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Abstract

We present Lil-Bevo, our submission to the
BabyLM Challenge. We pretrained our masked
language models with three ingredients: an ini-
tial pretraining with music data, training on
shorter sequences before training on longer
ones, and masking specific tokens to target
some of the BLiMP subtasks. Overall, our base-
line models performed above chance, but far
below the performance levels of larger LLMs
trained on more data. We found that training on
short sequences performed better than training
on longer sequences. Pretraining on music may
help performance marginally, but, if so, the
effect seems small. Our targeted Masked Lan-
guage Modeling augmentation did not seem to
improve model performance in general, but did
seem to help on some of the specific BLIMP
tasks that we were targeting (e.g., Negative Po-
larity Items). Training performant LLMs on
small amounts of data is a difficult but poten-
tially informative task. While some of our tech-
niques showed some promise, more work is
needed to explore whether they can improve
performance more than the modest gains here.
Our code and models are available online.'.

1 Introduction

Large Language Models (LLMs) generate com-
plex and largely grammatical strings and display
impressive performance with structures tradition-
ally thought to require abstract and hierarchical
syntax (Linzen et al., 2016; Linzen and Baroni,
2021; Wilcox et al., 2022; Futrell and Levy, 2019).
They have achieved human-like performance at a
wide range of natural language tasks (Bubeck et al.,
2023; Frank, 2023), particularly those having to do
with linguistic form (Mahowald et al., 2023). This
state of affairs has led to claims that such models
should be taken seriously as cognitive models of
human language (Piantadosi, 2023; Baroni, 2022;

lhttps ://github.com/venkatasg/Lil-Bevo

Frank, 2023), in line with claims from the neuro-
science literature to “take mechanistic abstraction
seriously” (Cao and Yamins, 2021).

One reason that has been posited not to take
LLMs seriously as cognitive models, though, is the
immense amount of data they are trained on rela-
tive to what a human child is exposed to (Warstadt
and Bowman, 2022; van Schijndel et al., 2019).
Thus, it is possible that models memorize more
than humans do and, relative to humans, over-rely
on statistical heuristics and memorized chunks of
language (Bender et al., 2021).

On the other hand, the quality of data that LLMs
get during pretraining is, in many ways, much
worse than what human learners get. Children get
richly structured, interactive, multimodal input, tai-
lored to their specific interests and needs. A baby
might reach for a cup of water and be told “Wa-
ter. You want some water?” Given that babies are
known to conduct repeated experiments to learn
about the world (Gopnik et al., 1999), the baby
might try this again and again until mastering the
concept of what water is. An LLM, meanwhile,
might begin learning language by being asked to
predict random tokens in the Wikipedia article on
quantum mechanics.

In this paper, we describe our experiments
with Lil-Bevo, a small language model trained
on human-scale data for the BabyLM competition
(Warstadt et al., 2023). The goal of the compe-
tition is to train a performant LM on a human-
scale amount of data: 10M words for the small
track, 100M for the larger track. We submitted
to both strict tracks — however, we were notified
through the meta-review that our models qualify
only for the loose track due to the usage of addi-
tional non-linguistic data (music from the MAE-
STRO dataset (Hawthorne et al., 2019)). The evalu-
ation is on a set of natural language tasks including
grammatical acceptability judgments via minimal
pairs in the BLiMP benchmark (Warstadt et al.,
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2020a), language understanding tasks in Super-
GLUE (Wang et al., 2019), and MSGS (the Mixed
Signals Generalization Set) (Warstadt et al., 2020b)

We started with a baseline DeBERTa model,
trained from scratch on BabyLLM data using a cus-
tom unigram SentencePiece tokenizer (Kudo and
Richardson, 2018). Our strategy was not focused
on the architecture, but on ways in which we could
adjust the training regime to improve performance
above the baseline.

Specifically, our strategy targets 3 ways in which
typical LLM training regimes lead to lower-quality
data than humans have access to. Here, we describe
those strategies and their motivation. We give de-
tailed methods in Section 2 and then present results,
including a number of ablation studies that attempt
to partition out what strategies were successful.

We treated these studies as proof-of-concept and
did not exhaustively test these strategies. Thus, we
think that there is still room for improvement.

Training on Short Sequences Unlike LLMs, ba-
bies do not start language by learning long com-
plicated sequences all at once. Using databases
of child and child-directed speech, it has been
shown that there is some alignment of caretakers to
the child’s level in terms of linguistic complexity
such that caregivers talk to younger children using
shorter utterances and longer utterances as they de-
velop (Schwab and Lew-Williams, 2016; Kunert
et al., 2011). To that end, Mueller and Linzen
(2023) showed that training on simpler data first
could induce a better hierarchical bias for learning
language. We specifically take inspiration from
Press et al. (2021) who showed that LLMs learn
better when trained on shorter sequences before
being trained on longer sequences.

Training on Music Before Training on Language
Unlike LLMs, babies are exposed to a wide range
of input besides just text. Before and while learning
language, they are also learning to map the visual
world, to navigate the physical world, to process
non-linguistic auditory stimuli, and to engage in
a wide variety of cognitive operations. Thus, it is
commonly observed that some of the machinery
thought to be language-specific (e.g., hierarchical
structure) might be induced in pre-linguistic in-
fants through exposure to other kinds of stimuli.
Papadimitriou and Jurafsky (2020) use this idea to
show that training language models on structured
data (e.g., music) can help models learn faster. We

use a similar idea, with initial pretraining on a mix
of music (piano performances) and text.

Targeted Masked Language Model The role
of child-directed speech in human language learn-
ing is controversial (see Consortium and et. al.,
2020, for discussion and a large-scale replication of
infant-directed speech preferences). It is generally
agreed that parents do not correct a child every time
they make a grammatical error (Marcus, 1993), but
there is also evidence that social feedback acts as a
signal (Tomasello, 1992) and that parents structure
input to be helpful (Weisleder and Fernald, 2013).
When a child says something wrong, a parent might
“recast” the utterance or highlight grammatical fea-
tures that children are struggling with (Nicholas
et al., 2001). Inspired by this idea, targeting the
BLiMP (Warstadt et al., 2020a) syntactic evalua-
tions as well as more general tasks, we trained with
a targeted MLM objective.

We considered some variations of the idea of
learning with some external feedback that distin-
guishes correct tokens against corrupted/noisy re-
placements. For example, ELECTRA (Clark et al.,
2020) consists in learning to detect tokens which
have been replaced by an auxiliary model. Un-
fortunately, replaced token detection approaches
such as ELECTRA (Clark et al., 2020) suffer from
an inability to learn probability distributions over
the entire vocabulary, and so cannot be used for
(pseudo)-likelihood scoring (Salazar et al., 2020).
Another related approach is Corrective Language
Modeling (CLM) (Bajaj et al., 2022), in which the
model is trained to correctly replace corrupted to-
kens; however, it is not clear how to best use these
models for scoring sentences in BLiMP.?

Given the problems outlined above, we decided
to use masked language modeling (MLM) with
targeted masks. The motivation is to make it eas-
ier for the model to learn syntactic phenomena
that co-occur frequently with certain words. Other
strategies for selecting masks were used in Sadeq
et al. (2022); Gu et al. (2020); unlike these works,
we mask specific words which are essential to the
phenomena in BLiMP. For example, to target the
filler-gap dependency subtask in BLiMP, we go
through the original data set and mask every oc-
currence of “that” and “what” in the corpus. By

*Initial experiments with CLM performed worse than
masked language modeling (MLM); we believe this is due to
a mismatch between training and how the pseudo-likelihood
scoring is done via masking.
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focusing on these words, we anticipate that the
model will more quickly learn to score “I know
what you did last summer.” more highly than “I
know that you did last summer.”

2 Experiments & Methods

We report all experiments and results for Lil-Bevo
in this paper, as it enabled quick prototyping, and
because we find similar trends with our larger
model Lil-Bevo-X. Lil-Bevo-X differs from Lil-
Bevo in the model used (deberta-base rather
than deberta-small), training data (100M versus
10M), and vocabulary size. Final results for the
Lil-Bevo-X are available on our online repository.

Tokenizer We trained a unigram SentencePiece
tokenizer (Kudo and Richardson, 2018) from
scratch on the BabyLLM data combined with the
MAESTRO (Hawthorne et al., 2019) dataset (de-
scribed in detail below) using the sentencepiece
library. Specifically, we trained a tokenizer with a
vocabulary size of 16,640 and 33,280 for Lil-Bevo
and Lil-Bevo-X respectively. <mask> and <cls>
were included as control symbols in the vocabulary,
along with an end-of-sequence token (</s>), a pad
token (<pad>) and an unknown token (<unk>).

Model We chose to use an encoder-based lan-
guage model, specifically DeBERTa since (a)
encoder-based language models are known to
capture many syntactic and semantic features in
language when pretrained on relatively modest
amounts of data (Zhang et al., 2021), (b) there
were a wide variety of off-the-shelf DeBERTa ar-
chitectures available on HuggingFace for easy pro-
totyping and use.

We trained the model in three phrases: (1) pre-
training on a combination of music and text for 5
epochs with a sequence length of 64 tokens, (2)
continuing pretraining on text for 50 epochs with a
sequence length of 128 tokens, and (3) finally pre-
training on text using targeted MLM for 2 epochs
with a sequence length of 512 tokens. Each of these
is described in more detail below.

1. Music Pretraining Papadimitriou and Juraf-
sky (2020) find that pretraining on languages other
than the target language — including music and
code — lead to lower perplexities on target lan-
guage as compared to random distributions of to-
kens, or even Zipfian token distributions. Inspired
by this idea, we explored whether supplementing

the 10M linguistic tokens with non-linguistic musi-
cal tokens from the MAESTRO dataset (Hawthorne
et al., 2019) could lead to noticeable improvements
in LM learning. The impetus behind pretraining on
music is two-fold: (a) additional training data that
nevertheless has structural biases that could help
the model learn structural biases found in language
(b) the model reaching a stable region in parame-
ter space that enables it to learn desired linguistic
properties much faster and/or better.

After several experiments, we found that pre-
training on the combined strict-small and the en-
tire MAESTRO dataset for 5 epochs provided the
best results. We use V3.0.0 of the MAESTRO
dataset, which contains 85M tokens using our cus-
tom trained tokenizer. The dataset consists of 200
hours of MIDI piano recordings, which we convert
to text and tokenize with the shared unigram Sen-
tencePiece tokenizer. Our textual representation of
MIDI consists of a chronological sequence of codes
describing the channel and key of each note onset
and release event (e.g. con71 for ‘note on, channel
0, key 71°) delimited by spaces and optional codes
for time between events (e.g. t18 for 18 MIDI
ticks). We chose a short sequence length of 64
tokens for pretraining inspired by the Shortformer,
which we now explain in further detail.

2. Shortformer Press et al. (2021) introduce a
few innovations to the training regime. In particu-
lar, we focused on their idea of training for shorter
sequence lengths before moving onto longer ones.
We used a similar training regime to (Press et al.,
2021), where we started with a training sequence
length of 128 for 50 epochs, before moving to a
training sequence length of 512. We initially ex-
perimented with training on longer subsequence
length for 150 epochs as in Press et al. (2021),
but discovered lower evaluation results on most
BLiMP categories (albeit with some improvements
on some categories like Island Effects and Quanti-
fiers). Results on BLiMP (Warstadt et al., 2020a)
and SuperGLUE (Wang et al., 2019) saturated with
as little as 2 epochs — we believe this is because of
the much smaller size of the dataset as compared
to that in (Press et al., 2021), leading to overfitting
on the dataset.

3. Targeted MLM We specifically masked out
words which were essential to some of the BLIMP
subtasks. Some of these, such as quantifier and
negation words, are also important to some of the
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Category Total Avg
S-V agreement 124197 43
Animacy 100206 3.5
Quantifiers 89926 3.1
Modal verbs 58604 2.0
NPI licensing 47484 1.6
Filler gap 34988 1.2
D-N agreement 28675 1.0
Adverbs 19332 0.7
Anaphor agreement 3659 0.1

Table 1: Total number of masks and average number
of masks per sample for each targeted category (S-V
agreement stands for subject-verb agreement, and D-N
agreement stands for determiner-noun agreement).

SuperGLUE tasks (e.g., textual entailment.) For
anaphor agreement, we masked the words “him-
self”, “herself”, “itself”, “themselves”. For NPI
licensing the masked words included “not”, “of-
ten”, and “probably”3. The list of words which
were masked in each category are shown in Table 3
in Appendix A. We used a sequence length of 512
tokens, and additionally masked other random to-
kens in order to mask a total of 15% of tokens per
sample.

The total number of words masked for each cat-
egory across the 10M train set are given in Table 1.

The Animacy class consists of animate nouns,
and was used to target the minimal pairs in the Ar-
gument Structure category with animate/inanimate
subjects (“Amanda was respected by some wait-
resses.” vs “Amanda was respected by some pic-
ture”). To obtain a list of animate nouns we used
all the lemmas of (direct and indirect) hyponym
synsets of person.n.01 in WordNet.

In addition to targeting the BLiMP categories
of S-V agreement, quantifiers, NPI licensing,
filler gap, argument structure, DN- agreement and
anaphor agreement, we also included some modal
verbs (e.g., can, might, shall) and certain adverbs
(e.g., never, maybe, always, perhaps), since these
are important for textual entailment.

2.1 Ablations

We compare Lil-Bevo with ablations to explore
how important our three strategies are for final per-
formance. Specifically, we compare Lil-Bevo with

3Note that the masked words are not necessarily NPI items
themselves, but rather that they are targets of single word
substitutions in NPI items.
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the following:

Long-only Train DeBERTa with a sequence
length of 512 tokens for 57 epochs.

Short-only Train DeBERTa with a sequence
length of 128 tokens for 57 epochs.

Short+target Train DeBERTa with a sequence
length of 128 tokens for 55 epochs. Then train with
targeted MLM for 2 epochs.

Music+short Train DeBERTa on music and text
for 5 epochs with a sequence length of 64 tokens.
Then continue training on text with a sequence
length of 128 tokens for 52 epochs.

Music+short+long Train DeBERTa on music
and text for 5 epochs with a sequence length of
64 tokens. Then continue training on text with a
sequence length of 128 tokens for 50 epochs, fol-
lowed by training with a sequence length of 512
tokens for 2 epochs.

Lil-Bevo (music+short+target) This is the same
as Music+short+long except that the final stage of
pretraining for 2 epochs uses targeted MLM.

Implementation We train all our models using
the Trainer API, part of the huggingface python
package. Models are trained using 4 Nvidia A40
GPUs, with the maximum possible batch size that
was permissible with each experiment. Apart from
setting initial learning rate to 6e-4, weight decay
to 0.1 and a warmup ratio to 0.0001, we use de-
fault training arguments in the API (except for the
final targeted MLM/long stage, where we used all
default parameters). Models are evaluated on the
validation split of the BabyLM dataset. We did not
use the test split of the BabyLLM data. We release
all of the above pretrained models online on the
Huggingface Hub.

3 Results

Results for BLIMP, MSGS, SuperGLUE and the
supplementary tasks are shown in Figure 1. The
results are color-coded to represent each model’s
differences from the Short-only ablation. We high-
light some results below.

Does pretraining on music help? Comparing
short-only with music+short, we see that pretrain-
ing on music helps slightly on 8 of the 12 BLiMP
subtasks, and on two of the 5 supplement tasks.
However, it suffers from a large gap of 9.1 points


https://huggingface.co/collections/venkatasg/babylm-653591cdb66f4bf68922873a
https://huggingface.co/collections/venkatasg/babylm-653591cdb66f4bf68922873a
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Figure 1: Results for each model, for each task. The color reflects the difference in score between the given model
and the RoBERTa baseline results released by the organizers of BabyLM.
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on QA Congruence tricky. On SuperGLUE, mu-
sic+short outperforms short-only on 6 of the 11
subtasks, and only slightly. Thus, we do not think
there is strong evidence that pretraining on music
improves over the short-only condition, in isola-
tion.

Comparing Lil-Bevo (music+short+target) with
short+target, we see that Lil-Bevo outperforms
short+target on 69% of all tasks. Predicting score
for each task in a mixed-effect linear regression
with a fixed effect predictor for whether the model
was Lil-Bevo or short+target, we found that Lil-
Bevo was slightly better (3 = 1.3, x?(1) =
4.11, p < .05 by a likelihood ratio test). So, while
music pretraining may help, the effect is small and
inconsistent in our observed data.

What is the effect of targeted MLM? We
compare music+short+long with Lil-Bevo (mu-
sic+short+target) and short-only with short+target
to ascertain whether targeted MLM helps over
random masking. Targeted MLM does not sys-
tematically improve performance, except for two
BLiMP tasks: NPI Licensing and Argument Struc-
ture. For NPI Licensing, Lil-Bevo outperforms mu-
sic+short+long by 14.8 points, and short+target
outperforms short-only by 16.2 points. We suspect
that this difference could be meaningful since our
Targeted MLM strategy specifically targets NPI
terms that are substituted in BLiIMP.

The effect of increasing sequence length When
comparing music+short with music-short-long,
and short-only with long-only, we find that pretrain-
ing with 512-token sequence lengths generally un-
derperforms pretraining with 128-token sequence
lengths. The difference between short-only and
long-only conditions is quite large in fact. A linear
mixed effect regression comparing the two using
the same method as above found that performance
was 1.8 points worse on average for the long-only
method (8 = 1.8, x?(1) = 14.2,p < .001 by a
likelihood ratio test). Thus, we believe pretrain-
ing with shorter sequences helps significantly com-
pared to using longer sequences.

4 Discussion

Overall, we found that, for BabyLM’s, sequence
length matters, music pretraining may help a little
(but may be spurious), and targeted MLM training
may help on specific tasks.

These results are far from exhaustive, and we

Model Dynabench score
Lil-Bevo 0.64
Music-short-long  0.64
Music-short 0.69
Short-only 0.63
Short-target 0.62
Long-only 0.61
Lil-Bevo-X 0.69

Table 2: Scores on Dynabench for different models.

see a number of areas for future improvement us-
ing these methods. To fully understand the role of
initial pretraining on music, one could construct
a series of synthetically-generated music datasets,
with varying degrees of complexity. Would pre-
training on music that is more “language-like” (Ler-
dahl, 1996) in some sense improve performance on
downstream tasks? Perhaps there is a principled
way to interpolate between music and language,
using the same kind of data format (MIDI). At one
end of the spectrum one would have MAESTRO,
and at the other end, text that has been encoded as
into MIDI events.

Related to the use of varying sequence lengths,
future work could consider improvements in data
preprocessing and batching; in particular, knowing
the beginning and ending of coherent chunks of text
(e.g., dialogues or documents) could help improve
the model. Beyond this, Mueller and Linzen (2023)
provide some evidence that curriculum learning ap-
proaches may be fruitful to improving low-resource
language models.

Finally, a more thorough analysis is needed on
when (and by how much) targeted MLM is able
to boost model performance. Other strategies are
also possible, such as combining targeted MLM
with information-theoretic strategies for picking
random masks (Sadeq et al., 2022). Beyond MLM,
contrastive objectives could be used to encourage
the model to score grammatical sentences more
highly than ungrammatical sentences.

5 Conclusion

A big motivating question for training models on
human-scale data is whether it is possible for mod-
els to attain linguistic competence without the mas-
sive amounts of data used to train the massive
LLMs that dominate NLP leaderboards. If so,
that would make it more plausible that we should
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take LLMs seriously as cognitive models. So can
BabyLMs learn like grown-up ones? While we
find some hints of directions to pursue for mak-
ing small language models learn more from less,
we did not come close to matching LLM perfor-
mance from larger amounts of data. Of course, that
does not mean it is not possible to do so, and other
teams might have different experiences. We did not
fully explore optimizing all of our methods, and
we treated our manipulations largely as proof-of-
concept. Aggregating methods and results from
a wider variety of teams will make it possible to
more fully explore these questions.
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Table 3 shows the list of words selected for targeted
MLM for each linguistic category, while age of
acquisition results are presented in Table 4
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Category Words
1s, was, have, do, are, don’t, were, has, does, isn’t, doesn’t, wasn’t, haven’t,

S-V agreement , , ,
aren’t, weren’t, hasn’t

all, some, more, any, little, many, much, most, every, both, each, few, enough,

Quantifiers several,half, less,either, none,. lots, neither, plenty
Filler gap that

Modal verbs can, would, will, could, should, may, must, might, shall
NPI licensing not, only, also, really, probably, often, certainly, clearly
D-N agreement this, these

never, always, maybe, probably, perhaps, certainly, absolutely, likely, possibly,
Adverbs definitely, surely, truly, constantly, forever, potentially, positively, undoubtedly,
consistently, invariably, eternally, perpetually, dubiously, uncertainly

Anaphor agreement himself, themselves, itself, herself

people, man, men, family, person, father, mother, girl, woman, son, children,

Animacy guy, friend, wife, boy, guys, human, member, friends, women, members,
daughter, child, brother, boys, husband, girls, lady, parents, kids, king, sister, dad,
mommy, daddy, player, students, doctor, president, captain, kid, mom, leader,
officer, director, players, soldiers, teacher, god, student, sir, officers, judge, patient,
brothers, families, mark, actor, ladies, singer, uncle, author, manager, gentleman,
humans, lad, writer, sweetie, prince, lawyer, artist, mum, host, owner, guest,
teachers, princess, scientists, guard, professor, artists, leaders, agent, assistant,
patients, mama, workers, minister, boss, sons, criminal, partner, babies, citizens,
adult, politician, gods, mayor, actress, principal, cousin, witness, driver, hero,
governor, lord, doctors, authorities, maiden, suspect, victims, aunt, candidate,
individuals, producer, champion, gentlemen, founder, enemies, sisters, winner,
passenger, client, bride, priest, prisoners, pilot, inhabitants, ghost, chairman,
nurse, guests, user, pirate, graduate, merchant, cats, victim, passengers, pirates,
noble, agents, expert, parent, editor, grandma, officials, subjects, cops, maid,
commander, policeman, writers, servants, academic, peasant, eldest, engineer,
musician, devil, critics, users, creatures, twin, composer, personality, lads,
followers, poet, adults, boyfriend, fellows, actors, ruler, judges, witch, daughters,
lieutenant, musicians, servant, secretary, slave, priests, scholars, prisoner,
visitors, residents, lover, cop, companion, knight, deputy, customers, tourist,
guards, grandfather, journalist, architect, rival, kings, colleagues, farmers,
owners, farmer,...

Table 3: Words which were masked in targeted MLM in the 10M train set. For Animacy only words appearing over
100 times are shown in the table.

Model Overall Nouns Predicates Function words
RoBERTa-baseline 2.06 1.99 1.85 2.65
Lil-Bevo 2.06 2.0 1.84 2.65
Lil-Bevo-X 2.05 1.99 1.85 2.59

Table 4: Age of Acquisiton results
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