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Abstract

In this study, we describe our submission to
the 2023 BabyLM shared-task’s strict-small
track. Our findings demonstrate the feasibility
of training high-performing models within the
constraints of limited data, computational re-
sources, and time. We provide evidence that
the formatting of input can significantly im-
pact downstream performance. Furthermore,
the induction of structural biases into the mod-
els through the use of part-of-speech trees
yields modest benefits. Our most successful
model achieves 79% on the BLiMP evalua-
tions and 72% on the SuperGLUE evaluations.
All models trained during this study can be
found at https://huggingface.co/mcgill-
babylm.12

1 Introduction

The pretraining of large language models (LLMs)
is a resource-intensive process, requiring substan-
tial computational power, time, and particularly,
data. Contemporary LLMs are trained on billions,
if not trillions, of tokens to achieve satisfactory
performance (Kaplan et al., 2020; Hoffmann et al.,
2022). This approach is not ideal, given that hu-
mans can learn to perform more complex tasks
with data that are smaller by orders of magnitude
(Linzen, 2020). Consequently, there is a burgeon-
ing interest within the NLP community to iden-
tify and implement more data-efficient pretraining
regimes.

The 2023 BabyLM challenge (Warstadt et al.,
2023) seeks to unify research in this domain by
formalizing the constraints and providing common
pretraining and evaluation corpora. This shared
task involves pretraining LLMs from scratch us-
ing data at a scale comparable to what a thirteen-

1 Corresponding author: Ziling Cheng (zil-
ing.cheng@mail.mcgill.ca).

2 The code is available at https://github.com/ziling-
cheng/babylm.

year-old human child would have been exposed
to. This approach enables researchers to con-
centrate their efforts on developing data-efficient
pretraining techniques, potentially drawing inspi-
ration from human cognitive development. The
"strict-small" track, which limits the amount of
pretraining data to 10M words, is of particular in-
terest, and will be the focus of this study. An
additional constraint of not being able to use any
tools trained on external data further increases the
difficulty. The pretraining corpus comprises mul-
tiple datasets, primarily consisting of transcribed
conversations and other forms of simple language
text. The evaluation of pretrained models includes
zero-shot linguistic benchmark (Warstadt et al.,
2020a, BLiMP) as well as finetuning the mod-
els for both standard Natural Language Under-
standing (NLU) tasks (Wang et al., 2019a, Super-
GLUE) and evaluations of linguistic generaliza-
tion (Warstadt et al., 2020c, MSGS). Brief descrip-
tions of these datasets are provided in Section 3.

In this study, we limit our experiments to a mod-
est computational and time budget of one GPU
and 24 hours, respectively. This constraint com-
pels us to focus on incorporating better inductive
biases into model pretraining, rather than resorting
to the more straightforward, but costlier, approach
of extensive hyperparameter tuning. We adhere to
standard transformer architectures (Vaswani et al.,
2017) and pretraining strategies: masked language
modeling (Devlin et al., 2019, MLM) and left-to-
right, causal language modeling (Radford et al.,
2018, CLM). We first explore the formatting of
the data. We also attempt to induce structural bi-
ases using part-of-speech (POS) tags. While we
did not include our models that incorporate POS
tags in our official submission, as this contravenes
the rules of the two tracks we are interested in, we
believe it represents a promising research direc-
tion.
Findings Our findings indicate that within our
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(a) (b)

Figure 1: Visualization of sentence-level training examples employing different grouping strategies, with a maxi-
mum sequence length of 32 words. The numbers on the left denote the i-th training example. (a) sentence-level
ungrouped: any portion exceeding 32 words will be truncated. (b) sentence-level grouped: different docu-
ments/sentences could be grouped into a single training example, each totaling 32 words.

constrained setting, data formatting has the most
significant impact on downstream performance.
By data formatting, we specifically mean the for-
mats of individual examples (e.g. sentence, docu-
ment) and the methods of configuring multiple ex-
amples into a training minibatch (e.g. data group-
ing, or truncation). We observe that models pre-
trained with grouped data perform considerably
worse than models pretrained with ungrouped data
(62% vs. 79% on BLiMP). We also discover that
inducing structural biases using POS trees mod-
estly improves the downstream performance of the
models (∼1% on BLiMP).

2 Related Work

Existing research, particularly that conducted be-
fore the advent of LLMs, has explored the training
of language models on relatively small datasets.
For instance, Bengio et al. (2003) trained a neural
language model on a corpus of approximately 1
million words. Additionally, Penn Treebank (Mar-
cus et al., 1993) and WikiText (Merity et al., 2017)
have been commonly used datasets for training
language models.

In recent work, Samuel et al. (2023) have ex-
amined architectural enhancements to BERT when
training on 100 million words, focusing on aspects
such as position embeddings or layer normaliza-
tion. Other studies have trained standard model ar-
chitectures on limited data and evaluated syntactic
or linguistic competency (Warstadt et al., 2020c;
Yedetore et al., 2023; Pérez-Mayos et al., 2021).
However, these studies have not thoroughly exam-

ined the data formatting and syntactic biases that
we consider in our experiments.

Previous research has proposed syntactically-
motivated inductive biases in the training of lan-
guage models to enhance performance. These
include the ON-LSTM (Shen et al., 2019), Tree
Transformer (Wang et al., 2019b), and Struct-
Former (Shen et al., 2021). These studies have
aimed to induce syntactic dependency and con-
stituency parses.

3 Data

In this section, we first introduce the pretraining
and evaluation data used, we then explain how we
preprocess them (Section 3.1), along with some
analysis (Section 3.2).

Pretraining Corpus The pretraining corpus re-
leased by the organizers contains ten different
carefully selected sub-datasets from different do-
mains, inspired by the typical input children would
receive (Warstadt et al., 2023). About 55% and
45% of the pretraining corpus is transcribed-
spoken English and written English, respectively.

Evaluation Corpora The shared evaluation
pipeline scores models on both syntactic eval-
uations and semantic (NLU) benchmarks. The
benchmarks have been filtered according to the vo-
cabulary of the STRICT-SMALL dataset such that
each word in each example should appear in the
training set at least twice.

Zero-shot linguistic abilities of the model is as-
sessed mainly using the BLiMP dataset (Warstadt
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Figure 2: Visualization of document-level training examples employing different grouping strategies, with a max-
imum sequence length of 32 words. The numbers on the left denote the i-th training example. (a) document-level
ungrouped: truncated text is shown in blue. (b) document-level ungrouped without truncation: document
boundary is preserved. The document-level grouping strategy is omitted due to its similarity to sentence-level
grouping strategy.

et al., 2020a). BLiMP consists of minimally dif-
ferent sentence pairs based on grammatical phe-
nomenon where a model is expected to assign
higher probability to the grammatically correct
sentence. The sentence pairs were generated from
expert-crafted grammars. This evaluation includes
12 phenomena from BLiMP, and also five sup-
plemental phenomena not included in the original
BLiMP dataset.

Fine-tuning evaluation is based on 11 canon-
ical NLP tasks from the (Super)GLUE(Wang
et al., 2018, 2019a) collections as well as MSGS
(Warstadt et al., 2020c) which evaluates the extent
to which a fine-tuned model favors linguistic gen-
eralizations as compared to spurious surface pat-
terns.

3.1 Data Preprocessing

The pretraining corpus is a collection of sub-
corpora and was released as one file for each sub-
corpus. Each file consists of multiple documents
from the sub-corpus which have been concate-
nated and then delimited by new line characters.
We refer to each file as a sub-dataset, and we refer
to each line in a given sub-dataset as a sentence.
For each sub-dataset, in addition to training with
these sentence-level examples, we also experiment
with transforming the sub-dataset into “document-
level” examples motivated by Liu et al. (2019)
who have shown that formatting inputs as individ-
ual sentences negatively affects downstream task
performance.

We thus consider two dataset formats in our

experiments: sentence-level and document-level.
More specifically, sentence-level refers to the case
where each line in a corpus file is considered an
independent training example. Document-level
refers to the case where we approximately recover
the original document boundaries (e.g. a chapter
in the book corpus, a wikipedia article, a conversa-
tion) using heuristics and take each reconstructed
document to be an independent training example.
The heuristics we use to approximate document
boundaries are based on corpus-specific, keyword-
based rules (e.g. the keyword "Chapter" is a sign
of a change of document for book corpora). In the
case of speech corpora, it is impossible to recon-
struct the conversation boundary because of the
formatting of the released sub-dataset; therefore,
for speech corpora we still consider each line (ut-
terance) to be an independent training example,
even for document-level experiments.

Both dataset variants are divided into train, val-
idation, and test splits. We only use the train split
to pretrain the models (80% of the original data).

3.2 Data Analysis

In this section, we provide some statistics of the
pretraining data and BLiMP evaluation datasets,
as well as some analysis of lexical overlap be-
tween the two.3 We first compute the number of
unique and total unigrams and bigrams in the data.
To understand the extent of syntactic commonality
between the datasets, we also examine the ratio of

3 In this work, we mainly use BLiMP for all analyses, ex-
perimentations, and ablations, unless noted otherwise.
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10M Avg. Words Avg. Tokens

train test dev train test dev

sent. 9.41 9.74 9.16 14.41 14.99 14.28
doc. 47.22 48.10 46.76 64.33 66.13 64.66

Table 1: Average number of words (split on white
space) and tokens (split using WordPiece tokenizer)
in the sentences and documents of the BabyLM strict-
small data.

the overlap of unigrams, bigrams, and linearized
dependency graphs between the pretraining corpus
and BLiMP data.4 This allows us to reason about
the diversity of the data and what fraction of lin-
guistic structures present in the evaluation is seen
by the model during pretraining.

Pretraining Data Table 1 shows that, on av-
erage, there are approximately 9 words per sen-
tence and 48 words per document, in the STRICT-
SMALL corpus. When measured with a Word-
Piece tokenizer (pretrained on the 10M data with a
vocabulary size of 32,768), each sentence and doc-
ument contain around 14 and 65 tokens, respec-
tively. The training set of the pretraining corpus
contains approximately 181.3K unique unigrams
(words) and 2.07M unique bigrams.

BLiMP As we primarily use zero-shot BLiMP
task performance to evaluate the model quality, we
report the counts of unique unigrams and bigrams
in the BLiMP task datasets in Table 2. The to-
tal unique vocabulary size is small: 2334 is only
around 15% of the simple sum of unigrams of each
task dataset, which suggests a considerable vocab-
ulary overlap across different task datasets. Con-
versely, sentence structures, as characterized by
dependency graphs, are remarkably diverse, with
97.6% of the BLiMP data points across tasks fea-
turing unique linearized dependency graphs.

Lexical Overlap 98.67% of the unigrams in
BLiMP are seen by models during pretraining.
This is expected as the organizers filter the eval-
uation data based on the vocabulary in the training
set. However, only 19% of the bigrams are found
in the pretraining data, and more importantly, there
is just 2% overlap of linearized dependency trees,
suggesting that BLiMP tasks are really ‘zero-shot’
for BabyLM-trained models.

4 We use SpaCy for dependency parsing and NLTK to lin-
earize the trees.

BLiMP Phenomenon Unigram Bigram Dep. G.

Anaphor Agreement 0.64K 3.52K 0.06K
Argument Structure 1.80K 19.50K 1.67K
Binding 1.07K 20.16K 2.01K
Control Raising 1.79K 14.10K 4.20K
D-N Agreement 1.17K 13.74K 0.70K
Ellipsis 1.16K 11.51K 3.28K
Filler Gap 1.44K 20.83K 8.36K
Irregular Forms 0.70K 4.29K 0.20K
Island Effects 1.01k 14.52K 3.52K
Npi Licensing 1.82K 19.20K 4.34K
Quantifiers 1.28K 10.08K 1.33K
Subject Verb Agreement 1.82K 17.60K 1.84K

Sum 15.68K 169.06K 31.52K
Total (unique) 2.33K 106.38K 30.78K

Table 2: BLiMP task statistics: number of unique and
total unigrams, bigrams, and linearized dependency
graphs are reported with respect to the dataset of each
task. (Dep. G. stands for Dependency Graphs)

4 Methods

We experiment with two kinds of pretraining: (i)
Vanilla pretraining: where we use standard pro-
cesses as described in the original works that in-
troduced the models (Liu et al., 2019; Radford
et al., 2019), and where we only ablate on the
way we format the input data. (ii) Structurally bi-
ased pretraining: where we induce some syntactic
structure into the model either by explicitly aug-
menting the inputs with POS tags, or by allowing
the models to implicitly induce dependency and
constituency structures in an unsupervised manner
(Shen et al., 2021).

4.1 Input Formatting

To efficiently utilize available compute resources
during pretraining, multiple input examples can
be ‘grouped’ together to form a bigger single ex-
ample. By grouping, we mean that multiple sen-
tences/documents are first concatenated, and then
divided into training examples of maximum se-
quence length supported by the model. If the
grouped input examples are not related to each
other, the learning might be sub-optimal since the
model attends to unrelated tokens. There are two
ways to solve this problem: (i) do not group ex-
amples – this will require us to generally pad the
examples, which brings the compute efficiency
down, or (ii) build a dynamic mask such that each
token only attends to other relevant tokens – this is
harder to implement. We choose to continue with
method (i) since the size of the pretraining data is
small and the loss of efficiency is manageable, and
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Figure 3: Part-of-Speech augmentation: the input embeddings are the sum of the token embeddings, the sentence
type embeddings, the positional embeddings, and the POS embeddings. In Sentence Embeddings, EA denotes the
embedding for the token type A. When a sentence B follows sentence A, the tokens in sentence B will have token
type B. In Positional Embeddings, Ei refers to the absolute positional embeddings for a token at position i.

refer to this strategy as ‘ungrouping’.

We ablate vanilla pretraining methods in
both grouped and ungrouped setups and as-
sess how they impact BabyLM pretraining on
both sentence-level and document-level formats.
Examples of different grouping strategies with
sentence-level and document-level data are shown
in Fig. 1 and Fig. 2, respectively. There is a gen-
eral consensus that the benefits of grouping out-
weighs its disadvantages, but since the lengths of
our pretraining data is small (because a large frac-
tion of them are conversation data), the general
consensus might not hold. Note that as the doc-
ument distribution’s extreme tail significantly ex-
ceeds the model’s context size, we also explore an
‘ungrouping without truncation’ approach specifi-
cally for document-level data. This allows a single
lengthy document to be divided into multiple ex-
amples without discarding extensive data, ensur-
ing a fair comparison between different strategies.
We test these strategies with three maximum se-
quence lengths: 32, 128, and 512.

4.2 Structurally Biased Pretraining

Part-of-Speech Augmentation We first study
the effect of introducing POS tags as additional in-
puts during pretraining. We embed POS tags of
each token in the input and combine them with
the token and positional embeddings to form the
initial token representation, as illustrated in Fig.3.

We first use NLTK’s POS tagger5 to automatically
label the inputs using the universal tagset6. Since
this tagging is done at the word-level, if a word
is split into multiple subtokens by WordPiece to-
kenizers, we further process the label and decom-
pose them into BIO style token-level tags.

This introduction of POS tags results in a slight
change in the model architecture: a new embed-
ding matrix for BIO style POS tags is added, and
therefore the number of learnable parameters in-
creases. During pretraining, when an input token
is masked, we also mask its corresponding POS
token to avoid any signal leakage.

StructFormer In contrast with the previous
method, Structformer (Shen et al., 2021) allows
us to induce structure implicitly. This encoder-
only transformer uses dependency-constrained
self-attention. This type of self-attention derives
from unsupervised induction of constituency and
dependency structures, allowing tokens to only at-
tend to other tokens which are part of these struc-
tures. More concretely, it utilizes a parser network
which learns to predict the syntactic distance be-
tween two tokens and the syntatic height of a to-
ken in an unsupervised manner, to generate depen-
dency distributions. For more details, please see

5 https://www.nltk.org/api/nltk.tag.html#nltk.tag.pos_tag
6 NOUN (nouns), VERB (verbs), ADJ (adjectives), ADV

(adverbs), PRON (pronouns), DET (determiners and arti-
cles), ADP (prepositions and postpositions), NUM (numer-
als), CONJ (conjunctions), PRT (particles), . (punctuation
marks), X (other)
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BLiMP

Model AVG. ANA. ARG. BIND. CTRL. D-N ELLIP. FILLER IRREG. ISLAND NPI QUANT. S-V
AGR STR RAIS. AGR GAP FORM EFFECT AGR

GPT-2 84.59 99.70 84.00 79.00 80.00 95.90 85.10 80.90 95.80 78.30 76.50 71.90 88.00
RoBERTa 86.03 97.70 83.05 79.22 81.93 97.28 92.15 89.39 95.67 79.71 82.60 70.84 91.47
Human (Warstadt et al., 2020b) 88.60 97.00 90.00 87.30 83.90 92.20 85.00 86.90 97.00 84.90 88.10 86.60 90.90

OPT-125m (Warstadt et al., 2023) 62.60 63.80 70.60 67.10 66.50 78.50 62.00 63.80 67.50 48.60 46.70 59.60 56.90
RoBERTa-base (Warstadt et al., 2023) 69.50 81.50 67.10 67.30 67.90 90.80 76.40 63.50 87.40 39.90 55.90 70.50 65.40
T5-base (Warstadt et al., 2023) 58.80 68.90 63.80 60.40 60.90 72.20 34.40 48.20 77.60 45.60 47.80 61.20 65.00

Table 3: Ceiling and pre-released baseline model performance on BLiMP: the first three rows compare strong
models with human performance, while the last three rows are pre-released BabyLM baselines.

BERT Base BLiMP

L Format Strategy AVG. ANA. ARG. BIND. CTRL. D-N ELLIP. FILLER IRREG. ISLAND NPI QUANT. S-V
AGR STR RAIS. AGR GAP FORM EFFECT AGR

128 sent. group 62.57 80.06 60.35 61.09 62.31 74.49 62.64 62.11 78.17 40.84 45.08 66.23 57.43
128 sent. ungroup 79.08 94.68 74.03 72.10 73.66 94.27 77.77 78.63 89.72 59.90 74.05 74.65 85.47

128 doc. group 62.04 84.00 57.52 66.84 60.30 58.68 56.76 64.61 71.96 53.21 46.25 71.02 53.37
128 doc. ungroup 69.38 85.48 64.86 67.38 63.50 88.49 74.48 67.96 85.95 47.50 47.78 71.23 67.97
128 doc. ungr. w/o trun. 75.39 92.28 71.02 68.83 69.02 95.01 83.89 75.16 84.78 49.66 63.36 70.09 81.52

32 sent. group 77.18 92.23 72.41 70.21 70.97 94.05 84.76 74.68 91.50 53.18 72.12 67.80 82.26
32 sent. ungroup 78.38 93.61 74.26 70.24 73.64 95.00 73.67 77.68 84.38 61.66 76.18 74.78 85.40

32 doc. group 74.90 92.38 71.42 71.15 69.73 93.54 81.47 72.02 86.92 45.40 68.22 65.12 81.48
32 doc. ungroup 67.92 76.28 63.62 64.37 64.47 88.66 71.02 68.60 83.16 44.73 55.44 64.99 69.68
32 doc. ungr. w/o trun. 76.75 91.67 72.10 68.74 70.06 94.86 80.72 76.28 80.10 53.33 72.61 76.97 83.54

512 sent. ungroup 78.00 94.02 73.90 72.35 72.80 94.97 76.50 77.76 87.48 57.25 71.00 73.03 84.99
512 doc. ungr. w/o trun. 73.04 88.70 70.00 70.26 66.86 94.31 81.18 70.65 84.12 45.59 58.82 69.89 76.04

Table 4: Vanilla pretraining: effects of grouping strategies (Strategy), input formats (Format) and maximum se-
quence length (L) on BLiMP tasks using the BERT-base model. Ungr. w/o trun., sent. and doc. denote ungrouped
without truncation, sentence-level data, and document-level data, respectively. The metric for all tasks is accuracy.

the original paper.

5 Experimental Setup

Model Architecture Language models usually
come in three flavours: encoder-only, decoder-
only, and encoder-decoder architectures. Since all
the BabyLM downstream tasks are classification-
based, we mainly focus our experiments on
encoder-only models (BERT (Devlin et al., 2018)
and Structformer), whose bidirectionality is more
suitable for such tasks (Devlin et al., 2018; Tay
et al., 2022). We train decoder-only models (GPT-
2) (Radford et al., 2018) only for data grouping
experiments, and do not consider encoder-decoder
models in this work. Unless otherwise stated, all
experiments will use BERT-base as the standard
encoder-only model, and GPT-2 as the standard
decoder-only model.

Tokenizer We use the same tokenizer for both
encoder-only and decoder-only models: an un-
cased WordPiece tokenizer (Wu et al., 2016) with
a vocabulary size of 32,768 (i.e., 215), trained
on strict-small pretraining data. For the Struct-
Former, we follow the original work and train

a word-level tokenizer with a vocabulary size of
184,192.

Training Objective We do not make changes
to the training objective of any models. We use
MLM for encoder-only (including StructFormer)
models with a masking rate of 15%, and next to-
ken prediction for decoder-only models.

Implementation All models are optimized with
AdamW (Loshchilov and Hutter, 2017), with a
peak learning rate of 1e-4, a warmup of 2000
steps, and linear decay. All models are trained
with a dropout rate of 0.1, and with GELU ac-
tivations (Hendrycks and Gimpel, 2016). GPT-2
and BERT models are trained with bfloat167 on
a single NVIDIA A100-SXM4-80GB GPU, and
StructFormer is trained in half precision on a sin-
gle RTX 8000 GPU. All models are pretrained
for 30 epochs with a maximum sequence length
L ∈ {32, 128, 512}. Unless otherwise mentioned,
the effective batch size is 128 examples for all ex-
periments.

7 https://cloud.google.com/tpu/docs/bfloat16
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GPT-2 Base BLiMP

L Strategy AVG. ANA. ARG. BIND. CTRL. D-N ELLIP. FILLER IRREG. ISLAND NPI QUANT. S-V
AGR STR RAIS. AGR GAP FORM EFFECT AGR

128 group 71.30 92.38 72.49 70.85 65.69 86.99 65.99 67.99 84.68 43.95 57.96 79.52 67.06
128 ungroup 72.71 94.33 74.09 69.15 67.06 91.98 60.85 70.53 89.57 46.97 63.68 68.11 76.24
512 group 67.37 88.80 70.64 66.90 64.60 83.02 60.85 63.34 88.70 45.48 43.74 68.57 63.83
512 ungroup 73.18 92.94 73.33 69.95 68.36 90.92 64.55 69.39 91.09 44.77 63.06 71.92 77.89

Table 5: Vanilla pretraining: effects of grouping strategies (Strategy) and maximum sequence length (L) on BLiMP
tasks using the GPT-2 base model with sentence-level data. The metric for all tasks is accuracy.

BLiMP

Model #H AVG. ANA. ARG. BIND. CTRL. D-N ELLIP. FILLER IRREG. ISLAND NPI QUANT. S-V
AGR STR RAIS. AGR GAP FORM EFFECT AGR

VANILLA 768 77.29 91.56 73.91 69.72 70.92 94.63 79.62 76.74 89.41 52.43 72.75 72.44 83.29
POS 768 78.07 93.76 73.33 71.36 70.97 94.11 83.08 77.23 89.82 53.44 70.97 73.57 85.19
RANDPOS 768 73.92 91.00 71.46 69.65 69.77 93.24 82.16 66.54 86.51 41.89 67.99 62.52 84.34

VANILLA 1152 77.40 93.10 74.64 70.24 71.39 95.60 78.00 78.14 88.35 52.20 70.06 72.41 84.72
POS 1152 78.87 93.66 74.90 68.76 71.96 95.00 84.93 77.90 89.77 55.53 73.69 74.37 86.00
RANDPOS 1152 74.34 91.46 71.59 70.39 70.00 94.39 80.37 66.15 86.87 41.70 69.91 64.27 84.97

Table 6: Part-of-Speech augmented pre-training: effect of POS augmentation on BLiMP tasks using BERT models.
VANILLA, POS and RANDPOS denote vanilla BERT model, BERT model augmented with POS tags, and BERT
model augmented with random POS tags. #H denotes the hidden size of the model. Metric for all tasks is accuracy.

6 Experiments & Results

In this section, we describe the various experi-
ments we conducted, and their results obtained
from the BabyLM evaluation pipeline (Warstadt
et al., 2023; Gao et al., 2021). All models are eval-
uated on BLiMP and the best models from each
category are further evaluated on SuperGLUE and
MSGS tasks.

6.1 BLiMP

To get the ceiling performance of the models,
we use the publicly available checkpoints (GPT-
2, RoBERTa) which are pretrained on much larger
datasets. These results along with the human-level
performance is shown in Table 3. We see that
the performance of these two models is only 2-
3 points below human performance. In addition,
we include the pre-released OPT, RoBERTa and
T5 baselines, which were trained on the BabyLM
data in Table 3. Unlike the publicly available GPT-
2 and RoBERTa models, these baselines display a
substantial gap with human performance.

6.1.1 Input Formatting

To investigate the impact of grouping strategies,
we pretrain the standard BERT model on a variety
of combinations.

Grouping Strategy From Table 4, we see that
ungrouped 8models consistently outperform the
grouped models, across all sequence lengths. We
postulate that this happens due to the nature of
pretraining data. Since a large fraction of the
data is conversation-based, the sentence lengths
are generally short, and each utterance need not
always be a logical continuation of the previous
ones. This might cause confusion while learning
grouped data since we do not impose any atten-
tion masking to stop the model from attending to
unrelated tokens. This finding is not limited to
encoder-only models. We see a similar pattern in
decoder-only models as well, in Table 5. Also,
encoder-only models demonstrate superior zero-
shot generalization on BLiMP tasks in comparison
to decoder-only models. This strengthens our hy-
pothesis in Section 5 that bidirectionality is helpful
for classification tasks. Therefore, all other exper-
iments are conducted on encoder-only models.

Truncation on Documents As expected, the
performance of ungrouped model lags behind the
grouped model when using document-level data.
This discrepancy is primarily due to the truncation,
which discards extreme tails of the document dis-
tribution. However, when truncation is disabled,
the performance of the model improves by 6-13

8 Here, on document-level data, ‘ungrouped’ refers to ‘un-
grouped without truncation’ for fair comparison.
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points on average. It even surpasses the grouped
model by approximately 2 points, confirming our
conclusion drawn in the preceding paragraph.

Maximum Sequence Length Despite the
additional parameters introduced, extending
the maximum sequence length does not yield
additional performance boost. Interestingly, there
seems to be a negative correlation between the
two. To make this point clear, we reduce the
maximum sequence length to an extremely low
value of 32. We see that there is no significant
drop in performance among the models. In fact,
even the document-level models perform well in
this setting. This is because the smaller inputs are
now similar to the sentence-level inputs. We also
see that the difference between the grouped and
ungrouped models also reduce from 13 points to
1 point, which further shows that sentence-level
inputs provide better performance for BabyLM
pretraining.

In summary, we see that the sentence-level un-
grouped model with a sequence length of 128
performs the best with an average BLiMP score
of 79.08. This is around 10 points higher than
the pre-released Roberta-base baseline. Further-
more, this is only 5-6 points behind the ceiling
performance of GPT-2 and RoBERTa-base mod-
els trained on much larger datasets. However it is
difficult to conclude that these models learn effi-
ciently since we have not yet evaluated them on se-
mantic downstream tasks which require the mod-
els to capture long-range dependencies. But we
can safely say that 10M words and sentence-level
training is enough for models to learn simple lin-
guistic phenomena as tested by BLiMP. Hence-
forth, we will perform subsequent experiments us-
ing only the most effective configurations identi-
fied, i.e., sentence-level ungrouped models.

6.1.2 POS Augmentation
To test whether explicitly inducing POS tree struc-
tures during pretraining improves downstream
performance, we embed POS tags and add them
to the input representations. To make sure that any
improvement is not only due to the increase in the
number of parameters,9 we run two ablations with
an effective batch size of 512:10 (i) randomly shuf-

9 This model has an additional embedding matrix for POS
tags.

10 We increase the batch size to improve the runtime of the
experiments. But this causes slight discrepancies in the result

fle the POS tags of a sentence before adding them
to the input – this will make sure that the model
gets no signal from the POS tags, and (ii) increase
the hidden size of the models – this will contain
signals from POS and further increase the number
of learnable parameters.

Table 6 illustrates that the encoder-only mod-
els, when augmented with POS tags, exhibit a
marginal performance improvement of approxi-
mately one point compared to the vanilla mod-
els, regardless of the hidden size. However, mod-
els with shuffled POS tags lag behind by ap-
proximately 4-5 points, suggesting that it is in-
deed beneficial to induce structures during pre-
training. Next, we see that boosting the hidden
size enhances model performance across all set-
tings. However, on closer inspection we see that
the benefit to the standard model is minor, ∼0.1
points. This is surprising since the number of
learnable parameters in the model with the ex-
panded hidden size is almost an order of magni-
tude larger than the model with just the additional
POS embedding matrix. This result further under-
scores the benefits of inducing POS tree structures
into the pretraining process.

6.1.3 StructFormer
All StructFormer experiments are all conducted
using sentence-level ungrouped data, with a max-
imum sequence length of 512.

Though StructFormer outperforms vanilla
BERT when the models are scaled down (Tiny),
it fails to do so on larger model sizes. In fact,
we see in Table 7 that BERT-Mini outperforms a
StructFormer-Base model. We hypothesize: (i)
that 10M words are not enough to learn good
representations of 180K words present in the
StructFormer vocabulary, and (ii) that 10M words
are not big enough to fully train the unsupervised
parsing network which in-turn affects the down-
stream performance. This model undertraining
is evident from the fact that BERT performance
jumps up by 14 points when its size is increased
from Tiny to Base, whereas StructFormer’s
performance only increases by 5 points.

6.2 Other Evaluations

We select the best performing models of each set-
ting mentioned in the previous section and per-
form a full evaluation on SuperGLUE, BLiMP

of our vanilla models between Tables 4 and 6
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BLiMP

Model Size AVG. ANA. ARG. BIND. CTRL. D-N ELLIP. FILLER IRREG. ISLAND NPI QUANT. S-V
AGR STR RAIS. AGR GAP FORM EFFECT AGR

BERT tiny 63.92 73.52 64.05 64.16 62.84 80.35 53.29 62.18 91.96 42.53 49.42 63.14 59.62
STRUCTFORMER tiny 64.89 68.51 63.07 61.61 63.52 81.42 48.38 63.26 88.80 51.64 53.31 72.62 62.53

BERT base 78.00 94.02 73.90 72.35 72.80 94.97 76.50 77.76 87.48 57.25 71.00 73.03 84.99
STRUCTFORMER base 69.79 79.09 67.01 67.81 67.26 92.50 62.64 64.47 89.72 46.11 57.41 78.80 64.66

BERT mini 70.27 88.09 69.63 68.76 65.20 91.49 74.65 68.07 92.67 34.87 56.18 67.31 66.29

Table 7: StructFormer: comparison between BERT and StructFormer architectures on tiny and base sizes. Metric
for all tasks is accuracy.

Model L Format Strategy DYNABENCH BLIMP BLIMP SUPPL. SUPERGLUE MSGS

BERT 128 sent. ungroup 69 79.08 58.19 72.37 81.51
BERT 128 doc. ungr. w/o trun. 68 75.39 61.33 72.28 81.00
BERT-POS 512 sent. ungroup 68 79.67 56.81 71.85 79.64
GPT-2 512 sent. ungroup 67 73.18 55.47 69.23 82.14

Table 8: Results of other benchmarks for the top-performing models evaluated by BLiMP tasks: the score for each
benchmark is reported as an average, detailed scores are in Appendix. Dynabench score aggregates all benchmarks
and is provided by the model submission platform. Ungr. w/o trun., sent. and doc. denote ungrouped without
truncation, sentence-level data and doc. denotes document-level data, respectively. Metric for all tasks is accuracy.

supplement, and MSGS benchmarks11. In Table 8,
we report average scores for each benchmark, and
the final score computed by the model submission
platform (Kiela et al., 2021, Dynabench), for each
model. Detailed performance of each task for all
benchmarks, as well as the pre-released baselines
is given in Table 9, 10, 11, 12, 13, 14, and 15 in
Appendix A.

We see in Table 8, which summarizes the re-
sults and provides the aggregated scores, that
only slight differences exist among the models.
The BERT-Base model, trained on sentence-level
data, demonstrates superior performance overall,
surpassing other models by 1-2 points, consis-
tent with our BLiMP evaluations. Remarkably,
the model trained with document-level inputs dis-
plays a substantial superiority in BLiMP supple-
ment tasks, achieving a lead of nearly 3 points
over models trained on sentences. Surprisingly,
the GPT-2 model, despite underperforming in all
other tasks, exhibits a robust performance on the
MSGS tasks. The BERT model augmented with
POS trees, despite its best performance on BLiMP
tasks, fails to replicate the success across other
benchmarks which suggests that it might have
learned some specific structural patterns helpful
only in certain cases as pointed out in Warstadt
et al. (2020c).

11 The last two benchmarks were released towards the end
of the shared task.

7 Conclusion

In this work, we investigate the effects of data
formatting and the induction of structural biases
in data-efficient pretraining settings. These ex-
periments were performed under the constrains of
limited data, computational resources, and train-
ing time. Our findings indicate data grouping is
the most significant factor affecting downstream
performance due to the nature of the pretraining
data. We also see that when the best data format
considered is employed, inducing structural biases
into the models enhances their downstream perfor-
mance on BLiMP performance by approximately
1%.
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A Appendix

In this section, we provide detailed performance
of the top-performing models mentioned in Sec-
tion 6.2 on each evaluation benchmarks. BLiMP,
BLiMP supplement, SuperGLUE, and MSGS
results are in Table 9, 11, 13 , and 15, respectively.
Pre-released baseline performance for BLiMP
supplement, SuperGLUE, and MSGS tasks are in
Table 10, 12 , and 14, respectively.
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BLiMP

Model L Format Strategy AVG. ANA. ARG. BIND. CTRL. D-N ELLIP. FILLER IRREG. ISLAND NPI QUANT. S-V
AGR STR RAIS. AGR GAP FORM EFFECT AGR

BERT 128 sent. ungroup 79.08 94.68 74.03 72.1 73.66 94.27 77.77 78.63 89.72 59.9 74.05 74.65 85.47
BERT 128 doc. ungr. w/o trun. 75.39 92.28 71.02 68.83 69.02 95.01 83.89 75.16 84.78 49.66 63.36 70.09 81.52
BERT-POS 512 ungroup sent. 79.67 94.73 75.36 72.32 73.95 96.15 82.04 78.51 89.21 59.57 71.50 74.57 88.06
GPT 512 sent. ungroup 73.18 92.94 73.33 69.95 68.36 90.92 64.55 69.39 91.09 44.77 63.06 71.92 77.89

Table 9: BLiMP results: Ungr. w/o trun., sent. and doc. denote ungrouped without truncation, sentence-level data
and doc. denotes document-level data, respectively. Metric for all tasks is accuracy.

BLiMP Supplement

MODEL AVG. HYPERNYM
QA CONGR. QA CONGR. SUBJ.-AUX. TURN
(EASY) (TRICKY) INVERSION TAKING

OPT-125M (Warstadt et al., 2023) 54.72 50.00 54.70 31.50 80.30 57.10
ROBERTA-BASE (Warstadt et al., 2023) 47.54 49.40 31.30 32.10 71.70 53.20
T5-BASE (Warstadt et al., 2023) 43.94 48.00 40.60 21.20 64.90 45.00

Table 10: BLiMP supplement pre-released baseline results: Metric for all tasks is accuracy.

BLiMP Supplement

Model L Format Strategy AVG. HYPERNYM
QA CONGR. QA CONGR. SUBJ.-AUX. TURN
(EASY) (TRICKY) INVERSION TAKING

BERT 128 sent. ungroup 58.19 49.07 70.31 29.70 79.39 62.50
BERT 128 doc. ungr. w/o trun. 61.33 50.23 73.44 36.36 77.70 68.93
BERT-POS 512 ungroup sent. 56.81 49.42 64.06 29.09 80.41 61.07
GPT 512 sent. ungroup 55.47 50 53.12 29.7 85.95 58.57

Table 11: BLiMP supplement results: Ungr. w/o trun., sent. and doc. denote ungrouped without truncation,
sentence-level data and doc. denotes document-level data, respectively. Metric for all tasks is accuracy.

SuperGLUE

Model AVG. COLA SST-2 MRPC QQP MNLI MNLI-MM QNLI RTE BOOLQ MULTIRC WSC(MCC) (F1) (F1)

Majority label (Warstadt et al., 2023) 46.3 0.0 50.2 82.0 53.1 35.7 35.7 35.4 53.1 50.5 59.9 53.2
OPT-125m (Warstadt et al., 2023) 58.9 15.2 81.9 72.5 60.4 57.6 60.0 61.5 60.0 63.3 55.2 60.2
RoBERTa-base (Warstadt et al., 2023) 67.3 25.8 87.0 79.2 73.7 73.2 74.0 77.0 61.6 66.3 61.4 61.4
T5-base (Warstadt et al., 2023) 56.4 11.3 78.1 80.5 66.2 48.0 50.3 62.0 49.4 66.0 47.1 61.4

Table 12: GLUE pre-released baseline results: Metric for all tasks unless otherwise stated.

SuperGLUE

Model L Format Strategy AVG. BOOLQ COLA MNLI MNLI-MM
MRPC MULTIRC QNLI QQP RTE SST-2 WSC(F1) (F1)

BERT 128 sent. ungroup 72.37 66.39 74.78 74.15 74.79 80.29 63.20 78.74 81.79 51.52 88.98 61.45
BERT 128 doc. ungr. w/o trun. 72.28 66.11 72.33 75.36 76.29 77.78 59.58 82.50 84.13 51.52 87.99 61.45
BERT-POS 512 sent. ungroup 71.85 67.22 75.76 73.80 75.03 77.22 60.24 78.70 83.10 49.49 88.39 61.45
GPT 512 sent. ungroup 69.23 64.87 71.44 72.14 72.69 71.84 62.43 64.22 81.71 50.51 88.19 61.45

Table 13: GLUE results: Ungr. w/o trun., sent. and doc. denote ungrouped without truncation, sentence-level data
and doc. denotes document-level data, respectively. Metric for all tasks except MRPC and QQP is accuracy.

MSGS

Model AVG. CR LC MV RP SC CR CR MV MV SC SC
CTRL. CTRL. CTRL. CTRL. CTRL. LC RTP LC RTP LC RP

OPT-125m (Warstadt et al., 2023) 80.9 97.2 82.6 100.0 99.8 88.1 75.3 67.1 66.3 66.8 84.8 62.0
RoBERTa-base (Warstadt et al., 2023) 81.7 93.0 100.0 100.0 100.0 89.0 68.3 66.8 66.6 80.2 67.4 67.4
T5-base (Warstadt et al., 2023) 82.3 95.1 100.0 100.0 99.8 88.7 76.7 69.4 67.0 67.7 72.7 68.0

Table 14: MSGS pre-released baseline results: Metric for all tasks is accuracy.
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MSGS

Model L Format Strategy AVG. CR LC MV RP SC CR CR MV MV SC SC
CTRL. CTRL. CTRL. CTRL. CTRL. LC RTP LC RTP LC RP

BERT 128 sent. ungroup 81.51 96.30 100.00 99.94 100.00 83.47 72.67 72.52 66.61 68.65 68.32 68.08
BERT 128 doc. ungr. w/o trun. 81.00 92.32 100.00 99.89 98.26 95.59 67.17 67.14 66.61 68.04 69.73 66.22
BERT-POS 512 sent. ungroup 79.64 91.08 100.00 99.87 99.99 89.70 71.79 67.05 66.77 68.80 63.30 57.64
GPT 512 sent. ungroup 82.14 92.11 100.00 99.94 100.00 95.51 70.23 69.86 66.61 67.78 75.62 65.91

Table 15: MSGS results: Ungr. w/o trun., sent. and doc. denote ungrouped without truncation, sentence-level data
and doc. denotes document-level data, respectively. Metric for all tasks is accuracy.
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