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Abstract

This paper details the work of the Univer-
sity of Groningen for the BabyLM Challenge
(Warstadt et al., 2023). We follow the idea
that, like babies, language models should be
introduced to simpler concepts first and build
off of that knowledge to understand more
complex concepts. We examine this strategy
of simple-then-complex through a variety of
lenses, namely context size, vocabulary, and
overall linguistic complexity of the data. We
find that only one, context size, is truly benefi-
cial to training a language model. However
this simple change to context size gives us
improvements of 2 points on average on (Su-
per)GLUE tasks, 1 point on MSGS tasks, and
12% on average on BLiMP tasks. Our context-
limited model outperforms the baseline that
was trained on 10× the amount of data.

1 Introduction

The pretraining of language models has tradition-
ally relied on large amounts of data, which, for
many languages, is readily available. However
there exist several low-resource languages in which
even unlabeled data is not so readily available.
While transferring knowledge from other languages
is often an effective way to achieve better perfor-
mance, there may be implicit biases also trans-
ferred from the text of the higher-resource lan-
guage, which could be potentially harmful. Ad-
ditionally, given that a 13 year old sees less than
100 million words in their lifetime (orders of magni-
tude less than the amount used in LM pretraining),
there ought to be methods that more efficiently
learn from limited data.

Such is the motivation for the BabyLM Chal-
lenge and subsequently our work. We focus on the
strict-small track, which limits the training data
to only 10 million words, from a selection of do-
mains with varying complexity (from child speak
up to Wikipedia articles).

In our work, we investigate different methods
for introducing the model to varying levels of com-
plexity. Namely we ramp up the difficulty of the
pretraining along 3 avenues:

1. Context length

2. Dataset complexity

3. Vocabulary size

Concerning context length, we adopt the strategy
of starting with a small number of tokens per in-
put and increasing this over the course of training,
with the intuition that a human typically learns a
language starting with short sentences with limited
cross-sentential context, and builds up from there
to longer contexts.

In addition, the sentences initially learned by
a human are also simpler conceptually, starting
with frequently-used words and building up to rarer
words. To this end, we develop a strategy to filter
the dataset such that the model starts training on
simpler data and later trains on more complex data.

Similarly, we also follow the intuition that a hu-
man develops a vocabulary over time, originating
from the chunking of characters within the words,
and as such we start with a character-level vocabu-
lary and introduce a transfer method to give a good
initialization for a larger subword vocabulary.

2 Related Work

Concerning context size, prior work (Edman et al.,
2022) has shown that in low-resource language
modeling, using a lower context size can greatly
help with model convergence. The concept of in-
creasing context size is not novel: BERT (Devlin
et al., 2018) was initially trained on a smaller con-
text size of 128 tokens before being increased to
512, though, to our knowledge, this was done for
efficiency reasons. There have been several works
on internally reducing the scope of contextualiza-
tion by limiting attention to local patches (Beltagy
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et al., 2020; Zaheer et al., 2020), thereby decreas-
ing the complexity of self-attention. These works
were done with processing long documents in mind,
however, and can have a negative impact on model
speed given an extra layer of complexity in calcu-
lating self-attention.

Concerning vocabulary size, there is ample work
on character-level models, where they have been
shown to require less data for pretraining while
achieving the same or better performance at the
cost of training and inference speed (Xue et al.,
2022). Character models also can greatly out-
perform subword models on out-of-domain tasks
(Boukkouri et al., 2020), low-resource translation
(Edman et al., 2023), and tasks which require mor-
phology or character-level perturbations (Xue et al.,
2022; Ingólfsdóttir et al., 2023). Their performance
in these scenarios has been largely attributed to
their non-static vocabulary, allowing for good ini-
tializations to unseen or rarely-seen words. All
of this points to character-informed models being
potentially useful for this shared task.

Concerning lexical complexity, (Eldan and Li,
2023) has shown that using a synthetic dataset of
children’s stories, written for a 3 or 4 year old to
understand, one can train a small (<10M parameter)
Transformer model and generate stories near the
quality of much larger models.

Another group of NLP approaches that condi-
tion learning on linguistic complexity is a branch
of curriculum learning, exploring potential bene-
fits from exposing models to training samples in a
meaningful order, from easy to hard (Bengio et al.
2009; Kocmi and Bojar 2017; Zhang et al. 2018
among many others). These approaches show con-
ceptual promise but are complicated by the choice
of appropriate complexity measures and the pacing
function.1

3 Method

3.1 Model Choice

We opted to use encoder-only models. We initially
experimented with encoder-decoder models, but
found that the evaluation metrics for this shared
task being non-generative gave encoder-only mod-
els an advantage, as it allows for full attention,
rather than only causal attention. In terms of spe-
cific model selection, we opted for RoBERTa-base

1Pacing function is a broad term used by Soviany et al.
(2022), describing the method for ramping up difficulty across
the course of training.

(Liu et al., 2019) in order to directly compare with
the provided baseline. We also experimented with
(and ultimately submitted) DeBERTa-large (He
et al., 2021) as it is a larger model and considered
state-of-the-art for encoder-only models.

3.2 Training and Evaluation

Our pretraining uses the standard MLM scheme
(Liu et al., 2019), which proved most effective
initial tests.2 Table 1 shows the hyperparameters
we used for our pretraining experiments. For fine-
tuning, we use the default hyperparameters pro-
vided by the shared task organizers.

Hyperparameter Value

Learning rate 1e-4
Decay 0.01
Warmup steps 10000
Optimizer AdamW
Batch size 256
Epochs 50

Table 1: Hyperparameters used.

We primarily evaluate with BLiMP (Warstadt
et al., 2020a), due to its speed of evaluation and
not requiring a fine-tuning step. We also report
results of our best models for the BLiMP supple-
ment, (Super-)GLUE (Wang et al., 2018, 2019),
and MSGS (Warstadt et al., 2020b) tasks.

3.3 Vocabulary size

We first experiment with vocabulary size. For cre-
ating the vocabulary, we use SentencePiece’s Un-
igram model (Kudo and Richardson, 2018; Kudo,
2018). We found that a vocabulary size of 40k pro-
vided the best standalone performance on BLiMP
(we report this in Appendix A).

We further experiment with a character-level vo-
cabulary, and transferring to a subword vocabulary
(of size 40k). To enable this transfer, we copy over
all character-only embeddings, and initialize sub-
word embeddings as the sum of their respective
character embeddings. The main body of the trans-
former model is also directly copied. The language
modelling head is simply re-trained from scratch.

2We also varied masking amounts to 20% and 40% fol-
lowing Wettig et al. (2022), but did not see any increased
performance on BLiMP.
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3.4 Context size
We also experiment with context sizes in powers
of 2, from 16 to 256. To achieve a consistent and
coherent context size, we split the data into n-token
examples (with n being the context size), prior to
shuffling. Our initial experiments with determining
the optimal vocabulary size use a context size of
64, although we later find that a context size of 32
performs slightly better.

3.5 Curriculum learning
We explored potential gains from different order
of exposure of the model to training data, inspired
by curriculum learning approaches (see Bengio
et al. 2009 and much subsequent work; for a recent
comprehensive survey of the field of curriculum
learning, see Soviany et al. 2022).

The basic motivating intuition is to start the train-
ing with subsets of data that are ‘simpler’ than oth-
ers in some relevant sense, gradually increasing the
complexity of data the model is trained on. Hope-
fully, simple data can give the model a head start
that would also form a foundation for linguistic
generalization. To try out this idea, we formulate a
complexity measure that we use in data reorder-
ing. The measure is a combination of the following
features:

• Type/Token Ratio: The number of unique
words in a text divided by the length of the text
in words. The feature targets lexical diversity
of the text per text unit.

• Mean word rarity: The mean of rarity scores
across all words in the text (word rarity score
is 1 - normalized log-frequency; it ranges from
0 to 1, the higher the rarer). This is another
measure of text complexity via lexical diver-
sity – this time, based on how rare the words
used in the text are, as judged based on the
whole training dataset.

• Max word rarity: The maximum of word
rarity scores in the text. Same as above,
but picking out the maximum – the peak of
complexity-as-rarity reached in the text.

• Punctuation density: The proportion of punc-
tuation marks in the union of words and punc-
tuation marks in the text. This proportion is
used as a proxy to syntactic complexity.

• Mean sentence length in the text, in words.

• Mean word length in the text, in characters.
These last two scores approximate syntactic
and morphological/lexical complexity, respec-
tively.

Features like these and their different combina-
tions are often used to measure text complexity
and/or readability (Bengio et al., 2009; Spitkovsky
et al., 2009; Cirik et al., 2016; Kocmi and Bojar,
2017; Zhang et al., 2018; Platanios et al., 2019;
Chang et al., 2021).

In our experiments, we scale all these features to
fit into the [0,1] interval (with MinMax scaler) and
use their mean as our complexity measure.

To assess the role of data ordering along the
complexity scale based on the measure above, we
trained triples of minimally different models, keep-
ing everything apart from the data ordering fixed:

• Curriculum model: All training data is or-
dered by increasing complexity.

• No-curriculum model: No particular order is
imposed on the training data.

• Reversed-curriculum model: Training data
is ordered by decreasing complexity.

All models in this set of experiments are
RoBERTa-base models trained following the two-
stage procedure described in Section 4.1 – first,
the models are trained on context size 32, then the
context is increased to 128. Unlike in other ex-
periments, however, each of the stages was further
divided into three consecutive phases:

• Phase 1: The first 1/3 of the data is used in
training, the other 2/3 are withheld. The cur-
riculum model just sees the ‘easiest’ data here;
the reversed-curriculum model sees the ‘most
difficult’ portion; the baseline, no-curriculum
model sees 1/3 of data without any particular
selection;

• Phase 2: Another 1/3 of the data is unlocked.
Now all models are being trained on 2/3 of
all training data. Both the curriculum model
and the reversed-curriculum model now have
access to the middle of the complexity range.

• Phase 3: The final 1/3 of data is unlocked.
Now all models are being trained on the whole
range of complexity.
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Figure 1: Average BLiMP score for models trained
using various context sizes. 32→128 indicates a model
trained initially on context size 32, then trained again
on 128.

Figure 2: Average (Super-)GLUE score for models
trained using various context sizes. 32→128 indicates a
model trained initially on context size 32, then trained
again on 128.

The data-unlocking procedure above happens
twice: first, on a small context size (32 tokens),
and later when the context size is increased (128
tokens).

Using the taxonomy of curriculum learning in
(Soviany et al., 2022), we can describe our ap-
proach as vanilla data-level curriculum learning
with easy-then-hard iterative schedule.

4 Results

4.1 Context Size

The vast majority of our improvement comes from
limiting the context size. We show this in Figures
1 and 2. Here we can see that a context size of 32
gives the best performance on BLIMP, whereas 64
gives the best performance on GLUE. The overall
shift in trend between the two benchmarks fits with
the fact that the average input length is longer in
GLUE than in BLIMP. There is a substantial drop
in performance using a context size of greater than

64. To our understanding, the baselines provided by
the task organizers use a context size of 128, which
may explain their relatively poorer performance (as
shown later in Figure 4).

However, if we simply first train with a context
size of 32, then increase the context size to 128,
we see a substantial gain over training on 128 from
the beginning. In the case of GLUE, we see that
increasing the context size from 32 to 128 increases
the performance beyond what simply training on
32 or 128 alone can accomplish. This suggests that
a larger context size is indeed necessary for perfor-
mance on (Super-)GLUE, but pretraining initially
on a smaller context can guide the model to more
efficient training on larger context sizes.

4.2 Vocabulary Expansion

Next, we look at the performance of our models
which were initially trained on a character-level
vocabulary, then transferred to our 40k subword
vocabulary. We show the results in Table 2.

Vocabulary size

40k Char→40k

Context size
32 78.6 77.1
64 77.8 78.6

Table 2: Average performance on BLiMP across context
and vocabulary sizes.

As we can see, the performance is mixed and
depends on the context size. For context size 64,
there appears to be an improvement, however for
context size 32, the performance drops. The lack
of improvement for context size 32 led us to leave
out this technique in our final model, as the poten-
tial gains are inconsistent and training first on the
character level adds a costly extra pretraining step.

As for the use of characters in low-resource pre-
training, we suspect that there are better ways of
integrating rather than via an extra initial pretrain-
ing step. Using our method, the model is suscep-
tible to forgetting what it has learned during the
character-level pretraining when it is pretraining
for the second time.

Additionally, the evaluation metrics chosen for
this shared task do not stand out as tasks where
character models would be particularly beneficial.
Other tasks where character-level models have been
shown to greatly outperform subword-level models
such as morphological inflection would be perhaps
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Figure 3: Loss dynamics for three minimally different
models: curriculum; no curriculum; reversed curricu-
lum.

more suitable for assessing the potential benefits of
our character-informed model.

4.3 Curriculum learning
We evaluate the results of data ordering from sim-
ple to complex against two alternatives: no data
ordering and reversed data ordering (from difficult
to simple). We train triples of models that min-
imally differ from each other – everything apart
from the order of data is kept constant.

Figure 3 shows evaluation loss dynamics of one
typical model triples during training (we set up
several training experiments, varying the number
of epochs per phase, without qualitative change in
results, so here we only report one of them).

While there are stages in training where the loss
seems to indicate an advantage of the curriculum
model against the baseline one, the no-curriculum
model eventually catches up. Perhaps more sur-
prisingly, the reversed-curriculum model shows
systematically lower loss during longer phases of
training.

Targeted linguistic evaluation also shows mixed
results. Table 3 lists BLiMP scores for the model
triple:

We don’t see a clear pattern in what types of lin-
guistic phenomena benefit from a particular order
of data exposure and can’t conclude whether the
observed effects are robust and systematic.

The lack of a clear benefit from the curriculum
might be traced back to at least one of the follow-
ing:

• Low quality of the complexity metric;

• Inadequacy of the complexity metric for the
training objective;

• Interfering data noise;

BLiMP Scores Cur. Rev. cur. No cur.

Anaph. agree. 89.4 89.4 90.1
Arg. struct. 73.6 71.3 72.5
Binding 69.3 70.7 68.8
Control raising 71.1 71.0 70.5
Det. noun agree. 95.3 94.0 95.3
Ellipsis 86.2 82.2 83.7
Filler gap 75.9 70.7 72.8
Irregular forms 83.7 83.0 86.5
Island effects 54.9 62.1 53.5
NPI licensing 67.1 66.8 70.5
Quantifiers 68.9 69.3 66.2
SV agree. 81.2 81.8 78.8

Average 76.4 76.0 75.8

Table 3: The effect of data ordering on linguistic gener-
alization.

• Non-optimal pacing function;

• The genuine lack of advantage from data re-
ordering.

To illustrate some of these considerations, we
pick three typical samples from the ordered dataset
for context size 32 – from the ‘simplest’ end, from
the middle, and from the ‘most complex’ end, re-
spectively:

(a) down!
up up up up up up up up up
up up up up up down!

(b) the flared skirt of the cone yet to
be combed, and this provide

(c) p;amp;gt;&amp;amp;gt;Exactly.
&amp;amp;gt;&amp;amp;gt;Combining

The easiest samples are indeed linguistically sim-
ple – they contain a lot of repetitions, very simple
syntactic structures and very frequent words. At
the same time they are not very representative of
the rest of the dataset, both grammatically and lex-
icaly. The typical sample from the main body of
the dataset – samples like (b) – do not show the
characteristic repetitive pattern and a large propor-
tion of the lexical material across the dataset falls
outside of what the simplest samples contain. The
simplest data defined the way we do it is useful
for generalization to the rest of the data only to a
very limited degree: the model does see the most
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frequent words, but the contexts of their use are
pretty different from how they are typically used
elsewhere. For a model with non-character-level
tokenization, it might not be particularly helpful.

On the other side of the complexity scale, a lot
of samples are indeed difficult, but in a way that
does not necessarily reflect true linguistic complex-
ity: vocabulary and punctuation features push up
samples that contain elements of HTML, have col-
lapsed space symbols, are lists or are written in
languages that are not the main language of the
dataset.

In a sense, both extreme ends of the complex-
ity scale contain samples that are probably not
good grounds for linguistic generalization given
the MLM training objective, but in different ways.

4.4 Model Size

Table 4 shows the performances of the two mod-
els we used, as well as DeBERTa-base to con-
trol for the differences in model architecture be-
tween RoBERTa and DeBERTa. We can see that
DeBERTa-large generally performs best. Interest-
ingly, we see that switching from RoBERTa to
DeBERTa seems to account for the difference in
GLUE scores, but scaling up to large accounts for
the increase in BLiMP scores. This shows that
when limiting the context size, we can potentially
scale up to larger models even when data is scarce.

Ro-base De-base De-large

BLiMP 78.6 79.0 81.0
BLiMP supp. 63.8 59.8 63.8
MSGS -70.7 -62.2 -53.7
GLUE 70.3 72.5 72.5

Table 4: RoBERTa-base versus DeBERTA-base and
large on all tasks. MSGS is the average Matthew’s
Correlation Coefficient multiplied by 100. Best in bold.

We also experimented with training a Deberta-
XL model, which is identical to Deberta-Large ex-
cept with 48 layers rather than 24. Our results
on BLiMP were however not better (roughly 2%
worse than the comparable large model), so it
would seem that there is a limit to how much one
can simply scale up model size and see perfor-
mance improvements when it comes to pretraining
on limited data.
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BLiMP BLiMP supplement MSGS GLUE Average

Baseline (10M) Baseline (100M) 32 32→128 (10) 32→128 (50)

Figure 4: Average scores for submitted models com-
pared to baselines. 32→128 indicates a model trained
initially on context size 32, then trained again on 128.
The number in parentheses indicates the number of
epochs trained on for the second iteration of pretraining.
MSGS scores are the average Matthew’s Correlation
Coefficient, multiplied by 100.

4.5 Submission

In Figure 4, we show the overall results for our best
models, compared to the baselines. We also report
results on each individual sub-task in Appendix B.
Our final models include a model trained only on
context size 32, and two trained again on context
size 128, one for 10 epochs and one for 50 epochs.
As our one trained with 10 additional epochs per-
formed best on average, this was our final submis-
sion. We can see the trade-off for context size
between the GLUE and BLiMP scores, as BLiMP
favors models trained on a shorter context while
GLUE favors models trained on a longer context.
MSGS appears to also have some slight preference
for models trained on a shorter context, though the
differences between all models is comparatively
small. Interestingly, the 10M baseline is better on
average than the 100M baseline on MSGS, as well
as the BLiMP supplement. We see the largest differ-
ence in the BLiMP supplement, where our models
outperform the baselines by around 20 points on av-
erage. Much of this improvement comes from the
qa_congruence_easy set, where our best model
achieved a score of 81%, compared to the baseline
score of 31%.

5 Conclusion

Our conclusion is very simple: if you want to pre-
train a model on little data, train with a smaller
context size. This can greatly aid in model conver-
gence such that no specific hyperparameter tuning
or complex methods need to be used for superior
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performance.
In fact, both of our more “complex” approaches

concerning initialization with a character vocabu-
lary and curriculum learning proved to be unreli-
able, where gains paled in comparison to the gains
realized from simply lowering context size.

If a larger context size is eventually needed, such
as for some GLUE tasks, continuing training with
a larger context size can provide some benefit. We
do think that there may be a smarter way to control
context size, such as a gradual increasing during
training, which could lead to smoother and faster
training. Additionally we expect that there are other
potential ways to implicitly limit context size, such
as limiting self-attention, which may achieve a sim-
ilar effect.
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Vocabulary Size

BLiMP Scores (%) Char 8k 16k 24k 32k 40k 48k 64k

Anaphor agreement 44.0 88.3 90.1 92.9 92.6 91.8 92.8 91.3
Argument structure 59.4 69.0 73.8 73.6 73.6 74.6 74.4 74.7
Binding 61.5 69.2 69.3 70.4 69.3 71.5 68.9 68.3
Control raising 60.0 63.0 68.2 69.1 69.6 70.9 71.7 69.5
Determiner noun agreement 89.2 89.5 88.0 89.8 94.5 95.4 96.6 96.5
Ellipsis 42.4 85.8 84.9 87.1 86.4 88.6 84.5 87.3
Filler gap 70.3 73.9 73.0 73.7 73.0 72.0 74.0 73.5
Irregular forms 78.9 84.4 89.6 89.3 89.6 92.6 85.8 88.8
Island effects 43.9 44.4 46.8 48.9 51.8 50.9 53.0 53.4
NPI licensing 55.0 56.0 63.5 68.3 70.2 73.0 67.0 67.1
Quantifiers 80.4 66.5 70.8 68.3 69.0 70.9 71.0 68.5
Subject verb agreement 71.4 78.2 79.3 80.3 83.5 81.3 81.7 81.1

Average 63.0 72.3 74.8 76.0 76.9 77.8 76.8 76.7

Table 5: BLiMP scores for each vocabulary size tested. “Char” refers to a character-level model. Best in bold.

Baseline (10M) Baseline (100M) 32 32→128 (10) 32→128 (50)

BLiMP

Anaphor agreement 81.5 89.5 94.5 93.0 88.0
Argument structure 67.1 71.3 76.3 74.5 72.9

Binding 67.3 71.0 77.0 76.3 74.9
Control raising 67.9 67.1 75.5 74.2 72.8

Determiner noun agreement 90.8 93.1 95.6 94.4 91.0
Ellipsis 76.4 83.8 84.1 78.5 77.4

Filler gap 63.5 68.0 80.0 78.8 76.0
Irregular forms 87.4 89.6 87.9 85.8 83.2

Island effects 39.9 54.5 68.4 70.7 68.8
NPI licensing 55.9 66.3 72.5 73.2 69.9

Quantifiers 70.5 70.3 70.8 66.4 66.0
Subject verb agreement 65.4 76.2 89.0 87.8 84.3

BLiMP Supp.

hypernym 49.4 50.8 46.9 49.1 45.4
qa_congruence_easy 31.3 34.4 76.6 81.3 73.4

qa_congruence_tricky 32.1 34.5 45.5 49.1 46.7
subject_aux_inversion 71.7 45.6 82.8 84.3 83.3

turn_taking 53.2 46.8 67.1 68.9 73.6

GLUE

CoLA 70.8 75.9 76.8 76.8 77.4
SST-2 87.0 88.6 87.8 88.6 88.0

MRPC (F1) 79.2 80.5 70.6 72.9 73.5
QQP (F1) 73.7 78.5 86.6 86.6 87.1

MNLI 73.2 68.7 76.4 76.2 77.1
MNLI-mm 74.0 78.0 77.3 76.3 77.0

QNLI 77.0 82.3 83.2 83.5 79.7
RTE 61.6 51.5 50.5 55.6 56.6

BoolQ 66.3 59.9 65.2 67.9 67.2
MultiRC 61.4 61.3 61.9 62.0 64.4

WSC 61.4 61.4 61.5 61.5 61.5

MSGS

CR_LC -0.28 -0.89 -0.98 -0.92 -0.49
CR_RTP -0.78 -0.91 -0.52 -0.85 -0.84
MV_LC -0.99 -1.00 -1.00 -1.00 -1.00

MV_RTP -0.79 -0.15 -0.32 -0.18 -0.60
SC_LC 0.16 -0.58 -0.38 -0.29 -0.18
SC_RP -0.45 -0.39 -0.51 -0.53 -0.55

AoA

Overall 2.06 2.06 2.06 2.05 2.05
Nouns 1.99 1.99 2.00 1.99 2.00

Predicates 1.85 1.82 1.85 1.85 1.83
Function words 2.65 2.66 2.60 2.58 2.55

Table 6: All individual results for our final models, versus the baselines. Best in bold.
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