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Abstract

Maintaining effective control over offensive
content is essential on social media platforms
to foster constructive online discussions. Yet,
when it comes to code-mixed Dravidian lan-
guages, the current prevalence of offensive con-
tent moderation is restricted to categorizing
entire comments, failing to identify specific
portions that contribute to the offensiveness.
Such limitation is primarily due to the lack of
annotated data and open source systems for of-
fensive spans. To alleviate this issue, in this
shared task, we offer a collection of Tamil-
English code-mixed social comments that in-
clude offensive comments. This paper provides
an overview of the released dataset, the algo-
rithms employed, and the outcomes achieved
by the systems submitted for this task.

1 Introduction

Combating offensive content is crucial for differ-
ent entities involved in content moderation, which
includes social media companies as well as individ-
uals (Subramanian et al., 2022; Chinnaudayar Na-
vaneethakrishnan et al., 2023). To this end, mod-
eration is often restrictive with either usage of hu-
man content moderators, who are expected to read
through the content and flag the offensive men-
tions (Arsht and Etcovitch, 2018). Alternatively,
there are semi-automated and automated tools that
employ trivial algorithms and block lists (Jhaver
et al., 2018). Though content moderation looks
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like a one-way street, where either it should be al-
lowed or removed, such decision-making is fairly
hard (Bharathi and Agnusimmaculate Silvia, 2021;
Bharathi and Varsha, 2022; Swaminathan et al.,
2022). This is more significant, especially on so-
cial media platforms, where the sheer volume of
content is overwhelming for human moderators
especially (Kumaresan et al., 2022; Chakravarthi,
2022b,a). With ever increasing offensive social
media contents focusing on offensive comments
and statements semi-automated and fully auto-
mated content moderation is favored (Ravikiran
et al., 2022; Chakravarthi, 2023; Chakravarthi et al.,
2023a).

Tamil is an classical ancient language (Subal-
alitha, 2019a; Anita and Subalalitha, 2019a; Thava-
reesan and Mahesan, 2019, 2020a,b) with a history
dating back to 580 BCE (Sivanantham and Seran,
2019). It is primarily spoken in Tamil Nadu, India,
and also in Sri Lanka, Malaysia, and Singapore.
Tamil holds official language status in Tamil Nadu,
Sri Lanka, Singapore, and the Union Territory of
Puducherry (Subalalitha, 2019b; Sakuntharaj and
Mahesan, 2016, 2017, 2021). Additionally, there
are significant Tamil-speaking communities in Ker-
ala, Karnataka, Andhra Pradesh, Telangana, and
the Andaman and Nicobar Islands. The Tamil dias-
pora is spread across countries across the world and
is recognized as a scheduled language in the Indian
Constitution. It has a rich literary tradition dating
back to the 6th century BCE (Anita and Subalalitha,
2019b), with rock edicts and "hero stones" serving
as some of the earliest known written records. De-
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spite its own script, with the advent of social media,
code-switching has permeated into the Tamil lan-
guage across informal contexts like forums and
messaging outlets (Ravikiran et al., 2022). As a
result, code-switched content is part and parcel of
offensive conversations in social media.

Despite many recent NLP advancements, han-
dling code-mixed offensive content is still a chal-
lenge in Dravidian Languages (Sitaram et al., 2019)
including Tamil owing to limitations in data and
tools. However, recently the research of offensive
code-mixed texts in Dravidian languages has seen
traction (Priyadharshini et al., 2020; Chakravarthi,
2020; Chakravarthi et al., 2023a,b). Yet, very few
of these focus on identifying the spans that make
a comment offensive (Ravikiran and Annamalai,
2021; Ravikiran et al., 2022). However, highlight-
ing these specific spans segments can greatly as-
sist content moderators and semi-automated tools
that prioritize identifying and attributing offensive
content. In line with this objective, we presented
second iteration of code-mixed social media text in
Tamil, including offensive spans, and invited par-
ticipants to develop and submit systems under two
distinct settings for this shared task. Our CodaLab
website1 will remain open to foster further research
in this area.

2 Related Work

2.1 Offensive Span Identification

Existing literature on identifying offensive spans
primarily finds its origins in SemEval Offen-
sive Span Identification shared task, which pre-
dominantly centers around the English language
(Pavlopoulos et al., 2021). More than 36 differ-
ent systems have been developed using various
approaches. For Dravidian Languages there are
quite few works namely Ravikiran and Annamalai
(2021); LekshmiAmmal et al. (2022); Rajalakshmi
et al. (2022).

3 Task Description

Our task of offensive span identification required
participants to identify offensive spans i.e, charac-
ter offsets that were responsible for the offensive
of the comments, when identifying such spans was
possible. To this end, we created two subtasks each
of which are as described.

1https://codalab.lisn.upsaclay.fr/
competitions/11174

3.1 Subtask 1: Supervised Offensive Span
Identification

Given comments and annotated offensive spans for
training, here the systems were asked to identify
the offensive spans in each of the comments in test
data. This task could be approached as supervised
sequence labeling, training on the provided posts
with gold offensive spans. It could also be treated
as rationale extraction using classifiers trained on
other datasets of posts manually annotated for of-
fensiveness classification, without any span annota-
tions.

3.2 Subtask 2: Less data Offensive Span
Identification

All the participants of subtask 1 are encouraged
to also submit a Less Data approach, where the
participants are expected to submit a model while
using only parts (not fully) of training data of sub-
task 1. Participants were asked to develop systems
to achieve competitive performance with limited
data. To this end, participants were empowered to
use creative ways to do this including data subset
selection, coreset theory etc.

4 Dataset

For this shared task, we build upon dataset from
earlier work of Ravikiran et al. (2022), which orig-
inally released 4786 code-mixed Tamil-English
comments with 6202 offensive spans. We released
this dataset to the participants during training phase
for model development. Additionally, the test set
from the same work with 1006 samples were re-
leased for development/validation purposes. Mean-
while for testing we extended this dataset with new
additional annotated comments. To this end, we
use dataset of Priyadharshini et al. (2022) that con-
sist of abusive comments. From this we selected
366 comments for testing purpose.

Split Train Test
Number of Sentences 4786 361

Number of unique tokens 22096 2947
Number of annotated spans 6202 677

Average size of spans (# of characters) 21 21
Min size of spans (# of characters) 4 4
Max size of spans (# of characters) 82 58

Table 1: Dataset Statistics used in this shared task

Following previous research (Ravikiran et al.,
2022), we created span-level annotations for 361
newly selected test comments. We followed
the same process and guidelines for annotation,

https://codalab.lisn.upsaclay.fr/competitions/11174
https://codalab.lisn.upsaclay.fr/competitions/11174
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anonymity maintenance etc. Profanity in data was
explained apriori with an option to withdraw from
the annotation process if necessary. To ensure qual-
ity each annotation was verified by one or more an-
notation verifier, prior to merging and creating gold
standard test set. The overall dataset statistics is
given in the Table 1. Overall for the 361 comments
we obtained Cohen’s Kappa inter-annotator agree-
ment of 0.64 inline with Ravikiran et al. (2022).

5 Competition Phases

5.1 Training Phase

In the training phase, the train split with 4786 com-
ments, and their annotated spans were released
for model development. Participants were given
training data and offensive spans. Along with this
development/validation set was also released. Par-
ticipants were also emphasized on cross-validation
by creating their splits for preliminary evaluations
or hyperparameter tuning. In total, 48 participants
registered for the task and downloaded the dataset.

5.2 Testing Phase

Test set comments without any span annotation
were released in the testing phase. Each participat-
ing team was asked to submit their generated span
predictions for evaluation. Predictions are submit-
ted via Google form, which was used to evaluate
the systems. Though CodaLab supports evaluation
inherently, we used google form due to its simplic-
ity. Finally, we assessed the submitted spans of the
test set and were scored using character-based F1
(See section 7.2).

6 System Descriptions

Overall we received only a total of 3 submissions
from three teams out of 48 registered participants.
All these were only for subtask 1. No submissions
were made for subtask 2. Each of their respective
systems are as described.

6.1 The AJNS Submission

The best performing system from AJNS experi-
mented with rationale extraction (Atharva et al.,
2023) by training offensive language classifiers
and employing model-agnostic rationale extrac-
tion mechanisms to produce toxic spans as expla-
nations of the decisions of the classifier. Specifi-
cally to achieve accurate classification, it employed
the Bidirectional and Autoregressive Transformers

model (Lewis et al., 2020), which is based on zero-
shot learning and effectively captures the semantic
meaning and context of the input text. BART’s
ability to generalize from limited labeled data al-
lows for higher accuracy despite using less data
compared to traditional models. This initial clas-
sification step helps us narrow down the focus to
offensive spans within the text. Once the offensive
spans are identified, we further process them us-
ing the Bidirectional Encoder Representations from
Transformers (Devlin et al., 2019) in conjunction
with the Local Interpretable Model-Agnostic Ex-
planations (Ribeiro et al., 2016). The BERT+LIME
model extracts specific span words and their posi-
tions within the parent sentence. They obtain F1
score of 0.2858

6.2 The DLRG-R1 and DLRG-R2 submission

The DLRG team formulated the problem as a com-
bination of token labeling and span extraction.
Specifically, the team created word-level BIO tags
i.e., words were labelled as B (beginning word of a
offensive span), I (inside word of a offensive span),
or O (outside of any offensive span). Following
which character level embeddings is created and an
LSTM model (DLRG-R1) is trained. This system
produces F1 of 0.2254. The DLRG-R2 employed
similar strategy like DLRG-R2 team except they
used GRU instead of LSTM. This system produces
F1 of 0.2134.

6.3 The DLRG-R2 submission

7 Evaluation

This section focuses on the evaluation framework
of the task. First, the official measure that was
used to evaluate the participating systems is de-
scribed. Then, we discuss baseline models that
were selected as benchmarks for comparison rea-
sons. Finally, the results are presented.

7.1 Evaluation Measure

In line with work of Pavlopoulos et al. (2021) each
system was evaluated F1 score computed on char-
acter offset. For each system, we computed the
F1 score per comments, between the predicted and
the ground truth character offsets. Following this
we calculated macro-average score over all the 876
test comments. If in case both ground truth and
predicted character offsets were empty we assigned
a F1 of 1 other wise 0 and vice versa.
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7.2 Benchmark

To establish fair comparison we first created fol-
lowing baseline benchmark system which are as
described.

• BENCHMARK is a random baseline model
which randomly labels 50% of characters in
comments to belong to be offensive. To this
end, we run this benchmark 10 times and av-
erage results are presented in Table 2.

Table 2: Official rank and F1 score (%) of the 3 par-
ticipating teams that submitted systems. The baselines
benchmarks are also shown.

RANK TEAM F1 (%)
BASELINE BENCHMARK 37.24

1 AJNS 28.58
2 DLRG-R1 22.54
2 DLRG-R2 21.34

8 Analysis, Discussion and Remarks

In general, we were pleased to witness the level
of engagement in this shared task, with numer-
ous participants signing up, expressing interest in
obtaining datasets, and seeking potential baseline
codes for the project. Although only three teams
ultimately submitted their systems, the variety of
approaches taken to tackle the problem is quite
promising. Nevertheless, we have included some
of our observations below, which stem from our
evaluation and the insights gained from the results.

Table 2 shows the scores and ranks of two teams
that made their submission. NITK-IT_NLP (Sec-
tion 6.1) was ranked first, followed by DLRG (Sec-
tion 6.3) that scored 27% lower was ranked second.
The median score was 31.08%, which is far below
the top ranked team and the benchmark baseline
models.
BENCHMARK 1 achieves a considerably high

score and, hence, is very highly ranked with char-
acter F1 of 37.24%. Combination of BART with
LIME interpretability by model AJNS is behind
BENCHMARK 1 by 9%, indicating the language
models ability to not so effectively rationalize and
identify the spans. Meanwhile DLRG-R1 and
DLRG-R2 has large gap compared to random base-
lines, indicating the proposed approaches by these
teams are not suitable for practical use. To this end,
these methods employ direct token labeling which
is more surprising.

Table 3: Results of submitted systems across comments
of different lengths.

F1@30 (%) F1@50 (%) F1@>50 (%)
AJNS 41.01 41.61 22.48

DLRG-R1 38.03 34.39 17.03
DLRG-R2 31.03 30.33 16.06

8.1 General remarks on the approaches

Though neither of teams that made final submis-
sions created any simple baselines, we could see
that all the submissions use well established ap-
proaches in recent NLP focusing on pretrained
language models. Meanwhile DLRG used well-
grounded Non-Transformer based approach. Yet
neither of teams used any ensembles, data augmen-
tation strategies or modifications to loss functions
that are seen for the task of span identification in
the past across shared tasks.

8.2 Error Analysis

Table 2 shows maximum result of 37.24% for base-
line model with AJNS showing highest result of
28.58% with DLRG failing significantly compared
to random baseline. To this end, we wonder if
potentially these approaches have any weaknesses
or strengths. To understand this, first we study
the character F1 results across sentences of differ-
ent lengths. Specifically we analysis results of (a)
comments with less than 30 characters (F1@30)
(b) comments with 30-50 characters (F1@50) (c)
comments with more than 50 characters (F1@>50).
The results so obtained are as shown in Table 3.

Firstly from Table 3 we can see though AJNS
shows high results overall for cases of comments
with larger lengths the model fails significantly by
19%. Meanwhile for DLRG-R1 and DLRG-R2
the results are more mixed, especially we can see
that for comments with less than 30 characters the
model shows improvement in F1 by around 10%.
Meanwhile for shorter comments, the results high
indicating the methods are indeed useful. However
these short sentences often contained only cuss
words or clearly abusive words that are easily iden-
tifiable and often present in the train set, indicating
the deficiency of the submitted systems.

9 Conclusion

In this work, we set up a second shared task that
was centred on locating offensive language spans in
code-mixed Tamil-English text. Compared to our
earlier iteration, we had 6,153 social media com-
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ments that were tagged to identify abusive spans.
Only three teams submitted their systems out of 48
registered participants. We described their strate-
gies in this study and talked about the results they
got. It’s interesting that a strategy for reason extrac-
tion that combines BART and LIME was effective
but was not able to beat random baseline. The
LSTM/GRU model, on the other hand, performed
noticeably worse than the random baseline and
showed sensitivity to shorter sentences. We have
made the baseline models and information avail-
able to the public in order to aid future research.
Moving forward, we intend to redo the offensive
span identification task under multitask setup with
identification of different types of offensiveness
alongside the offensive spans.
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