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Abstract

We present several models for sentiment analy-
sis of multimodal movie reviews in Tamil and
Malayalam into 5 separate classes: highly nega-
tive, negative, neutral, positive, and highly pos-
itive, based on the shared task, ”Multimodal
Abusive Language Detection and Sentiment
Analysis” at RANLP-2023. We use transformer
language models to build text and audio embed-
dings and then compare the performance of
multiple classifier models trained on these em-
beddings: a Multinomial Naive Bayes baseline,
a Logistic Regression, a Random Forest, and
an SVM. To account for class imbalance, we
use both naive resampling and SMOTE. We
found that without resampling, the baseline
models have the same performance as a naive
Majority Class Classifier. However, with re-
sampling, logistic regression and random forest
both demonstrate gains over the baseline. In
the shared task, our best-performing model out-
performed all ranked models with a macro-F1

of 0.29 for Tamil and of 0.28 for Malayalam.
Nevertheless, we found that this result was not
stable across experimental random seeds.

1 Introduction

Sentiment analysis is the application of natural
language processing techniques to identify, quan-
tify, and examine the subjective attitudes and af-
fective content of language. It has a rich history
and many methods have been used in the past (Cui
et al., 2023). While sentiment analysis tasks most
frequently occur in the text domain, analysis of
multimodal content has become an increasingly im-
portant task in recent decades as such content has
become much more common. Users of popular so-
cial media websites, for instance, have long grown
accustomed to creating and interacting with content
which has either a textual, auditory, or visual form,
or some combination of these three modalities, e.g.,
a YouTube video with subtitles features all three at

once. Sentiment analysis models trained for such
contexts must reflect features of all modalities con-
cerned. Practically speaking, this task can be con-
structed in many ways: as a binary classification
task (i.e. categorizing language into either Posi-
tive or Negative sentiment), an ordinal regression
problem, or a multi-class classification problem.
In our case, the task was the latter. We are clas-
sifying multimodal (text, audio, and video) data
in Tamil and Malayalam into 5 separate sentiment
classes: highly negative, negative, neutral, positive,
and highly positive (B et al., 2023).

1.1 Motivation
Although Dravidian languages, such as Telugu,

Tamil, Kannada, or Malayalam, are spoken by more
than 250 million people, very few natural language
processing resources exist for them. This paper
considers data in two Dravidian languages, Tamil
and Malayalam. The agglutination and high degree
of morphological complexity exhibited by both lan-
guages present significant challenges in the devel-
opment of useful NLP resources. This makes them
ideal candidates for a sentiment analysis task, firstly
because approaches which can more effectively ex-
tract useful information from limited data are espe-
cially useful in this kind of low-resource context,
and secondly because progress in the development
of such approaches may prove useful to those work-
ing with Dravidian languages, morphologically-
complex languages, or low-resource languages
more generally.

2 Related Work

Previous work on sentiment analysis on Dra-
vidian languages was done in last year’s shared
task where only one team submitted their senti-
ment analysis project (Premjith et al., 2022). Also,
previous work on sentiment analysis on Dravidian
languages has used code-switched data (English
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and either Tamil or Malayalam) (Chakravarthi et al.,
2021a). Our data is not code-switched, and con-
tains only one language. Like many tasks in Natu-
ral Language Processing, different Neural Network
architectures have been used to perform sentiment
analysis (Habimana et al., 2019).

Text Vectorization Synthesizing text documents
into feature vectors for text classification is a diffi-
cult problem; common methods (Rani et al., 2022;
Anita and Shashi, 2019) for doing so include Bag-
of-Words, N-Gram, TF-IDF, Word2Vec (Mikolov
et al., 2013), GloVE (Pennington et al., 2014), and
Sentence2Vec/Doc2Vec (Le and Mikolov, 2014).
Previous work has used features present in the or-
thography of low resource languages, especially
Dravidan languages (Chakravarthi et al., 2021b).
Using pre-trained ELMo (Peters et al., 2018) or
BERT (Devlin et al., 2019) word embeddings has
become increasingly popular, since they better
encode semantic information (Anita and Shashi,
2019). Sun and Zhou (2020) uses the last three
hidden layers of the pretrained multilingual model
XLM-RoBERTa (Conneau et al., 2019) in conjunc-
tion with a convolutional neural network (CNN)
to encode Tamil-English, as well as Malayalam-
English code-mixed data into feature vectors.

Audio Vectorization Speech technologies have
progressed a lot in the recent years, especially in
multilingual and low-resource areas. The intro-
duction of pseudo-labeling has improved the ef-
ficiency of semi-supervised deep neural network
learning (Lee et al., 2013). Multitask learning
approaches in conjunction with deep neural net-
works has enabled improvements in speech recog-
nition for low-resource languages (Chen and Mak,
2015). Wav2Vec2 utilizes transformer-based un-
supervised pre-training (Jiang et al., 2019) which
works well with little training data. It also does this
pre-training via masked reconstruction loss which
has benefits similar to data augmentation methods
(Wang et al., 2020). M-CTC-T, XLS-R (Cross-
lingual Speech Representations), and UniSpeech,
on the other hand, make use of supervised/self-
supervised pre-training methods which often allow
for better accuracy (Baevski et al., 2019).

3 Dataset Description

The shared task organizers have provided 54
training samples for Tamil and 60 training samples
for Malayalam, as well as 10 test samples for both

(Chakravarthi et al., 2021c). Each sample consists
of an audio file of speech and a (sometimes partial)
transcript of it. (They have also provided video
files which we do not use.) Every sample is a
movie review collected from YouTube and labeled
by human annotators.

They have also provided a train and dev split
over the data set, which is further subdivided by
language (Tamil and Malayalam). The 54 Tamil
samples are split 44/10 train/dev while the Malay-
alam samples are split 50/10. However, instead of
using the official split, we combine train and dev
data and use k-fold validation.

4 Methodology

4.1 System Overview

Our system pipeline has four main stages (see
Figure 1): preprocessing/tokenization, vectoriza-
tion, resampling, and k-fold cross-validation.

First, we preprocess and tokenize the data. To
preprocess the data, we use two different tokeniza-
tion methods. For the baseline models, we use
whitespace tokenization after removing stopwords,
punctuation, and numbers. For more sophisticated
models, we use the SentencePiece algorithm used
in XLM-RoBERTa (Conneau et al., 2019).

Second, we vectorize each input sample to pro-
duce document feature vectors. We have three
main vectorization methods. The baseline models
use TF-IDF vectorization. We also try two differ-
ent vectorization methods using XLM-RoBERTa,
namely using TF-IDF weighted average token em-
beddings from the first layer of XLM-RoBERTa
base model, as well as using CLS token representa-
tions from hidden layers n through m of the XLM-
RoBERTa base model.

For the audio data, we first pass raw audio into
the built-in feature extractors from two models,
Wav2Vec2 (Baevski et al., 2020) and M-CTC-T
(Lugosch et al., 2022) using HuggingFace (Wolf
et al., 2020). We then pass the output of the fea-
ture extractors into the three different pretrained
models: XLS-R (Conneau et al., 2019), UniSpeech
(Wang et al., 2021), and SpeechBrain (Lugosch
et al., 2022). To extract document feature vectors,
we then perform an element-wise average of the
second to last hidden layer of the chosen pretrained
model.

Third, we do resampling, using two methods,
namely random resampling with replacement as
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Figure 1: End-to-End System Architecture

well as Synthetic Minority Over-sampling Tech-
nique (SMOTE) (Chawla et al., 2002).

Finally, we run stratified k-fold cross-validation
with k = 4. K-fold cross-validation consists of
two main components: classification and evalua-
tion. For classification, we first train various mod-
els using the training data, then use these models
to predict the sentiment of the development docu-
ments specified by the current fold. For evaluation,
we evaluate the performance of each model using
accuracy and F1 score.

4.2 Language Pooling

To create more training data, we pooled the data
for Tamil and Malayalam together to create a new
larger training data set and with which we trained
a single model. Doing so produced better results
than for language-specific models.

4.3 Preprocessing/Tokenization

WhiteSpace During preprocessing for the base-
line, we first tokenized the data by whitespace. We
then removed any tokens containing punctuation or
numbers, as well as stop words. We used the list
of stop words provided by spaCy1 for both Tamil
and Malayalam.

SentencePiece For the more sophisticated mod-
els, we use the XLM-RoBERTa (Conneau et al.,

1We used spaCy v3.*. The Tamil and Malayalam language
models can be found here.

2019) tokenizer, which was trained using the Sen-
tencePiece algorithm (Kudo and Richardson, 2018),
as well as IndicBert (Kakwani et al., 2020; Dod-
dapaneni et al., 2022). Text longer than the model
maximum input length (512, or 510 after account-
ing for special tokens) is truncated, while text
shorter than it is padded.

4.4 Text Vectorization
TF-IDF Vectors We then create one TF-IDF vec-
tor per document in the data set. To create the
TF-IDF vectors, we run each document through the
TF-IDF vectorizer provided by sklearn.2

To calculate TF-IDF, we used the unsmoothed
TF-IDF provided by sklearn. Given a document
set D with n documents, a document d ∈ D, and a
term t with document frequency df(t), we calculate
TF-IDF for term t as follows:

TFIDF(t, d,D) = tf(t, d) · idf(t) (1)

tf(t, d) = count(t) ∈ d (2)

idf(t,D) = log

(
n

df(t)

)
+ 1 (3)

Pretrained Multilingual Model Concatenated
Hidden State Embeddings In this approach, we
pass each document through a pretrained trans-
former language model and extract the hidden state

2We used sklearn v1.*. Sklearn’s TF-IDF vectorizer
documentation can be found here

https://spacy.io/usage/models
https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html
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representation for a specific set of layers, e.g. the
last four, final, the second-to-last, third-to-last, etc.
Then, we extract the vector corresponding to the
CLS token from each layer and concatenate them
together. We tried a variety of model and layer
number combinations. For models, we looked at
XLM-RoBERTA (base and large) and Indic Bert.
For the layers, we looked at the last four concate-
nated, and each of the last four separately. We
found the second-to-last layer of XLM-RoBERTA
(base) performed the best, and we present these
results below.

TF-IDF Weighted XLM-RoBERTa Token Em-
beddings We implemented a tokenization strat-
egy using TF-IDF weighted average token embed-
dings from the embedding (first) layer of the XLM-
RoBERTa base model. To obtain document feature
vectors, we tokenize a document d using Sentence-
Piece as outlined in section 4.3.

We thus have a sequence of n tokens, {tn} = d.
For each token ti ∈ d, we obtain the embedding,
e⃗i, corresponding to token ti. To obtain e⃗i, we
pull e⃗i from the embedding (first) layer of XLM-
RoBERTa. We also obtain the TF-IDF score3,
tf idf(ti, d), corresponding to each token ti in doc-
ument d. Then the document feature vector f⃗d for
document d is exactly:

f⃗d =

n∑
i=1

tf idf(ti,d) · e⃗i (4)

In other words, each document feature vector is
the weighted average of token embeddings, using
TF-IDF weights.

4.5 Audio Vectorization
XLS-R For XLS-R we used Face-
book’s XLSR-Wav2Vec2 pretrained model
facebook/wav2vec2-large-xlsr-534.
This model builds on and shares the same
architecture as Wav2Vec2. This model was
trained on CommonVoice, Babel, and Multilingual
LibriSpeech (MLS) (53 total languages), including
Tamil but not Malayalam.

UniSpeech For UniSpeech, we used Microsoft’s
pretrained model microsoft/unispeech-
large-multi-lingual-1500h-cv5. This
model builds on and shares the same architecture

3As calculated in section 4.3
4HF: wav2vec2-large-xlsr-53
5HF: UniSpeech

as Wav2Vec2. This model was trained on lan-
guages from CommonVoice, not including Tamil
and Malayalam. This model was trained on the
phoneme level rather than the character level, and
thus we believe that this model is good for transfer
learning.

SpeechBrain For SpeechBrain, we used Meta’s
pretrained model speechbrain/m-ctc-t-
large6. This model builds on and shares the same
architecture as M-CTC-T. This model was trained
on all languages from CommonVoice 6.1 (Ardila
et al., 2020) and VoxPopuli (79 total languages),
including Tamil but not Malayalam.

4.6 Data Augmentation

SMOTE For Tamil, we also resampled the data
using SMOTE with k = 2. In cross-validation, we
could not use SMOTE for Malayalam due to the
fact that there was only a single HIGHLY NEG-
ATIVE sample, meaning three folds lacked it al-
together. We were constrained to a small k for a
similar reason.

Random Resampling with Replacement For
both languages, we also tried random resampling
with replacement, where we augmented each mi-
nority label with duplicates randomly drawn with
replacement from the same label, until all classes
had an equal number of samples.

4.7 Ridge Regression Feature Selection

We used a ridge regression model (linear re-
gression with L2 regularization) for feature selec-
tion. All coefficients of the ridge regression model
whose absolute values were smaller than the mean
absolute value of all coefficients were dropped from
consideration in the final classifier. We used a reg-
ularization strength hyperparameter (α) of 0.30. In
all experimental settings, this reduced the number
of features by between 35-75%, thereby decreasing
the immense feature sparsity that we were faced
with in this task.

4.8 Classifiers

Multinomial Naive Bayes For our baseline, we
trained a multinomial Naive Bayes classifier on
the TF-IDF feature vectors from section 4.4. To
run Naive Bayes, we used the sklearn library
(Pedregosa et al., 2011).

6HF: m-ctc-t-large

https://huggingface.co/facebook/wav2vec2-large-xlsr-53
https://huggingface.co/microsoft/unispeech-large-multi-lingual-1500h-cv
https://huggingface.co/speechbrain/m-ctc-t-large
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Tamil Malayalam Tamil+Malayalam
Dev Test Dev Test Dev Test

Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1

Baseline
(Majority classifier)

0.61 0.15 0.30 0.09 0.60 0.15 0.50 0.13 0.61 0.15 0.40 0.11

Text Only
(5-seed average)

0.28 0.26 0.35 0.19 0.53 0.40 0.30 0.14 – – – –

Text Only
(seed=573)

0.26 0.26 0.50 0.29 0.40 0.31 0.40 0.28 – – – –

Text+Audio
(5-seed average)

– – 0.50 0.13 – – 0.61 0.15 0.60 0.35 0.56 0.14

Table 1: Results on the test set comparing our baselines (equivalent performance to a majority vote classifier), and
our best systems using text as well as text and audio data. The “Dev” columns refer are the averages of four-fold
cross-validation in the train set, while the test columns are calculated based on inference over the test set. See
Appendix A.1 for hyperparameters.

Logistic Regression, Random Forest, and SVM
We trained a linear Logistic Regression classifier,
a Random Forest Classifier, and an SVM using
sklearn (Pedregosa et al., 2011). We tested dif-
ferent combinations of hyperparameters, such as
the solver, penalty, regularization strength, C, loss,
alpha, learning rate, and the maximum number of
iterations. Although these classifiers, under cer-
tain (relatively rare) conditions, could replicate the
results of the Naive Bayes classifier on default set-
tings, they never outperformed it.

5 Results

To evaluate our classifiers, we pooled the official
train and dev splits into one large training set, and
then ran k-fold cross-validation. This allowed us to
train our models on more training data, as there was
not a lot of training data provided. For k-fold cross-
validation, we used 4 folds. To be able to compare
the different models that we created, we used a
deterministic algorithm to shuffle the data. This
ensures that the same four train and dev splits were
used for all the models, making the performance of
our different models comparable.

First, for reference, in table 1 we provide the
results of a majority-class classifier (one that as-
signs all classes the majority class, POSITIVE) as
a baseline. This is identical to the performance of
all of our Multinomial Naive Bayes as presented in
section 4.8.

We have selected the best-performing model in
terms of the pooled dev macro-F1 score, training
just on text data, as well as training on text in con-
junction with audio data. For this model, we report
the validation pooled F1 scores and accuracy aver-

aged across five seeds.7 For the test data, we report
the same metrics averaged across the same seeds
in table 1.

We also report the dev and test results of the best
model for any specific seed in terms of F1 score
on the test data. This “best model” was trained
with only the text modality (across the board, the
text audio models did worse due to greater feature
sparsity). Note that this single seed happened to
perform especially well, but is not representative
of overall model performance.

6 Discussion

6.1 Data Set Imbalance

As we see in figure 2, the data set was both very
small and highly imbalanced. Out of 70 Malay-
alam training samples, only one was of the ’Highly
Negative’ class, while thirty-six of them were ’Pos-
itive’. The fifty-four Tamil samples were likewise
highly imbalanced, with ’Highly Negative’ and
’Negative’ both appearing only four times each and
’Positive’ appearing thirty-three times. This imbal-
ance could have negatively impacted the accuracy
of our model to a great extent.

6.2 Discussion of Results

Without resampling, our baseline classifiers did
not perform better than a majority class classifier,
due to the fact that the amount of data available to
train on is fairly small and most of the instances
are POSITIVE.

Because our models were trained on so few sam-
ples, the use of too many features resulted in over-

70, 42, 100, 573, 2023.
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(a) Tamil (total: 54) (b) Malayalam (total: 60)

Figure 2: Training Data Class Distribution

fitting; for this reason, models with fewer features
generally performed better. Because there are only
ten test instances per language, across seeds we
saw a great amount of variance in scores. We chose
to submit the best results among all random seeds,
achieved in the text-only setting, but we do not feel
that these are necessarily indicative of our model
performance in general.

As we see in Table 1, when including text and
audio data, we found that pooling the language
data into one large training data set featuring both
Malayalam and Tamil improved the performance
of our models. We believe that this occurred for
two reasons. Firstly, pooling enabled us to train
our models on a substantially larger amount of data.
Secondly, Tamil and Malayalam are very closely
related languages, and the model may have been
able to leverage salient linguistic features present in
both languages to better classify sentiment. How-
ever, Tamil and Malayalam use different orthogra-
phies, so pooling their data only increased perfor-
mance when using text and audio, and made no
impact when using only text data.

Because there was only one HIGHLY NEGA-
TIVE Malayalam instance, it cannot be in the train
and dev data simultaneously. This means that the
maximum F1 score for Malayalam dev data is 0.8,
and the evaluation of the models on Malayalam dev
data might not be indicative of the actual perfor-
mance of our models.

6.3 Future Work

One clear route for future work is to focus on
mitigating the limitations of such a small and im-

balanced data set. For example, one may conduct
a more thorough exploration of data augmentation
strategies. The sole augmentation procedure we
used (besides simple random resampling) oper-
ated at the vector level (SMOTE). However, other
data augmentation strategies that operate at the text
and/or audio level may improve results.

In pooling our language data, we did not convert
the text data for Tamil and Malayalam into a script
compatible with both, e.g., via Romanization. Do-
ing so may have improved results when pooling,
not just for audio data, but for text data as well.

Another route one could take would be to trans-
late all the data into a high-resource language (e.g.
English) and then use existing and proven NLP
tools on the translations.

7 Conclusion

We performed multimodal sentiment analysis on
text and audio data from the Dravidian languages
Tamil and Malayalam. To perform sentiment analy-
sis, we built an end-to-end system, trying different
vectorization methods, resampling techniques, and
classifiers. We evaluated the system’s performance
using only text data, as well as jointly using text
and audio data.

We created baseline systems using TF-IDF vec-
tors and a Multinomial Naive Bayes classifier with
no resampling and found that these baseline models
performed no better than a majority class classifier.

As discussed elsewhere in this paper, we found
that significant challenges stemming from the small
size of our data set and its highly imbalanced dis-
tribution of classes proved largely insurmountable
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in improving the success of our models. We were
not able to be formally ranked however our model
did outperform the other ranked models.
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A Appendix

A.1 Model Hyperparameters
Text Only: Logistic Regression (C = 5.0),

Ridge Regression feature selection, random resam-
pling with replacement; text vectorization: second-
to-last layer.

Text+Audio: Pooled language training, Logistic
Regression (C = 5.0), Ridge Regression feature
selection, random resampling with replacement;
text vectorization: second-to-last layer; audio vec-
torization: XLSR, third-to-last layer.
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