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Abstract

This paper presents the results obtained by the
MELODI team for the three tasks proposed
within the DISRPT 2023 shared task on dis-
course: segmentation, connective identification,
and relation classification. The competition
involves corpora in various languages in sev-
eral underlying frameworks, and proposes two
tracks depending on the presence or not of an-
notations of sentence boundaries and syntactic
information. For these three tasks, we rely on a
transformer-based architecture, and investigate
several optimizations of the models, including
hyper-parameter search and layer freezing. For
discourse relations, we also explore the use
of adapters—a lightweight solution for model
fine-tuning—and introduce relation mappings
to partially deal with the label set explosion we
are facing within the setting of the shared task
in a multi-corpus perspective. In the end, we
propose one single architecture for segmenta-
tion and connectives, based on XLM-RoBERTa
large, freezed at lower layers, with new state-
of-the-art results for segmentation, and we pro-
pose 3 different models for relations, since the
task makes it harder to generalize across all
corpora.

1 Introduction

Discourse analysis consists in building a discourse
structure representing the organization of a docu-
ment – a monologue or dialogue –, as the discourse
tree in Figure 1. First, the document is split into
minimal sub-units, called Elementary Discourse
Units (EDU): the text in the example, consisting of
two sentences, is divided into 5 EDUs (from 2 to
6). The EDUs are then attached together, forming
larger discourse units – such as the pair (EDU2,
EDU3) – that are recursively linked to form a tree
or a graph, depending on the underlying frame-
work. The links between the discourse units are
semantic-pragmatic relations, such as CONCES-
SION, EVIDENCE, SEQUENCE etc. These relations

can be triggered by an explicit lexical item, a con-
nective such as BECAUSE, WHILE, or WHEN for
CONDITION in the example. Relations can also be
"implicit", when no such marker is present, such as
the CONCESSION between EDU2 and EDU3.

There are mainly three frameworks for discourse:
Rhetorical Structure Theory (RST) (Mann and
Thompson, 1988) – from which the example in
Figure 1 is derived –, Segmented Discourse The-
ory (SDRT) (Asher and Lascarides, 2003) – where
structures are graphs –, and the Penn Discourse
Treebank (PDTB) (Prasad et al., 2005), where dis-
course relations are sparsely annotated without con-
straints on the overall structure. Alternatively, there
have been proposals to transform discourse struc-
ture into simpler dependency structures (dep), e.g.
in RST (Hirao et al., 2013; Hayashi et al., 2016)
or SDRT (Muller et al., 2012). Recently, this view
has been taken to annotate directly new data in the
SciDTB corpus (Yang and Li, 2018), proposing a
set of relations and segmentation rules inspired by
RST but producing trees of dependency relations
between EDUs.

Several corpora have been annotated under each
framework for different languages: however, even
within the same framework, annotation guidelines
and relation sets might be different for each cor-
pus. The DISRPT shared task intends to provide

Figure 1: Example of an RST tree (Source: RST website
- Common Case Analysis)
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a unified format for researchers to evaluate their
systems against varied languages, domains, and
frameworks. Three tasks were proposed: (1) dis-
course segmentation into EDUs, (2) identification
of discourse connectives, and (3) classification of
discourse relations based on attached units. The
first two tasks are encoded with a BIO scheme
over tokens, the latter corresponds to a multi-class
classification between pairs of textual segments.
The benchmark provided within DISRPT allows
us to verify the robustness of our approach through
13 languages, 4 frameworks, and varied domains,
including multi-party dialogues and speech tran-
scriptions.

In this paper, we address the three tasks through
two systems: DisCut1 for tasks (1) and (2) and
DiscReT2 for task (3). These systems both rely
on Transformer architectures and we thoroughly
investigate different variations of the pre-trained
model and the hyper-parameters values, while also
varying the level of frozen layers. This latter param-
eter allows for lighter models, and also improve-
ments in most cases. For task (3), we also investi-
gate adapters (Houlsby et al., 2019) that provide a
lightweight solution for transferring to new tasks.
For all tasks, we favor multilingual pretrained mod-
els, in order to better generalize and experiment
with corpus merging for relations, with the aim of
providing a generic model that can be used for any
corpus.

In the end, we ranked first on discourse segmen-
tation on the treebanked track (+0.87 on the av-
erage, compared to the other system) but second
for connectives (−0.47), and we are the only sys-
tem with results on the plain track, with higher
performance than the winner of DISRPT 2021. For
relations, our system is the only one trying to mix
all corpora, thus even if the performance are lower
than other proposed approaches, it is possibly better
at generalization.

2 Related work

Discourse parsing is the task of building the full
trees/graphs. Most work focuses on attachment or
discourse relation identification, and on English.
Recently, a multilingual RST discourse parser has
been proposed (Liu et al., 2021), building on pre-
vious work (Braud et al., 2017a; Liu et al., 2020)

1Code at https://github.com/phimit/jiant/
2Code at https://gitlab.irit.fr/melodi/andiamo/

discret_ST3

but proposing to jointly learn attachment and EDU
segmentation and adding a cross-lingual strategy,
rather than English only. It shows that multilingual-
ism is a key component to improve performance,
since data scarcity affects even English, and that
good segmentation is crucial, with a loss of up to
8% with predicted EDUs for full parsing.

Discourse segmentation was considered a solved
task, with scores as high as 94% (Xuan Bach et al.,
2012), but it was later shown that performance
drops for languages other than English, – linked to
smaller corpora and lesser resources –, and when
gold sentences are not given, due to sentence seg-
menters far from being perfect (Braud et al., 2017b).
The first edition of the DISRPT shared task (Zeldes
et al., 2019) also revealed the same trend with per-
formance above 95% for some corpora, but also is-
sues with others such as the Spanish SCDT (82.5%
at best) or the Russian RRT (86.2%). The best-
performing system in 2019 (Muller et al., 2019)
was using a single model based on multilingual
BERT for every corpus (Devlin et al., 2019), while
in the second edition (Zeldes et al., 2021), the best
system (Gessler et al., 2021) relied on varied lan-
guage models, either mono- or multilingual, asso-
ciated to hand-crafted features: best overall perfor-
mance was around 91.5% on average, with a loss
of about 2% when the sentences are not given.

Connective identification was first seen as a word
disambiguation task, where the goal was, starting
with a list of candidates, to decide whether each oc-
currence is used in a discourse reading or not (Pitler
et al., 2008). It has been then recast as a sequence
labeling one, where we need to decide whether a
token starts, is within, or is outside a discourse
connective (Stepanov and Riccardi, 2016). As for
segmentation, performance drops when existing
systems are trained on new domains or languages
(Xue et al., 2016; Scholman et al., 2021), but fewer
studies investigated this task since implicit relations
are more an issue for discourse parsing. The first
two editions of DISRPT demonstrated rather high
performance: between 92− 94 for the English and
Turkish corpora, and 87 for the Chinese one, with
only a small drop when sentences are not given.

Discourse relations are the main object of study
within the domain, with a specific focus on im-
plicit ones since the connective is considered a
very strong clue for guessing the relation (Pitler
et al., 2008). However, again, performance drops,
even for explicit relations when data are scarce (Jo-
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hannsen and Søgaard, 2013). Moreover, a real-life
scenario has to deal with both implicit and explicit
relations, it is thus interesting to see results combin-
ing all types of relations, and for several languages.
Only two systems were presented in 2021, and the
winning model was based on Transformers, with a
specific pretrained model depending on the target
language and additional hand-crafted features: best
overall performance is still low, with 61.8%.

3 Data

The 2023 DISRPT shared task, including suprise
datasets, provides 26 corpora for 13 languages
and 4 theoretical frameworks: 9 correspond to
the PDTB framework (thus connective and rela-
tions), the others are either RST (12), dependency
(3) or SDRT (2) (thus segmentation and relations).
Among these, 10 new corpora are introduced in the
2023 edition: 6 are released as surprise datasets,
with one new language (Thaï), and out-of-domain
(OOD) data for English (COVID-DTB and TED),
Portuguese (CRPC and TED) and Turkish (TED).

All statistics are given in Table 1. The largest
corpora are the English PDTB (1, 992 training doc-
uments), dep SciDTB (492 documents), and RST
DT (309 training documents), and, for SDRT, the
French Annodis (64 documents). In total, 8 cor-
pora have less than 100 documents and are thus
considered very small. The OOD corpora have no
training set: the English COVDTB is rather large,
with 150 in the dev set, but the other ones, based on
TED talks for English, Portuguese, and Turkish are
very small, their dev sets contain only 2 documents,
around 100 connectives, and 200 relations to pre-
dict. For relations, label sets contain between 9 and
32 different relations, and we note that almost no
corpus has the same set as another one.

We have 6 corpora for English (Prasad et al.,
2019; Zeldes, 2017; Carlson et al., 2001; Asher
et al., 2016; Yang and Li, 2018; Nishida and Mat-
sumoto, 2022), 4 for Chinese (Zhou et al., 2014;
Cao et al., 2018; Cheng and Li, 2019; Yi et al.,
2021), 2 for Spanish (da Cunha et al., 2011; Cao
et al., 2018), 2 for Portuguese (Cardoso et al., 2011;
Mendes and Lejeune, 2022), 1 for German (Stede
and Neumann, 2014), 1 for Basque (Iruskieta et al.,
2013), 1 for Farsi (Shahmohammadi et al., 2021),
1 for French (Afantenos et al., 2012), 1 for Dutch
(Redeker et al., 2012), 1 for Russian (Toldova et al.,
2017), 1 for Turkish (Zeyrek and Webber, 2008;
Zeyrek and Kurfalı, 2017), 1 for Italian (Tonelli

et al., 2010; Riccardi et al., 2016) and 1 for Thai.
In addition, OOD datasets come from the multilin-
gual TED Discourse Bank with data for English,
Portuguese and Turkish (Zeyrek et al., 2018, 2020).

4 DisCut: segmentation and connectives

4.1 DisCut: Model architecture

Identifying EDU boundaries and connectives
(Tasks 1 and 2) corresponds to different corpora:
PDTB-based datasets have connectives annotated,
but not segmentation, while the others have no con-
nectives. However, they can be both modeled as
sequence labeling tasks (only "Beginning" labels
for segmentation, "Beginning" and also "Inside" for
connectives, to take into account multi-words mark-
ers). Our systems for these tasks are thus based on
the same architecture with transformers pretrained
models, fine-tuned on the task at hand.

The model is based on a pretrained language
model (LM), with an additional linear layer for
token classification. The LM is multilingual, al-
lowing it to be used for all corpora. Contrary to
systems proposed in 2019 and 2021 based on a
similar architecture, we removed the CNN at the
character level, and the LSTM outer layer, as addi-
tional experiments demonstrated no improvements.

The LM is based on a Transformer architecture
with several layers within the encoder. It has been
shown that, broadly speaking, lower layers mostly
encode morpho-syntactic information, while upper
contain more semantic ones (Rogers et al., 2020;
Kovaleva et al., 2019; Bender and Koller, 2020).
We thus experiment with freezing some lower lay-
ers while continuing the fine-tuning on higher lev-
els, in order to have lighter models. “Freezing
a layer” is the process of disallowing the update
of weights for the target layer during the fine-
tuning process, meaning that the layer preserves its
learned information from pretraining.

Models are fed with sentences, the documents
being too long for the LMs. We detail below our
setting when sentences are not given (’Plain’ track).

4.2 Settings

We chose to focus on multilingual LMs and ex-
perimented with mBERT (Devlin et al., 2019)
and XLM-RoBERTa (Conneau et al., 2020). We
present results using XLM-RoBERTa, as prelimi-
nary experiments demonstrated improvements over
mBERT. We experimented with both base and
large versions, and tested the freezing of lower
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Corpus Train Dev Test
#Doc #Tok #EDU/Conn #Rel #Doc #Tok #EDU/Conn #Rel #Doc #Tok #EDU/Conn #Rel

RST

eng.rst.rstdt 309 166854 17646 17/16002 38 17309 1797 17/1621 38 21666 2346 17/2155
rus.rst.rrt 272 390375 34682 22/28868 30 40779 3352 19/2855 30 41851 3508 20/2843
spa.rst.rststb 203 43055 2472 28/2240 32 7551 419 23/383 32 8111 460 25/426
eng.rst.gum 165 160700 20722 14/19496 24 21409 2790 14/2617 24 21770 2740 14/2575
deu.rst.pcc 142 26831 2449 26/2164 17 3152 275 24/241 17 3239 294 24/260
fas.rst.prstc 120 52309 4607 17/4100 15 7016 576 15/499 15 7369 670 16/592
eus.rst.ert 116 30690 2785 29/2533 24 7219 677 26/614 24 7871 740 26/678
por.rst.cstn 114 48469 4601 32/4148 14 6509 630 22/573 12 3815 306 21/272
nld.rst.nldt 56 17562 1662 32/1608 12 3783 343 27/331 12 3553 338 28/325
zho.rst.gcdt 40 47639 7470 31/6454 5 7619 1144 30/1006 5 7647 1092 30/953
spa.rst.sctb 32 10253 473 24/439 9 2448 103 17/94 9 3814 168 19/159
zho.rst.sctb 32 9655 473 26/439 9 2264 103 19/94 9 3577 168 20/159

SDRT

fra.sdrt.annodis 64 22515 2255 18/2185 11 5013 556 18/528 11 5171 618 18/625
eng.sdrt.stac 33 41060 9887 16/9580 6 4747 1154 16/1145 6 6547 1547 16/1510

DEP

eng.dep.scidtb 492 62461 6740 24/6060 154 20288 2130 24/1933 152 19744 2116 24/1911
∗eng.dep.covdtb - - - - 150 29369 2754 12/2399 150 31480 2951 12/2586
zho.dep.scidtb 69 11288 898 23/802 20 3852 309 18/281 20 3621 235 17/215

PDTB

eng.pdtb.pdtb 1992 1061229 23850 23/43920 79 39768 953 20/1674 91 55660 1245 23/2257
por.pdtb.crpc 243 147594 3994 22/8797 28 20102 621 20/1285 31 19153 544 19/1248
tur.pdtb.tdb 159 391304 7063 23/2451 19 49097 831 22/312 19 46988 854 22/422
∗tha.pdtb.tdtb 139 199135 8277 20/8278 19 27326 1243 18/1243 22 30062 1344 18/1344
zho.pdtb.cdtb 125 52061 1034 9/3657 21 11178 314 9/855 18 10075 312 9/758
ita.pdtb.luna 42 16776 671 15/956 6 3081 139 14/210 12 6257 261 14/381
∗eng.pdtb.tedm - - - - 2 2574 110 20/178 4 5474 231 18/351
∗por.pdtb.tedm - - - - 2 2785 102 20/190 4 5405 203 18/364
∗tur.pdtb.tedm - - - - 2 2113 135 21/213 4 4030 247 22/364

Table 1: Statistics on the datasets: bold indicates a new corpus compared to DISRPT 2021, ∗ indicates a surprise
corpus, ’-’ is for OOD corpora, without training sets. #EDU/CONN is the number of EDUs for RST, SDRT, and
DEP corpora, the number of connectives for PDTB corpora; #REL corresponds to the size of label sets / total
number of pairs annotated.

layers, aiming at possibly improved performance,
with a lighter training.

With XLM-RoBERTa base, we tested no freez-
ing, or freezing of either the first 3 or 8 layers (out
of 12); for the large version, we increased to 6 and
12 layers (out of 24). We tested several values for
the learning rate ∈ [10−5, 2·10−5, 10−4] and chose
10−5. We tested different batch sizes ∈ [1, 4, 8, 16]
– only the value 1 fitted our GPU for the large ver-
sion –, with a gradient accumulation of 4 and a
maximum of 30 epochs with patience of 10 over
the performance on the development set. The input
size is limited to 180. Our implementation relies on
and extends the Jiant library3 (Phang et al., 2020).

After evaluation on the dev set, we found that
most models perform better with RoBERTa-large
and with freezing the first 6 layers. Small improve-
ments could be observed for some corpora with
either the base version or other freezing values, but
the increase was limited to less than 1.2%, and in

3https://jiant.info/

general less than .5%, and we thus decided to favor
one single model in order to make it easier to use,
and better at generalizing to new data.

Dealing with raw data: The DISRPT shared
task proposes two tracks for tasks 1 and 2: you
can either use data segmented into sentences and
syntactically parsed (Treebanked) – either gold or
obtained with Stanza –, or raw tokenized docu-
ments (Plain). As the LMs have limitations on the
size of their input, we can not give directly the doc-
uments as input: we thus decided to split the raw
documents into sentences.

However, having observed issues with Stanza
segmentation, we tried alternatives: Ersatz (Wicks
and Post, 2021) and Trankit (Nguyen et al., 2021),
and chose the latter based on better performance.
Note that, with the evaluation being based on to-
kens, we had to realign tokens when the tool was
modifying the tokenization. We were unable to ob-
tain a correct sentence segmentation for the Italian
ita.pdtb.luna, composed of speech transcripts, and
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thus cut every 120 tokens for this corpus.

Dealing with surprise and OOD data: Deal-
ing with the surprise Thai (tha.pdtb.tdtb) and En-
glish (eng.dep.covdtb) datasets were straightfor-
ward: since our model configuration is the same
across all corpora, we retrain new models using the
training data made available. This year, the orga-
nizers also include out-of-domain (OOD) data as
surprise datasets, for which data are only available
for evaluation (dev and test sets only). The corpora
have, however, corresponding datasets within the
same framework and language: we use our model
trained on these available data to make predictions
on the OOD ones (e.g. training on eng.pdtb.pdtb to
test on eng.pdtb.tedm).

4.3 Experiments and results

We present our results in Table 2 for segmentation
and connective identification. Current comparison
with 2021, considering only the corpora available
in 2021, demonstrate general improvements for all
tasks except connective for the Plain track were
results are on par: for segmentation, the average
on test sets for Treebanked is 91.77% (vs 91.48 for
DiscoDisco 2021) and for Plain 91.22% (vs 89.79);
for connective: 91.81% (vs 91.22) for Treebanked
and 91.05% (vs 91.49) for Plain. Note that our
approach uses a similar architecture with much
simpler inputs (only tokens), and different opti-
mizations. When comparing the reproduced results
with the ones we produced, we observed a large
variance between the scores, especially for small
corpora, with for example a difference of about 2
to 5 points for the TEDm corpora, and about 2 to
3 points also for other small datasets such as the
spa.rst.sctb, the zho.rst.sctb, demonstrating the im-
portance for future work to make multiple runs and
indicate variance. Interested readers can find our
own results on the test sets in Appendix A.

As shown in Table 2, compared to 2021, we ob-
serve a large drop in mean performance of about
10% for connective detection, for which many
new corpora were added, including several OOD
datasets making the task more challenging.

For segmentation, the results for the two set-
tings, Treebanked and Plain are in general very
similar, except for the Chinese zho.rst.sctb and En-
glish eng.sdrt.stac for which the Treebanked setting
is clearly better (+3 to 5%). On the other hand, we
have an important improvement for the French cor-
pus fra.sdrt.annodis (almost +3%) using our new

Corpus Treebanked Plain
F1 dev F1 test DD21 F1 dev F1 test DD21

Segmentation

deu.rst.pcc 96.79 96.01 95.58 96.60 94.24 93.94
eng.rst.gum 95.54 95.50 94.15 95.78 94.46 92.61
eng.rst.rstdt 97.33 97.62 96.64 97.60 97.74 96.35
eus.rst.ert 91.69 89.93 90.46 91.83 91.09 90.47
fas.rst.prstc 93.79 93.40 92.94 94.05 93.36 92.86
nld.rst.nldt 97.51 96.54 95.97 97.09 97.19 94.69
por.rst.cstn 94.06 93.98 94.35 93.50 94.36 94.11
rus.rst.rrt 86.80 85.58 86.21 84.75 85.41 85.74
spa.rst.rststb 96.19 93.53 92.22 96.32 93.70 91.76
spa.rst.sctb 86.88 85.63 82.48 85.44 84.21 80.86
zho.rst.gcdt 92.69 92.55 - 92.20 91.74 -
zho.rst.sctb 79.05 81.84 83.34 77.53 78.55 76.21

eng.sdrt.stac 94.77 95.22 94.91 91.57 90.67 91.91
fra.sdrt.annodis 90.27 88.21 90.02 90.17 90.89 85.78

∗eng.dep.covdtb 91.32 92.13 - 91.65 92.13 -
eng.dep.scidtb 96.18 95.07 - 95.63 94.49 -
zho.dep.scidtb 93.33 89.07 - 93.01 90.04 -

Mean 92.60 91.87 - 92.04 91.43 -
Mean corpora 2021 - 91.77 91.48 - 91.22 89.79

Connective identification

eng.pdtb.pdtb 94.41 93.66 92.02 93.94 91.64 92.56
∗eng.pdtb.tedm 75.86 78.36 - 80.00 75.83 -
ita.pdtb.luna 79.72 65.85 - 74.19 71.60 -
por.pdtb.crpc 85.16 80.66 - 84.65 79.49 -
∗por.pdtb.tedm 73.08 80.29 - 71.22 79.45 -
∗tha.pdtb.tdtb 87.43 85.66 - 74.32 69.92 -
tur.pdtb.tdb 89.73 92.77 94.11 89.69 91.12 93.56
∗tur.pdtb.tedm 65.42 64.10 - 64.15 64.78 -
zho.pdtb.cdtb 87.66 89.00 87.52 87.77 90.38 88.35

Mean 82.05 81.15 - 79.99 79.36 -
Mean corpora 2021 - 91.81 91.22 - 91.05 91.49

Table 2: DisCut: Results (F1) on the dev and test sets
for segmentation and discourse connective identification.
Models with XLM-RoBERTa-large, freezing layers 0-5.
Test scores come from the reproduction done by the
organizers. ’DD21’ stands for DiscoDisco 2021, the
system ranked first in DISRPT 2021. ’Mean corpora
2021’ is the mean F1 without considering the corpora
added in DISRPT 2023.

segmented files (Plain): these results are in line
with the bad performance observed for Stanza. For
the Russian corpus, we found that the segmentation
of some parts of the documents was strange: bibli-
ography entries were merged into very large EDUs
that were split by all sentence segmenters, thus
modifying the tool did not bring any improvement.

For connective detection, results are rather high
for large corpora already present in the previous
campaigns, even if the Chinese corpus is still chal-
lenging. As expected, the Italian Luna is associated
with low performance, because it is composed of
speech transcriptions of dialogues. Note that the
performance for the new Thai corpus is on par,
but they drop on the out-of-domain TEDm corpora
for which we used the model trained on a corpus
with the same language and framework, but that
corresponds to a domain shift. Interestingly, the
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use of Trankit for sentence segmentation (Plain
track) leads to large improvements for Luna (al-
most +6%) and also allows a small increase for the
Chinese zho.pdtb.cdtb (+1.4), with, on the other
hand, a loss of about 2% for the English PDTB,
and an impressive drop of about 16% for Thai for
which the model of sentence segmentation is prob-
ably faulty. Overall, the Plain setting would lead to
average results on par with the treebanked ones for
connective identification, without the Thai dataset
(80.54 on average for Plain against 80.59 for Tree-
banked, without Thai). These results indicate that
the good performance of the sentence segmenter is
a key component of a well performing discourse
segmenter or connective identifier.

5 DiscReT: Discourse Relation Tagging

5.1 Introduction

For the third proposed task, Discourse Relation
Classification across Formalisms, we submit a mul-
tilingual approach to discourse relation tagging that
spans across frameworks, powered by transformer-
based architectures. Our goal is to test the capac-
ities and weaknesses of these models, given the
large variety of languages and relation labels, with-
out sacrificing the multilingual setting or the unique
information captured in coarse-/fine-grained labels.
Our results vary vastly between languages and
frameworks but present interesting pointers for fu-
ture work and model improvements.

5.2 Dataset

In order to stay faithful to the multilingual nature
of the task, we decided to use all the datasets in
parallel for training. Extensive earlier experiments
with translations of the datasets to English, train-
ing with groups of corpora per language family,
or training per annotation framework were not as
successful or did not significantly outperform the
accumulative approach.

We aimed to reduce label space and maximize la-
bel coverage, i.e. not having a label that only exists
in one corpus if it can be rewritten as a more general
one. First, we lower-cased all labels in all datasets
(but preserved our modifications, in order to reverse
them for the final results in accordance with the
Shared Task data). Second, we manually merged la-
bels that were either spelling variants or simplified
versions of existing labels. For example, the label
“qap” means “question-answer pair”, which already
exists as the label “question_answer_pair”. Mean-

Original Label Conversion

alternation expansion.alternative
alternative expansion.alternative
bg-general background
causation cause
cause-result cause-effect
conditional condition
conjunction expansion.conjunction
correction expansion.correction
disjunction expansion.disjunction
evidence explanation-evidence
exp-evidence explanation-evidence
expansion.genexpansion expansion
expansion.level expansion.level-of-detail
findings result
goal purpose-goal
joint-disjunction expansion.disjunction
justify explanation-justify
list joint-list
motivation explanation-motivation
otherwise adversative
qap question_answer_pair
qap.hypophora hypophora
repetition restatement-repetition
restatement expansion.restatement
sequence joint-sequence
temporal.synchrony temporal.synchronous
textual-organization organization
unconditional expansion.disjunction
unless contrast

Table 3: List of label conversions that we implemented
(apart from lower-casing). Underlined labels were
found exclusively in the surprise datasets.

while, the label “conjunction” is a simplified ver-
sion of the label “expansion.conjunction” found in
RST corpora in both forms, therefore by changing
the label to its more verbose form, we are preserv-
ing its information and making the labels more uni-
form. However, we decided against the large-scale
conversion of labels based on their meaning, e.g.
merging the “conjunction” and “joint” labels.These
conversions reduced the number of unique labels
from 163 to 135; while the number was not signifi-
cantly reduced, we wanted to make the results more
interpretable without sacrificing important informa-
tion. We present the implemented conversions in
Table 3.

We make use of the directional information of
the relations, available in the datasets in the column
“dir”. We do not change the input in sentences with
the direction “1>2”, but we switch the input posi-
tion of sentences with the direction “1<2” to “2>1”.
An example can be found in Table 4. Even though
the models we use in this task are bidirectional,
we observed an increase in performance when the
direction of relations was unified.

We do not further process the text input, as the
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Corpus: spa.rst.rststb

unit1_txt La diferenciación como un modelo para el
análisis de las relaciones de pareja

unit2_txt El presente artículo hace una revisión sobre este
concepto

dir 1>2
label preparation

input

[CLS] La diferenciación como un modelo para
el análisis de las relaciones de pareja [SEP] El
presente artículo hace una revisión sobre este
concepto

Corpus: deu.rst.pcc

unit1_txt Und die Zeit drängt .

unit2_txt
Der große Einbruch der Schülerzahlen an den
weiterführenden Schulen beginnt bereits im
Herbst 2003 .

dir 1<2
label reason

input
[CLS] Der große Einbruch der Schülerzahlen
an den weiterführenden Schulen beginnt bereits
im Herbst 2003 . [SEP] Und die Zeit drängt .

Table 4: Examples of inputs with different directions.
In the first example, the direction of the relation is 1>2,
therefore the model input is in the same order as in the
data. In the second example, the direction is 1<2, so the
model input has the two sentences in reversed order.

necessary conversions (e.g. tokenization, lower-
casing) are specified by each model. However, at
the tokenization stage, we ensured that the input
length complied with the restrictions of maximum
input length that transformer-based models impose;
each sentence is truncated to half of the maximum
input length, if necessary.

5.3 DiscReT: Model architectures

We opted for transformer-based architectures
for our experiments and tested several of them
(mBERT, xml-RoBERTa, DistilBERT) in order to
decide on which one to focus our research effort
on. After preliminary tests, the multilingual BERT
base cased model (mBERT) (Devlin et al., 2019)
was the most successful overall and included all
the languages of the Shared Task in its pretrained
version available from Huggingface.4

As a “baseline” for our experiments, we trained
an mBERT classifier built with PyTorch (Paszke
et al., 2019), without frozen layers, and trained for
a maximum of 5 epochs.

In order to inject additional information in the
finetuning process of the classifier, without further
changing the input data, we used adapters along-

4https://huggingface.co/bert-base-multilingua
l-cased

side our mBERT classifier. Adapters (Houlsby
et al., 2019) are an alternative lightweight method
to finetuning with equivalent good results on most
NLP tasks. An adapter is a transformer architecture
with layer-specific pretrained parameters Θl which
are frozen and a small set of new parameters Φl

(where l is the transformer layer). During finetun-
ing, only the adapters’ Φl parameters are updated
from the loss function L on dataset D (see Equa-
tion 1). This enables efficient parameter sharing
between tasks, languages, etc.

Φ∗
l ← argmin

Φl

L(D; {Θl,Φl}) (1)

We are using the tool AdapterHub (Pfeiffer et al.,
2020) which allows for easier finetuning and inte-
gration of adapters to transformer-based models.
After several experiments, we observed that the
finetuning process of an adapter is quite different
than that of a model; the adapter set of parameters
learns most effectively with more finetuning epochs
than a normal model and the training process per
epoch is longer. Additionally, we experimented
with freezing the parameters of certain layers for
the models and the adapters, in order to determine
the best model.

We trained multiple mBERT adapters, out of
which the most successful were:

1. mBERT adapter trained on the entire dataset for
15 epochs and with frozen layer 1 (A1)

2. mBERT adapter trained on the entire dataset for
15 epochs and with frozen layers 1-3 (A1-3)

5.4 Results
5.4.1 Shared Task results
While evaluating our models, we observed that the
best accuracy in each development set was not al-
ways achieved by one model. Our final submission
is composed of three models:

1. the “baseline” finetuned mBERT model without
adapter with multiple epochs (B)

2. the finetuned mBERT model for 3 epochs with
an mBERT adapter trained for 15 epochs and
layer 1 frozen (A1)

3. the finetuned mBERT-cased model for 4 epochs
with an mBERT adapter trained for 15 epochs
and layers 1-3 frozen (A1-3)

The results on the test set, as recreated and re-
ported by the organizers of the Shared Task, are
found in Table 5. Our poor performance is, to some
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extent, due to the problems we faced to convert
the lower-cased and converted labels back to their
upper-cased format, which was required for the
Shared Task evaluation. This dramatically low-
ered the test results reproduced and published for
the Shared Task. For clarity, we are reporting the
Shared Task results from the organizers, but also
include the results on the dev and test sets that
were produced before converting the labels to their
original in Tables 6 and 7 respectively. These re-
sults were calculated with scikit-learn (Pedregosa
et al., 2011) and the process of calculating them is
transparent in our code.

Our goal was to create a truly multilingual ap-
proach for discourse relation parsing. We did not
aim to establish a new state-of-the-art, but to ob-
serve whether multilingual word embeddings can
work in synergy (to learn common labels) and spe-
cialize at the same time (to learn corpus-unique
labels). We also deliberately focused and sub-
mitted a combination of three models, instead of
proposing the best model for each dataset, thus sac-
rificing performance for reproducibility. During
our experiments, there were other combinations of
adapters and models with frozen layers that yielded
slightly better results on specific corpora, however,
the training times for multiple models would be
problematic for a Shared Task entry.

Given that our results are not much worse than
approaches with a combination of monolingual
models and independent training, it is possible
to derive benefits from joint training and evalu-
ating multiple languages. Our multilingual models
showed strengths (e.g. in the spa.rst.rstsb dataset)
and weaknesses (e.g. in English, Turkish and Chi-
nese datasets) that cannot be pinpointed directly to
a specific framework, the size of the corpus, or the
size of the specific language data, and will need to
be further explored. Our submission was marred by
implementation issues, but we are hopeful that in
future work we will tackle these issues and imple-
ment improvements on our multilingual approach.

6 Conclusion

In this paper, we presented our submissions for the
three tasks of the DISRPT Shared Task. Our main
goals were to rely on only a few architectures vari-
ants for generality, and experiment with parameter
efficient methods. For Tasks 1-2, we employed
multi-task, multi-corpora approaches; however, at
this stage of our research our results are not opti-

Corpus DiscReT DiscoDisco Difference

deu.rst.pcc 26.92 39.23 -12.31
eng.rst.gum 55.34 66.76 -11.42
eng.rst.rstdt 49.98 67.1 -17.12
eus.rst.ert 51.77 60.62 -8.85
fas.rst.prstc 50.34 52.53 -2.19
nld.rst.nldt 43.69 55.21 -11.52
por.rst.cstn 62.87 64.34 -1.47
rus.rst.rrt 61.52 66.44 -4.92
spa.rst.rststb 58.22 54.23 3.99
spa.rst.sctb 33.33 66.04 -32.71
zho.rst.gcdt 55.72 - -
zho.rst.sctb 49.06 64.15 -15.09

eng.sdrt.stac 56.89 65.03 -8.14
fra.sdrt.annodis 44.96 46.4 -1.44

∗eng.dep.covdtb 41.3 - -
eng.dep.scidtb 67.56 - -
zho.dep.scidtb 67.44 - -

eng.pdtb.pdtb 69.25 74.44 -5.19
∗eng.pdtb.tedm 19.94 - -
ita.pdtb.luna 58.42 - -
∗por.pdtb.crpc 72.76 - -
∗por.pdtb.tedm 54.95 - -
∗tha.pdtb.tdtb 95.24 - -
tur.pdtb.tdb 49.05 60.09 -11.04
∗tur.pdtb.tedm 49.73 - -
zho.pdtb.cdtb 69.13 86.49 -17.36

MEAN (all) 54.44 -
MEAN (2021) 52.02 61.82 -9.8

Table 5: The results that organizers provided for dis-
course relation classification (Task 3), evaluating the
test sets and reporting accuracy in %. ‘DiscoDisco’ was
the best-performing model of DISRPT 2021 (Gessler
et al., 2021) and ‘Diff.’ is the comparison with our mod-
els. MEAN (all) provides the mean for the currently
available datasets, while MEAN (2021) averages only
DISRPT 2021’s corpora.

mal. In future work, we aim to further explore this
strategy, as it seems promising for lower-resource
languages. Additionally, we are interested in ap-
proaches beyond the scope of this campaign, such
as domain transfer. Furthermore, it was possible
to perform segmentation and connective detection
on datasets without training data, as shown by the
surprise TEDm test sets. It would be interesting
to examine whether the DISRPT framework could
be transferred to new languages, for which there
are no training data for segmentation or connective
detection, such as the rest of the TEDm corpus. As
for Task 3, our focus was on a unified, purely mul-
tilingual approach with parameter optimization, as
well as dataset preprocessing for unification. Even
though we faced problems on the Shared Task sub-
mission results, our approach showed promising
results compared to language-specific models.

36



Corpus B (1) B (2) B (3) B (4) B (5) B (6) A1-3 (4) A1 (3)

deu.rst.pcc 25.31 29.46 26.97 31.54 31.54 29.88 29.05 30.71
eng.rst.gum 48.03 51.66 52.46 53.31 53.76 53.69 55.79 56.67
eng.rst.rstdt 46.33 49.85 44.97 47.25 48.49 47.62 51.02 50.28
eus.rst.ert 41.53 43.65 43.16 44.95 42.18 44.46 45.44 47.07
fas.rst.prstc 53.31 50.1 52.1 51.3 49.5 51.9 52.91 52.71
nld.rst.nldt 43.5 40.79 46.53 41.09 46.53 42.9 45.92 45.32
por.rst.cstn 54.8 59.51 55.15 60.38 60.56 58.12 62.48 61.43
rus.rst.rrt 57.41 58.84 60.04 60.04 58.77 59.61 61.16 60.91
spa.rst.rststb 51.44 54.31 55.61 62.4 60.05 61.62 60.31 59.01
spa.rst.sctb 47.87 62.77 56.38 58.51 62.77 67.02 59.57 64.89
zho.rst.gcdt 53.98 55.57 56.86 57.55 57.75 58.05 58.85 59.34
zho.rst.sctb 40.43 50 46.81 46.81 42.55 50 47.87 46.81

eng.sdrt.stac 45.5 55.02 53.8 55.28 55.55 54.15 57.82 56.59
fra.sdrt.annodis 30.3 44.32 47.16 46.4 49.81 47.92 48.3 47.54

∗eng.dep.covdtb 40.39 42.81 35.22 36.64 36.18 42.93 43.56 43.1
eng.dep.scidtb 59.39 59.34 66.48 66.06 70.2 66.17 70.56 71.03
zho.dep.scidtb 47.33 61.57 62.99 59.79 60.85 62.63 66.19 65.48

eng.pdtb.pdtb 67.32 67.44 71.39 70.85 70.43 69.41 72.4 71.09
∗eng.pdtb.tedm 10.67 14.04 19.1 15.73 15.17 14.04 20.79 19.1
ita.pdtb.luna 45.93 53.59 51.67 50.72 54.07 54.07 54.55 56.46
∗por.pdtb.crpc 65.76 66.69 67.39 67.16 67.16 65.29 68.25 67.94
∗por.pdtb.tedm 50 45.79 47.37 49.47 48.95 46.32 54.21 51.05
∗tha.pdtb.tdtb 92.68 93.56 93.08 93.97 93.64 92.76 93.72 93.97
tur.pdtb.tdb 42.95 39.1 42.95 40.06 39.42 41.67 41.03 39.1
∗tur.pdtb.tedm 42.72 42.72 44.13 42.25 41.31 46.48 43.66 43.66
zho.pdtb.cdtb 73.8 75.09 76.37 74.62 73.8 74.15 75.44 73.92

MEAN 49.18 52.6 52.93 53.24 53.5 53.96 55.42 55.2

Table 6: Results on the dev set for discourse relation classification, before converting labels to their original form.
In parenthesis is the number of epochs for which the model was trained.

Corpus B (1) B (2) B (3) B (4) B (5) B (6) A1-3 (4) A1 (3) DiscoDisco Diff.

deu.rst.pcc 25.77 30.77 26.54 32.31 32.31 33.08 33.85 33.08 39.23 -5.38
eng.rst.gum 50.49 54.72 55.96 57.09 57.36 55.69 58.56 58.41 66.76 -8.2
eng.rst.rstdt 46.91 50.16 46.73 47.94 48.54 48.77 49.84 49.88 67.1 -16.94
eus.rst.ert 40.56 43.66 44.99 47.94 46.17 48.97 50.44 51.33 60.62 -9.29
fas.rst.prstc 47.47 47.13 48.31 50.84 47.47 49.16 50.51 49.66 52.53 -1.69
nld.rst.nldt 43.38 42.46 43.38 42.46 43.38 40.31 46.15 47.38 55.21 -7.83
por.rst.cstn 64.34 65.44 65.07 64.34 63.97 64.71 65.44 65.07 64.34 1.1
rus.rst.rrt 59.44 60.11 60.75 60.96 60.11 59.41 62.29 61.98 66.44 -4.15
spa.rst.rststb 48.83 51.17 53.76 57.04 54.69 53.76 57.75 59.15 54.23 4.92
spa.rst.sctb 58.49 64.15 64.78 69.81 64.15 63.52 65.41 61.64 66.04 3.77
zho.rst.gcdt 47.32 49.32 49.32 52.78 53.2 52.47 53.73 54.67 - -
zho.rst.sctb 45.28 53.46 55.35 57.86 44.03 48.43 47.8 50.31 64.15 -6.29

eng.sdrt.stac 40.99 50.46 50.73 52.52 52.32 51.19 55.76 55.17 65.03 -9.27
fra.sdrt.annodis 31.68 42.56 45.92 44 44.8 45.12 46.88 45.12 46.4 0.48

∗eng.dep.covdtb 38.09 41.38 33.37 35.11 35.77 39.44 41.14 40.87 - -
eng.dep.scidtb 59.45 61.38 67.29 67.09 69.65 68.18 69.81 70.38 - -
zho.dep.scidtb 53.02 61.86 64.19 56.28 60.93 60.93 64.65 64.19 - -

eng.pdtb.pdtb 64.91 64.2 68.41 68.01 65.62 64.82 68.85 68.63 74.44 -5.59
∗eng.pdtb.tedm 10.83 12.25 18.23 15.67 12.54 15.67 20.8 19.94 - -
ita.pdtb.luna 45.53 52.11 52.11 52.37 56.32 53.68 57.63 57.63 - -
∗por.pdtb.crpc 69.15 67.71 70.59 71.07 70.67 68.51 71.07 72.04 - -
∗por.pdtb.tedm 58.24 54.12 58.52 56.04 55.49 56.04 56.32 58.52 - -
∗tha.pdtb.tdtb 94.12 95.16 95.24 95.39 95.16 94.79 94.94 95.31 - -
tur.pdtb.tdb 51.9 48.1 48.82 48.58 46.92 50.95 51.42 50.71 60.09 -8.19
∗tur.pdtb.tedm 45.33 45.05 44.51 45.33 44.23 46.7 49.18 50.55 - -
zho.pdtb.cdtb 68.34 71.24 73.61 67.41 66.75 65.17 68.6 66.89 86.49 -12.88

MEAN (2021) 49.3 52.49 53.32 54.32 52.41 52.69 54.97 54.65 61.82 -7.17
MEAN (all) 50.38 53.08 54.1 54.47 53.56 53.83 56.11 56.1 - -

Table 7: Results on the test set for discourse relation classification, before converting labels to their original form.
In parenthesis is the number of epochs for which the model was trained. ‘DiscoDisco’ was the best-performing
model of DISRPT 2021 (Gessler et al., 2021) and ‘Diff.’ is the comparison with our models. MEAN (all) provides
the mean for the currently available datasets, while MEAN (2021) averages only DISRPT 2021’s corpora.
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Corpus Treebanked Plain
F1 dev F1 test DD21 F1 dev F1 test DD21

Segmentation

deu.rst.pcc 96.79 97.30 95.58 96.60 96.60 93.94
eng.rst.gum 95.54 95.55 94.15 95.78 94.97 92.61
eng.rst.rstdt 97.33 97.11 96.64 97.60 97.45 96.35
eus.rst.ert 91.69 91.56 90.46 91.83 92.38 90.47
fas.rst.prstc 93.79 93.88 92.94 94.05 92.56 92.86
nld.rst.nldt 97.51 97.47 95.97 97.09 97.63 94.69
por.rst.cstn 94.06 93.48 94.35 93.50 94.08 94.11
rus.rst.rrt 86.80 85.86 86.21 84.75 85.46 85.74
spa.rst.rststb 96.19 92.67 92.22 96.32 92.31 91.76
spa.rst.sctb 86.88 84.40 82.48 85.44 87.16 80.86
zho.rst.gcdt 92.69 92.30 - 92.20 91.78 -
zho.rst.sctb 79.05 81.18 83.34 77.53 75.29 76.21

eng.sdrt.stac 94.77 94.83 94.91 91.57 90.69 91.91
fra.sdrt.annodis 90.27 89.54 90.02 90.17 91.40 85.78

∗eng.dep.covdtb 91.32 91.41 - 91.65 92.26 -
eng.dep.scidtb 96.18 95.44 - 95.63 94.89 -
zho.dep.scidtb 93.33 90.40 - 93.01 89.64 -

Mean 92.60 92.02 - 92.04 91.56 -
Mean corpora 2021 - 91.91 91.48 - 91.38 89.79

Connective identification

eng.pdtb.pdtb 94.41 92.38 92.02 93.94 92.25 92.56
∗eng.pdtb.tedm 75.86 77.88 - 80.00 80.63 -
ita.pdtb.luna 79.72 64.08 - 74.19 70.17 -
por.pdtb.crpc 85.16 81.74 - 84.65 80.26 -
∗por.pdtb.tedm 73.08 75.23 - 71.22 77.60 -
∗tha.pdtb.tdtb 87.43 86.42 - 74.32 69.32 -
tur.pdtb.tdb 89.73 92.48 94.11 89.69 93.57 93.56
∗tur.pdtb.tedm 65.42 66.33 - 64.15 64.27 -
zho.pdtb.cdtb 87.66 89.95 87.52 87.77 90.43 88.35

Average 82.05 80.72 - 79.99 79.83 -
Mean corpora 2021 - 92.30 91.22 - 91.78 91.49

Table 8: DisCut: Results (F1) on the dev and test sets
for segmentation and discourse connective identifica-
tion. Models with RoBERTa-large, freezing layers 0-5.
’DD21’ stands for DiscoDisco 2021, the system ranked
first in DISRPT 2021. ’Mean corpora 2021’ is the mean
F1 without considering the corpora added in DISRPT
2023.

A Additional results

The table 8 corresponds to the scores we obtain
on the test sets, that can be compared to the ones
obtained by the organizers when reproducing our
system, as given in Table 2.
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