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Abstract

Detecting abusive language in multimodal
videos has become a pressing need in ensur-
ing a safe and inclusive online environment.
This paper focuses on addressing this chal-
lenge through the development of a novel ap-
proach for multimodal abusive language de-
tection in Tamil videos and sentiment analysis
for Tamil/Malayalam videos. By leveraging
state-of-the-art models such as Multiscale Vi-
sion Transformers (MViT) for video analysis,
OpenL3 for audio analysis, and the bert-base-
multilingual-cased model for textual analysis,
our proposed framework integrates visual, au-
ditory, and textual features. Through extensive
experiments and evaluations, we demonstrate
the effectiveness of our model in accurately
detecting abusive content and predicting sen-
timent categories. The limited availability of
effective tools for performing these tasks in
Dravidian Languages has prompted a new av-
enue of research in these domains.

Keywords: abusive language detection, senti-
ment analysis, multimodal analysis, video anal-
ysis, Dravidian languages.

1 Introduction

Abusive content, including hate speech, offensive
language, and personal attacks, has become preva-
lent on social media platforms, posing significant
challenges to maintaining a safe and inclusive on-
line environment. Detecting and mitigating such
abusive language has become an urgent need for
social media platforms, content moderators, and
society at large. While the detection of abusive
language in textual form has received consider-
able attention, the analysis of multimodal content,
specifically videos, incorporating visual, auditory,
and textual information, remains a challenging and
under explored task (Chakravarthi et al., 2021),
(Premjith et al., 2022).

Figure 1: We develop an end-to-end deep network
model to learn multimodal representations and perform
detection/classification tasks.

The task of multimodal abusive language detec-
tion in videos holds great significance due to sev-
eral reasons. First, the exponential growth of user-
generated video content on social media platforms
like YouTube demands efficient mechanisms for
content moderation and protection against abuse.
As videos can convey rich contextual cues through
spoken words, facial expressions, and visual con-
tent, analyzing multiple modalities becomes crucial
to comprehensively understand the abusive intent
and impact within such content. By extending abu-
sive language detection to multimodal videos, we
can identify and address abusive behaviors more
effectively, ensuring a safer and more inclusive dig-
ital space.

Second, focusing on videos expands the scope
of abusive language detection beyond textual con-
tent alone. Abusive language can be embedded
in the audio, visual, and textual components of
videos, making it essential to develop models that
can holistically analyze and interpret these modali-
ties. By leveraging the combined power of visual
information, audio cues, and textual context, we
can capture nuanced abusive expressions that might
be missed by considering only one modality. This
multimodal approach enables us to uncover the full
spectrum of abusive content, thereby enhancing our
ability to combat online abuse.

In this paper, we address the challenge of mul-
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timodal abusive language detection and sentiment
analysis in videos, specifically focusing on Tamil
(one of the major Dravidian languages spoken in
South India and Sri Lanka) and Malayalam(spoken
in the Indian state of Kerala and the union territo-
ries of Lakshadweep and Puducherry). We propose
a novel approach that integrates video, audio, and
textual features using state-of-the-art models, in-
cluding Multiscale Vision Transformers (MViT)
for video analysis, OpenL3 for audio analysis, and
the bert-base-multilingual-cased model for textual
analysis. Through our approach, we aim to advance
the field of abusive language detection and/or sen-
timent classification in videos and contribute to the
development of robust models capable of under-
standing and mitigating online abuse in Dravidian
Languages and classify sentiments.

2 Related Work

Multimodal analysis, encompassing tasks such as
sentiment analysis, hate speech detection, and hu-
mor recognition, has garnered significant attention
in recent years. Researchers have explored various
fusion methods to effectively combine informa-
tion from different modalities, leading to improved
performance in multimodal analysis tasks. In this
section, we review relevant studies and highlight
their contributions to the field.

(Zadeh et al., 2017) introduced Tensor Fusion
Network to pose the problem of multimodal senti-
ment analysis as intra-modality and inter-modality
dynamics. (Zadeh et al., 2018) introduced a novel
interpretable fusion mechanism called Dynamic Fu-
sion Graph (DFG). (Poria et al., 2016b) described a
novel temporal deep convolutional neural network
for visual and textual feature extraction and used
multiple kernel learning to fuse heterogeneous fea-
tures extracted from different modalities.

(Majumder et al., 2018) introduced an innovative
hierarchical feature fusion strategy that sequentially
combines modalities in pairs before fusing all three
modalities together. (Poria et al., 2016a) employed
a combination of feature-level and decision-level
fusion techniques to integrate affective information
derived from multiple modalities. (Hazarika et al.,
2018) introduced a multimodal emotion detection
framework that extracts multimodal features from
conversational videos and hierarchically models
the self- and inter-speaker emotional influences
into global memories. (Liu et al., 2023) propose a
cascaded multichannel hierarchical fusion method

for multimodal emotion recognition.

(Poria et al., 2017) propose a recurrent model
that is able to capture contextual information
among utterances. They also introduce attention
based networks for improving both context learn-
ing and dynamic feature fusion. (Chauhan et al.,
2019) introduce a recurrent neural network based
approach for the multi-modal sentiment and emo-
tion analysis. The proposed model learns the inter-
modal interaction among the participating modal-
ities through an auto-encoder mechanism. They
employ a context-aware attention module to ex-
ploit the correspondence among the neighboring
utterances. (Ghosal et al., 2018) also proposed a
recurrent neural network based multi-modal atten-
tion framework that leverages the contextual in-
formation for utterance-level sentiment prediction.
(Chen and Li, 2020) first applies the cross-modal
co-attention mechanism to learn the long range
of context information and then use a sentimen-
tal words classification auxiliary task to guide and
learn the sentimental words aware final multimodal
fusion representation.

(Han et al., 2021b) propose a framework named
MultiModal InfoMax (MMIM), which hierarchi-
cally maximizes the Mutual Information (MI) in
unimodal input pairs (inter-modality) and between
multimodal fusion result and unimodal input in or-
der to maintain task related information through
multimodal fusion. (Han et al., 2021a) propose the
Bi-Bimodal Fusion Network (BBFN), a end-to-end
network that performs fusion (relevance increment)
and separation (difference increment) on pairwise
modality representations.

(Zadeh et al., 2018) introduce CMU Multimodal
Opinion Sentiment and Emotion Intensity (CMU-
MOSEI), then largest dataset of sentiment analysis
and emotion recognition. EmotionLines (Hsu et al.,
2018) was introduced as the first dataset with emo-
tions labeling on all utterances in each dialogue
only based on their textual content. (Poria et al.,
2019) was created by enhancing and extending the
EmotionLines Dataset.

A comprehensive understanding of the field can
be gained through an examination of the historical
context and the establishment of baseline method-
ologies. Notable works such as (Poria et al., 2018),
(Cambria et al., 2017), and (Gandhi et al., 2022)
provide valuable insights into the broader perspec-
tive of the subject.
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3 Method

In this section, we present the methodology em-
ployed for the multimodal abusive language detec-
tion and sentiment analysis tasks. We first provide
an overview of the problem statement and task for-
mulation. Then, we discuss the feature extraction
process for video, audio, and text modalities. Next,
we describe our approach in detail, including the
model architecture and the steps involved. Finally,
we outline the training and inference procedures.

3.1 Problem Statement

The aim of this study is to determine whether a
particular set of video, audio, and text is abusive or
non-abusive. Additionally, we seek to predict the
sentiment expressed in the given video clip with
audio and text information as a seperate problem.
Let (V, A, T) denote the input tuple, respectively
for video, audio and text.

3.2 Feature Extraction

For the feature extraction process, we utilize spe-
cific techniques for each modality:
Video Features To extract video features, we
employ Facebook Research’s Multiscale Vision
Transformers (MViT). MViT connects the con-
cept of multiscale feature hierarchies with trans-
former models. The architecture consists of mul-
tiple stages that hierarchically expand the chan-
nel capacity while reducing the spatial resolution.
This creates a multiscale pyramid of features, en-
abling the modeling of both simple low-level visual
information and complex, high-dimensional fea-
tures. MViT has been shown to outperform other
vision transformers in terms of computation and pa-
rameter efficiency across various video recognition
tasks.

Fv = MVIT(V ) (1.a.)

Audio Features OpenL3 is specifically designed
for audio feature extraction using deep learning
models. It provides pre-trained models that can
generate high-dimensional embeddings for audio
signals. OpenL3 supports different audio feature
representations, such as raw embeddings and inter-
mediate representations like log-mel spectrograms.
It is particularly useful when you want to leverage
the power of deep learning for audio analysis tasks.

Fa = OpenL3(A) (1.b.)

Text Features To extract text features, we em-
ploy the bert-base-multilingual-cased model. This
model is pre-trained on a large corpus of text data
and is capable of capturing contextual informa-
tion across multiple languages, including Tamil
and Malayalam.

Ft = BERT(T ) (1.c.)

3.3 Our Approach
In our approach, which we refer to as AbhiPaw, we
leverage the given data comprising three modalities,
each ranging from 40 to 80 seconds in length. The
AbhiPaw model is built upon a transformer-based
architecture, enabling the detection of abusive lan-
guage content in Tamil videos and separate training
for multiclass sentiment analysis on video modali-
ties (Tamil and Malayalam videos).

Modality Separation: The input modalities are
separately processed, as discussed in Section 3.2.

Neural Layer Fusion: The separated modalities
are then passed through a single neural layer to
output features with consistent dimensions. This
is akin to normalisation. This step is important for
fair fusion since different modalities might have
different ranges of values.

F ′
v = Linear(Fv)

F ′
a = Linear(Fa)

F ′
t = Linear(Ft) (2)

Positional Encoding: We incorporate positional
encoding to capture the spatial information of the
modalities. This allows the model to understand the
relative positions of elements within each modality.

F ′′
v , F

′′
a , F

′′
t = PositionalEncoding(F ′

v, F
′
a, F

′
t)
(3)

Modality Type Embeddings: Type embeddings
corresponding to the three modalities are added.
These embeddings do not encode any specific
meaning or imposed order but serve to distinguish
one modality from another.

F ′′′
v , F ′′′

a , F ′′′
t = TypeEmbedding(F ′′

v , F
′′
a , F

′′
t )
(4)

Classifier Tokens: Similar to the classic CLS to-
kens in Transformer models, we employ learnable
classifier tokens to detect abuse in videos. A single
token is used to generate the output.
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Figure 2: Overview of our work, which is inspired by (Srivastava et al., 2023) and (Hazarika et al., 2020). We utilize
separate frozen backbones to get features out of different modalities. We also use linear layers to project them to
same dimensionality. To capture positional information between the token we use positional embeddings. For our
downstream task of detection, we also add the CLS embeddings before passing to transformer layer followed by
linear layer for classification.

Masking: Appropriate masking is applied to
prevent self-attention on padded tokens, ensuring
accurate attention across the modalities.

Transformer Encoder: The processed features
are then passed through a Transformer encoder.
Importantly, self-attention across modalities is not
applied. For abuse detection, only the outputs cor-
responding to the classification tokens are consid-
ered.

zk = TransformerEncoder

(
CLS + F ′′′

v

+ F ′′′
a + F ′′′

t

)
(5)

Linear Classification: The feature representa-
tion from the Transformer encoder is fed into a
linear layer for classification. The output logits are
compared with the ground truth labels

3.4 Training and Inference
Training Our model is trained end-to-end with
Cross Entropy Loss and Adam optimizer.

Inference We take in un-seen test data and pass
to the model to get output.

4 Experiments

4.1 Evaluation Metrics

The evaluation of the model was done based on
their F1 score, which is a common metric used in
NLP to measure the performance of classification
models.

4.2 Datasets

Two different datasets were provided for the
shared task at Multimodal Abusive Language
Detection and Sentiment Analysis : Dravidian-
LangTech@RANLP 2023.
Task 1 : Multimodal detection of abusive content in
Tamil: This sub-task involves developing models
that can analyze textual, speech and visual compo-
nents of videos from social media platforms, such
as YouTube, and predict whether they are abusive
or non-abusive.
Task 2 : Multimodal sentiment analysis in Dravid-
ian languages: This sub-task involves developing
models that can analyze textual, speech and visual
components of videos in Tamil and Malayalam
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from social media platforms, such as YouTube, and
identify the sentiments expressed in them. The
videos are labelled into five categories: highly posi-
tive, positive, neutral, negative and highly negative
There are two substasks corresponding to Tamil
and Malayalam languages.

4.2.1 Dataset Analysis

Distribution across categories

Figure 3: Pie chart showing the number of instances be-
longing to each category in abusive comment detection
task

Figure 4: Pie chart showing the number of instances
belonging to each category in sentiment analysis task -
Tamil

Class Imbalance The training dataset used in
our study presents a notable class imbalance is-
sue, with a substantial data points being refered to
Positive, Figure 4 and 5.

Low sample size The available training data was
insufficient in terms of quantity and diversity to
fully capture the complexity and variability of the
problem domain. We had 70 samples for training
for first task, and for second task we had 44 and
50 instances for Tamil and Malayalam sub-tasks
respectively.

Figure 5: Pie chart showing the number of instances
belonging to each category in sentiment analysis task -
Malayalam

Table 1: Abusive Language Detection - Tamil

Team F1-score (macro) Rank
hate-alert 0.5786 1
AbhiPaw 0.3333 2

4.3 Implementation Details

Our model is trained on a single NVIDIA T4 GPU.
We trained our PyTorch model using specific hy-
perparameters to ensure optimal performance and
effective training. The maximum number of epochs
was set to 150, allowing the model to undergo mul-
tiple iterations through the training dataset. To
efficiently process the data, we employed a batch
size of 4, which divided the dataset into smaller
subsets for parallel computation. Adam optimizer
was utilized to optimize the model’s weights. Ad-
ditionally, we set the initial learning rate to 10−3,
which determined the step size for adjusting the
model’s parameters during training. These care-
fully chosen hyperparameters played a crucial role
in achieving the desired results and advancing the
effectiveness of our model.

5 Results

We obtain an F1 score of 0.3333 in Abusive Lan-
guage Detection - Tamil, Table 1

For multi-modal sentiment analysis we got an
F1 score of 0.1333 for Tamil, Table 2 and a score
of 0.0923 for Malayalam Table 3

Table 2: Sentiment Analysis - Tamil

Team F1-score (macro) Rank
hate-alert 0.1429 1
AbhiPaw 0.1333 2



145

Table 3: Sentiment Analysis - Malayalam

Team F1-score (macro) Rank
hate-alert 0.1889 1
AbhiPaw 0.0923 2

6 Conclusion

We present a novel approach for detecting abusive
language in low-resource language videos by inte-
grating visual, auditory, and textual features. Our
framework demonstrates promising results in ac-
curately identifying abusive content and predicting
sentiment categories.

To advance the field, future work should focus on
expanding the dataset to address resource scarcity,
exploring advanced fusion techniques for multi-
modal integration, incorporating contextual infor-
mation and temporal dependencies, and tackling
class imbalance challenges. By refining these tech-
niques and considering the linguistic and cultural
nuances of Dravidian Languages, we can make sig-
nificant strides towards ensuring a safer and more
inclusive online environment.
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