasks such as slot filling and dialogue state tracking,
and incorporating other filtering or data selection
strategies for further performance gains.

Limitations

In this section we take BANKING as a case study
to motivate PVI and discuss some of the limitations
of our approach. Figure 3 shows how much we gain
(or lose) in F1 score when we use a custom thresh-
old for each class vs. a fixed threshold. While most
classes benefit, there are clearly many that show
performance degradation. Another limitation is the
size of the model we use to generate synthetic in-
stances (OPT-66B); in general the larger the model
is, the better the generated data is.

Ethical Considerations

As with any work involving PLMs (or foundation
models), due to the data and training methods, there
is inherent risk of generating biased, toxic, harmful,
or otherwise unwanted output. Regarding our work
in particular, as we show in Figure 3, the model’s
performance on some of the classes can degrade.
More analysis needs to be done before deploying
our approach, since it is unclear whether it will
introduce a bias towards certain types of classes.

0.075
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0.025

T

0.000

-0.025

-0.050

F1-score gain from global PVI threshold

-0.075

-0.100

wrong_exchang
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Figure 3: This figure shows the difference in Intent
Detection F1 score for each intent, if we have a PVI
threshold per-class VS having a fixed PVI threshold.
See larger figure in Appendix.
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A Data Cartography and Uncertainty

Apart from relabelling, we investigated two addi-
tional approaches to rank synthetic instances as
easy or hard to classify. We used data cartogra-
phy (Swayamdipta et al., 2020) and classification
uncertainty to guide our filtering.

Data cartography classifies the training data in
four categories: Easy-to-learn, Low-Correctness,
Ambiguous, Hard-to-Learn using training dynam-
ics (i.e. the model’s confidence in the true
class, and the variability of this confidence across
epochs).

For uncertainty modeling, we assign uncer-
tainty scores to each training instance in a cross-
validation manner. We first split the training set
into 5 folds, hold one fold out as validation, and pre-
dict on the validation with the classifier trained on
the remaining 4 folds. We tried the following uncer-
tainty measures: Contrastive Active Learning (AL)
(Margatina et al., 2021), Least Confidence (Culotta
and McCallum, 2005), Prediction Entropy (Schohn
and Cohn, 2000; Roy and McCallum, 2001), and
Breaking Ties (Scheffer et al., 2001; Luo et al.,
2004).

We conducted experiments using the above ap-
proaches to select data that amounts to one third
of the total training data in BANKING (i.e., we
select the top 33% hardest examples, etc.). As an
additional baseline, we include a random filter, i.e.,
a randomly sampled 33% portion of BANKING.
Table 6 shows the results, where we see that the

100% Train  92.89
Random  89.50
E“ Contrastive AL 88.54
s Least Confidence  89.08
o § Breaking Ties  89.20
g g i
E 5 Prediction Entropy  89.23
R
Q=
« g Easy to Learn  90.44
gﬂ Ambiguous  90.94
Q Low Correctness  91.00
S Hard to Learn  91.26

Table 6: Intent Detection Accuracy (in %) for Con-
vBERT model, trained on different selections of BANK-
ING77 under full-shot settings.

performance actually degrades when compared to
using the entirety of the data. We experimented
with a few more variations in the filtering thresh-
olds but no combination improved performance
and we do not report those results here. See Fig-
ures 5 and 6 in the Appendix B for a visualization
of the BANKING data map.

B Figures
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Figure 4: This figure shows the difference in F1 score for each intent, if we have a PVI threshold per-class VS

having a fixed PVI threshold (Enlarged Figure 3).
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