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Abstract

Language models have seen significant growth
in the size of their corpus, leading to notable
performance improvements. Yet, there has
been limited progress in developing models
that handle smaller, more human-like datasets.
As part of the BabyLM shared task, this study
explores the impact of reinforcement learning
from human feedback (RLHF) on language
models pretrained from scratch with a limited
training corpus. Comparing two GPT-2 vari-
ants, the larger model performs better in sto-
rytelling tasks after RLHF fine-tuning. These
findings suggest that RLHF techniques may be
more advantageous for larger models due to
their higher learning and adaptation capacity,
though more experiments are needed to con-
firm this finding. These insights highlight the
potential benefits of RLHF fine-tuning for lan-
guage models within limited data, enhancing
their ability to maintain narrative focus and
coherence while adhering better to initial in-
structions in storytelling tasks. The code for
this work is publicly at https://github.com/
Zephyr1022/BabyStories-UTSA.

1 Introduction

The recent growth in the size of large language
models (LLMs) has enhanced natural language
processing capabilities, from information extrac-
tion (Agrawal et al., 2022) to language genera-
tion (Stiennon et al., 2020). However, the majority
of research has been concentrated on environments
with high computational power and a large num-
ber of parameters, leaving the emergence of these
capabilities largely uninvestigated in low data and
low resource settings (Brown et al., 2020; Fedus
et al., 2022). Although some studies have looked
into the relationship between model size, training
volume, and performance for LLMs, they have pri-
marily focused on scaling laws in high-compute
settings (Hoffmann et al., 2022). Investigations
into the effects of pretraining at a smaller scale

have been limited (Huebner et al., 2021; Deshpande
et al., 2023). Therefore, it would be interesting to
explore strategies that maximize the efficiency of
pretraining, especially considering the constraints
of limited data availability.

Storytelling is a fundamental human activity
used to share information, impart lessons, and keep
loved ones informed about our daily lives (Bietti
et al., 2019). Teachers leverage children’s love
for stories and their desire to tell them, using sto-
rytelling to promote cognitive and literacy devel-
opment. Storytelling is a critical bridge between
the oral language skills of early childhood and the
more mature language skills associated with read-
ing and writing. The recent BabyLM shared task
aims to address these challenges (Warstadt et al.,
2023). Hence, we report our submission to the
shared task in this paper. Specifically, our study
aims to understand whether we can pretrain a lan-
guage model from scratch on the same amount
of linguistic data available to a child, modeling a
smaller, reduced-vocabulary language. We are in-
terested in assessing a particular model’s effective-
ness and potential for enhancement. Specifically,
we investigate whether the model can demonstrate
high performance and if its performance can be fur-
ther improved using reinforcement learning tech-
niques from human feedback (RLHF) (Fernandes
et al., 2023). This process is analogous to how
teachers instruct children in storytelling, providing
feedback to encourage them to develop more coher-
ent and reasonable narratives. Implementing RLHF
has shown promising results in aligning foundation
models with human preferences. By using RLHF,
models can undergo subtle yet significant improve-
ments, such as refining tone (Liu, 2023), reducing
biases and toxic elements (Bai et al., 2022), and
enabling domain-specific content generation (Bang
et al., 2023). The primary goal of this research is to
explore whether the small pretrained model, with
its limited data size, can also benefit from RLHF,
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thus potentially improving its overall performance.

The performance of small language models
(SLMs) trained on large datasets has been observed
to be poor, generating incoherent and repetitive
text. Training large language models on limited
data can lead to overfitting, making smaller models
a potential solution to prevent overfitting (Warstadt
et al., 2020c). Inspired by how humans acquire
language and the BabyLM shared task, we explore
downsizing the language used in models to observe
the effects of pretraining. The main questions are
whether small language models can generate co-
herent English text and if this ability is limited to
larger, more complex models. It is also questioned
whether the limited capacity of small models to
memorize linguistic features—such as syntax, se-
mantics, morphology, and phonology—leads to
less creative outputs compared to larger models.
For example, linguistic features are crucial for un-
derstanding and generating text, with a broader
grasp potentially enabling more creative language
use. Larger models, with their increased capacity,
might capture a wider range of these features, possi-
bly leading to more creative and nuanced language
outputs. Conversely, small models might only learn
basic or frequent linguistic patterns, potentially lim-
iting their creative language generation capabilities.
Previous research indicates that models can learn
linguistic features with limited pretraining data but
need more data to prioritize linguistic generaliza-
tions over superficial ones (Warstadt et al., 2020c).
Some models fail to effectively use the linguistic
features they learn during fine-tuning for natural
language understanding tasks. The study aims to
investigate whether GPT-2 models of varying sizes
can acquire specific language patterns when fine-
tuned with reinforcement learning and human feed-
back, aiming to enhance the model’s storytelling
abilities.

In summary, in this paper, we pretrain GPT-2-
base model with a parameter of 125M from scratch
and compare it with the larger GPT2-Large model,
which has a parameter of 774M, making it approx-
imately six times larger. Both models are trained
using a limited dataset provided from the BabyLM
Challenge, which consists of approximately 100M
words (Warstadt et al., 2023). The dataset encom-
passes various sources, including child-directed
speech, transcribed speech from multiple sources,
children’s books, and Wikipedia. Subsequently, we
use the RLHF technique to fine-tune both models

and evaluate their ability to acquire new linguistic
features through human feedback and also perform
human evaluation on generated stories.

2 Related Work

Research has shown that smaller models tend to un-
derperform when trained on large datasets, making
the study of model downscaling a non-trivial (Turc
et al., 2019). Previous investigations into smaller
models have primarily centered around distillation
processes (Sanh et al., 2019), with the aim of max-
imizing performance while reducing the number
of parameters involved. Huebner et al. (2021) is
one of the most relevant papers to our work, where
they found that a small language model trained on
child-directed speech can yield results comparable
to larger language models when used in specific
probing tasks. And another study, Deshpande et al.
(2023) trained several models to explore scaling in
low-compute environments, assessing their perfor-
mance on a modified version of GLUE.

Our research, however, is driven by a desire to
understand if small pretrained models can benefit
from Reinforcement Learning from Human Feed-
back (RLHF), potentially improving their overall
performance despite their limited data size. Two
previous studies have a direct relation to this work:
the first employed human ranking feedback to train
summarization models using reinforcement learn-
ing (RL) (Stiennon et al., 2020), and the second
used stories to generate a value-aligned reward sig-
nal for RL agents, aimed at mitigating hallucination
behavior (Riedl and Harrison, 2016).

3 Data

In this section, we describe the pertaining data used
for the language models and the data used for the
reinforcement model.

3.1 Pretraining Data

We pretrain GPT-2 models using the dataset
from the STRICT track in the BabyLM Chal-
lenge (Warstadt et al., 2023), which includes var-
ious types of corpora, both spoken-based and
written-based. Examples of the spoken-based cor-
pus include CHILDES (MacWhinney, 2000), the
British National Corpus (BNC) dialogue section,
OpenSubtitles (Lison and Tiedemann, 2016), the
QCRI Educational Domain Corpus (Abdelali et al.,
2014), and the Switchboard Dialog Act Corpus
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(Stolcke et al., 2000). The written-based corpus in-
cludes the Children’s Book Test (Hill et al., 2016),
the Children’s Stories Text Corpus, the Standard-
ized Project Gutenberg Corpus (Gerlach and Font-
Clos, 2020), Wikipedia, and Simple Wikipedia. For
example, the Children’s Book Story and Wikipedia
corpora stand in contrast to dialogue or subtitle-
based corpora, which mostly consist of transcribed
speech, the primary language input for children.
Wikipedia, in particular, is a compilation of writ-
ten language rather than spoken dialogues. Most
of its articles are composed by professionals who
possess subject-matter expertise and adhere to rig-
orous standards of grammatical correctness. These
corpora contain a variety of sources with approx-
imately 100 million words, corresponding to the
linguistic competence expected at the onset of ado-
lescence (around 13 years old).

3.2 Reward Model Data

In this paper, we construct a reward model dataset
for reinforcement learning by selecting 100 sen-
tences from the STRICT track of the Babylm Chal-
lenge dataset. These sentences, serving as prompts,
are derived from two subsets in the Babylm dataset:
the Standardized Project Gutenberg and the Simple
Wikipedia corpus development sets, with a prereq-
uisite that each sentence includes characters and
plots. These prompts are then used to generate two
short stories each from the GPT-2 Base and GPT-2
Large models, beginning with the prefix “write me
a story starting with”. To enhance story diversity,
we set a maximum length of 128 tokens and en-
force a minimum of 10 new tokens in the generated
stories. The generation code incorporates a beam
size of 7 to optimize the story quality by exploring
various potential continuations.

The purpose of collecting feedback is to align
the model’s behavior with some goal behavior. For
example, we aim for the model to generate stories
consistent with the background plot, coherent, non-
repetitive, devoid of nonsensical sentences, and
maintain a clear topic or logical structure. Rating
the quality of a story accurately presents challenges
due to its potentially subjective nature and the vary-
ing expectations of readers regarding emotional
connection and engagement. Rather than directly
estimating a generated story quality through scale-
based annotation, we treat it as a latent variable to
be inferred from relative comparisons. Following
prior work in NLP on annotating social aspects

of language (Pei and Jurgens, 2020), we adopt a
method similar to Best-Worst Scaling (BWS) (Lou-
viere et al., 2015; Kiritchenko and Mohammad,
2016) to generate comparison data on people’s pref-
erences. Intuitively, it is easier for annotators to
identify the best and worst stories from a set of sto-
ries than it is for them to provide numerical assess-
ments. The process involves asking two student
annotators to choose from sets of stories, identi-
fying the best (most preferred) and worst (least
preferred) stories in each choice set. We provide
four stories for the annotators to choose from. This
method provides more information per choice set
than traditional preference methods and enables a
more precise ranking of items in terms of prefer-
ence. For instance, if we have stories A, B, C, and
D, and A is ranked as the best while D is ranked
as the worst, then we create the following pairs:
A > B, A > C, A > D, B > D, and C > D, re-
sulting in a total of 500 additional pairs for reward
model training from 100 best-worst annotations. A
> B means that the model should learn to provide
a higher score to A because it was ranked higher
than B. This is inferred because A was marked as
the best story.

3.2.1 Agreement for Reward Model Data
Annotation

Krippendorff’s alpha, introduced by Krippendorff
(1970), is a statistical measure commonly used for
assessing the level of agreement between two or
more annotators across various categories. Its ad-
vantage lies in its versatility, as it can be applied to
not only nominal data but any measurement scale,
such as Best-Worst Scaling.

In our case, two graduate student annotators
were designated to annotate human feedback data.,
which yielded a Krippendorff’s alpha agreement
score of .4657. To address disagreements, the two
annotators discuss each story example together.
They reconcile differences through discussion and
unanimously select the best and worst stories based
on the given story prompt.

4 Method

This section discusses pretraining data, the devel-
opment of the data tokenizer, language model con-
figuration, the objective of pretraining from scratch,
and the process of fine-tuning using reinforcement
learning with human feedback.
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4.1 Tokenizer

Our model uses a sub-word vocabulary built with
Byte-Pair Encoding (BPE) (Sennrich et al., 2016),
an approach initially developed for text compres-
sion. Later, this technique was applied by Ope-
nAI for tokenization during the pretraining stage
of the GPT model (Radford et al., 2019). Rather
than maintaining the original vocabulary size of
50,257 used in the GPT-2 model, we developed
a custom tokenizer based on a vocabulary size of
32,001. This custom tokenizer is trained on the col-
lective set of all training corpora from STRICT
track in the BabyLM Challenge, applying the
ByteLevelBPETokenizer from the Hugging Face
Tokenizers library1.

Prior research informed our decision to signifi-
cantly reduce the vocabulary size. Studies suggest
a vocabulary size of about 32,000 tokens is a good
balance for a single-language model (Kudo, 2018).
This size carefully balances the model’s proficiency
in handling less common words while preserving
its computational efficiency.

4.2 Model Architecture and Configuration

Models we pretrained in our experiments using the
default configuration setting of GPT-2 (Radford
et al., 2019). In these settings, we employed a con-
text length of 1042 tokens and set the maximum
training epoch limit to 15. The restriction to 15
epochs was primarily due to constraints on train-
ing time and GPU resources. We conducted the
training of the GPT-2 Base model on an NVIDIA
GeForce GTX 1080 Ti, while the GPT-2 Large
model was trained on an NVIDIA RTX A6000
GPU. The training time for the base model was ap-
proximately 72 hours, while it extended to around
216 hours for the large model. To train, we used the
Lion optimizer (Chen et al., 2023), configured with
a learning rate of 1e-5 and a weight decay of 1e-2.
We also integrated Triton, a GPU programming
language detailed by (Tillet and Cox, 2019), to
optimize hardware performance and implemented
mixed-precision computations using the ’bfloat16’
format for efficient resource utilization (Wang and
Kanwar, 2019).

For model selection, we chose the best model
across all epochs based on the average score
on two datasets: the Question-answering Natu-
ral Language Inference (QNLI) (Demszky et al.,
2018) and the SST-2 Binary Classification Bench-

1https://github.com/huggingface/tokenizers

mark (Socher et al., 2013). We evaluated the mod-
els’ performances on these benchmarks using the
F1 score. Additionally, the perplexity scores on the
validation dataset for our models were recorded as
24.10 for the GPT-2 Base model and 22.73 for the
GPT-2 Large model.

4.3 Reward Model
The reward model (RM) is designed to capture hu-
man preferences, and ideally, we could fine-tune
it using Reinforcement Learning and human anno-
tations for every output returned by the language
model. However, due to practical constraints like
workload and time limitations, it is not feasible
for humans to provide enough feedback for each
optimization iteration. As an alternative, a more
effective approach is to train a reward model that
simulates the evaluation process carried out by hu-
mans. This RM will evaluate any text and assign a
scalar reward value to the sentences, where higher
values indicate high-quality samples. Following
Stiennon et al. (2020), training reward models often
involve using a paired comparison dataset between
two responses generated for the same input.

To train our reward models, We initialize the
weights of the reward model by leveraging a pre-
trained GPT-2 Large model as described above,
then we add a randomly initialized linear head that
outputs a scalar value to form the reward model
rθ(x, y). We train this model to predict which gen-
erated story y ∈ {y0, y1}, where y0 is the chosen
(good) response to the prompt as labeled by our
annotators and y1 is the rejected (bad) response.
In practice, this is where our annotators ranked
y0 > y1. The model is trained using the loss func-
tion

loss(rθ) = −E(x,y0,y1,i)∼D

[
log(σ(rθ(x

i, yi0)

− rθ(x
i, yi1))

]

where σ is the sigmoid function and D is the set
of all training triplets in our dataset, i denotes the
index of a specific data point in the dataset D. In-
tuitively, the model learns to give a larger score to
the prompts with a higher rank. We have config-
ured the reward model to run for a maximum of 10
epochs, with a set learning rate of 1e-5.

4.3.1 Proximal Policy Optimization
After we train the reward model, we treat the logit
output of the reward model as a reward that we
optimize policy model outputs using reinforcement
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learning, specifically with the Proximal Policy Op-
timization (PPO) algorithm (Schulman et al., 2017).
During the RL fine-tuning with PPO phase, we use
the learned reward function to provide feedback to
the language model. In particular, we formulate the
following optimization problem

max
πRL(y|x)

Ex∼D,y∼πRL(y|x)
[
r(x, y)

]

−βDKL log

[
πRL(y|x)
πSFT (y|x)

]

where r(x, y) is the reward model’s output, β is a
hyper-parameter controlling the deviation from the
initial policy. Our optimization focuses on the pol-
icy πRL(y|x) using Proximal Policy Optimization
(PPO), with initialization based on the pretrained
language model policy πSFT (y|x) (Stiennon et al.,
2020; Rafailov et al., 2023).

To encourage exploration and prevent the policy
from getting stuck in a single mode, the optimiza-
tion uses the Kullback-Leibler (KL) divergence
term. This term also discourages the policy from
generating outputs that differ significantly from
those seen by the reward model during training,
thereby maintaining coherence in the generated
text. Without this penalty, the optimization might
generate gibberish text that tricks the reward model
into providing a high reward. In our implemen-
tation, we used the trlX library with its default
settings2. The algorithm was executed with a maxi-
mum of 5 epochs and a sequence length of 512, and
the run spanned around 208 hours. In our approach,
we used the default hyperparameter provided by
the trlX library, which employs Ray Tune for hy-
perparameter tuning. This choice was primarily
driven by the significant time and GPU resource
constraints associated with training the PPO model,
making it a pragmatic decision to leverage the pre-
configured settings of trlX. Although we experi-
mented with random modifications to some hyper-
parameters, the outcomes were less satisfactory as
compared to the default settings of trlX. Hence, the
decision to restrict the training to 5 epochs was
in alignment with these considerations, ensuring a
balance between computational feasibility and the
pursuit of meaningful reward training.

4.4 Evaluation Metrics and Datasets
To assess the performance of our models, we em-
ployed various automated evaluation metrics used

2https://github.com/CarperAI/trlx

in the BabyLM shared task and our own human
evaluation. The BabyLM shared task had two ma-
jor sets of evaluations: zero-shot evaluation and
fine-tuned evaluation. We describe each evaluation
task below.

Zero-shot Evaluation. BLiMP, introduced by
Warstadt et al. (2020a), is a series of zero-shot
tasks included in the evaluation. BLiMP assesses
the ability of language models to handle category
membership, provide congruent answers to spe-
cific types of questions, and recognize grammatical
questions. It serves as a behavioral probe, contain-
ing pairs of test sentences that isolate particular
phenomena in syntax and morphology, such as is-
land effects and determiner-noun agreement. Es-
sentially, BLiMP is a challenge set designed to eval-
uate the linguistic knowledge of language models,
focusing on major grammatical phenomena in En-
glish. The BLiMP Supplement benchmark consists
of BLiMP-style minimal pairs that specifically fo-
cus on aspects not covered by BLiMP. These addi-
tional aspects include discourse-level acceptability
across multiple speakers and question formation.

Fine-tuned Evaluation. Two datasets are used
for the fine-tuned evaluation: SuperGLUE and the
Mixed Signals Generalization Set (MSGS). Su-
perGLUE (Wang et al., 2019), an advanced ver-
sion of GLUE (Wang et al., 2018), is a bench-
mark for assessing progress in general-purpose lan-
guage understanding technologies. It comprises
a public leaderboard and a single-number perfor-
mance metric for various tasks. These include
CoLA, which evaluates the grammatical accept-
ability of English sentences; SST-2, which predicts
the sentiment of movie review sentences; MRPC,
which determines semantic equivalence between
sentence pairs; QQP, another task focused on se-
mantic equivalence; MNLI and MNLI-mm, which
predict the relationship between a premise and a
hypothesis sentence; QNLI, which matches a ques-
tion to a paragraph containing the answer; RTE,
which determines if a sentence entails a given hy-
pothesis; BoolQ, which answers yes/no questions
about a text passage; MultiRC, which identifies
true and false answers given a context paragraph
and a question; and WSC, a coreference resolution
task. These tasks, designed to be challenging, rep-
resent a broad spectrum of language understanding
capabilities, making SuperGLUE a robust tool for
evaluating language models.
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Model AA AS BD CR DNA E FG IF IE NL Q SV H QACe QACt SAI TT AVG

Baselines

OPT-125m 94.9 73.8 73.8 72.2 93.1 80.5 73.6 80.8 57.8 51.6 74.5 77.3 46.3 76.5 47.9 85.3 82.9 73.1
RoBERTa-base 89.5 71.3 71.0 67.1 93.1 83.8 68.0 89.6 54.5 66.3 70.3 76.2 50.8 34.4 34.5 45.6 46.8 65.5
T5-base 66.7 61.2 59.4 59.8 53.8 49.1 70.0 75.5 43.6 45.6 34.2 53.2 51.1 45.3 25.5 69.2 48.9 53.7

Ours

GPT2-Base 95.4 75.5 74.0 67.0 90.8 77.7 70.0 87.7 53.6 57.6 79.0 75.8 50.2 60.9 41.8 85.0 67.9 71.2
GPT2-Base-PPO 95.5 75.4 73.6 67.0 90.8 78.3 70.2 86.7 54.4 58.0 77.7 75.2 49.9 59.4 40.0 85.7 68.2 70.9

GPT2-Large 96.9 78.7 74.1 71.0 92.0 79.0 73.8 87.2 60.8 60.9 75.9 81.1 49.2 71.9 49.7 79.8 73.6 73.9
GPT2-Large-PPO 97.0 78.8 74.1 71.0 92.1 79.3 73.7 87.1 60.7 60.8 75.9 81.1 49.4 71.9 50.3 79.6 73.2 73.9

Table 1: Performance on BLiMP benchmarks. Evaluation tasks map accordingly: Anaphor Agr.:AA, Agr. Structure:
AS, Binding: BD, Control/Raising: CR, D-N Agr.: DNA, Ellipsis: E, Filler-Gap: FG, Irregular Forms: IF, Island
Effects: IE, NPI Licensing: NL, Quantifiers: Q, S-V Agr.: SV, Hypernym: H, QA Congruence (easy): QAC(e), QA
Congruence (tricky): QAC(t), Subj.-Aux. Inversion: SAI, Turn Taking: TT. The overall largest scores are in bold.

The MSGS dataset, introduced by Warstadt et al.
(2020b), is a diagnostic tool designed to evaluate
the preferences of language models for either lin-
guistic features, such as specific syntactic construc-
tions, or surface features, like the presence of a
word in a certain position. The primary objec-
tive of the MSGS tasks is to determine whether
a pretrained model leans more toward linguistic
or surface generalizations during the fine-tuning
process. Fine-tuning on self-supervised linguis-
tic tasks proves effective because it equips models
with features beneficial for language understanding.
Furthermore, pretrained models are not only capa-
ble of representing these linguistic features but also
tend to use them preferentially during fine-tuning.

To maintain consistency and ensure fair com-
parisons, we adopted the default hyperparameter
settings recommended by Gao et al. (2021). Our
only modification was adjusting the batch size to
32 due to GPU limitations. These evaluation proce-
dures allowed us to thoroughly assess the models’
capabilities and compare their performance across
different tasks. Our experiments report the average
scores of all performance metrics across tasks.

Human Evaluation. Inspired by the TinySto-
ries (Eldan and Li, 2023), we assess the four key
story generation outcome metrics of grammar (how
grammatically correct the story is), creativity (how
original and inventive the story is), consistency
with the story’s beginning (how well the story ad-
heres to the given prompts), and plot coherence
(whether the plot of the story makes sense). We ran-
domly selected 100 prompts from the ROCStories
dataset (Mostafazadeh et al., 2016). Each prompt
was composed of a story title and the first sentence.
We fed these prompts to the model, and it generated
short stories based on the given prompts. To assess

the quality of the generated stories, we enlisted the
help of a graduate student evaluator. The evaluator
was presented with the story’s beginning (title +
first sentence) and the completed story generated
by the model. They were then asked to rate the com-
pleted story on a scale of 1 to 10, considering as-
pects such as grammar, creativity, consistency with
the story’s beginning, and plot coherence. This hu-
man evaluation process provided valuable insights
into the model’s performance across these critical
dimensions.

5 Results

In this section, we report the results of the auto-
mated BabyLM metrics and our human evaluation
for story generation.

Performance on BLiMP benchmarks. Shown
in Table 1, the GPT2-Large and GPT2-Large-PPO
models outperform the GPT-base variants on the
BLiMP task with an average score of 73.9, ex-
celling in many specific tasks. For example, GPT2-
Large does well in tasks like Island Effects, NPI
Licensing, and Subject-Verb Agreement, whereas
GPT2-Large-PPO stands out in the QA Congru-
ence (tricky) task. The GPT2-Base and GPT2-
Base-PPO models score lower with averages of
71.2 and 70.9, respectively, suggesting that model
size (base versus large) plays a crucial role in de-
termining performance. However, for the BLiMP
benchmark, PPO training has little impact on model
performance. However, more experiments on dif-
ferent architecture could potentially point in a dif-
ferent direction.

Performance on SuperGLUE benchmarks. In
Table 2, we report the performance of the mod-
els on the SuperGLUE benchmarks, which assess
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Model CoLA SST-2 MRPC (F1) QQP (F1) MNLI MNLI-mm QNLI RTE BoolQ MultiRC WSC AVG

Baselines

Majority label 69.5 50.2 82.0 53.1 35.7 35.7 35.4 53.1 50.5 59.9 53.2 52.6
OPT-125m 73.7 86.6 82.1 77.8 70.1 71.9 80.1 67.7 66.0 61.1 59.0 72.4
RoBERTa-base 75.9 88.6 80.5 78.5 68.7 78.0 82.3 51.5 59.9 61.3 61.4 71.5
T5-base 76.3 88.0 85.9 79.7 71.5 74.0 83.1 60.6 69.0 62.4 60.2 73.7

Ours

GPT2-Base 69.5 83.3 78.1 72.2 60.0 61.3 57.0 49.5 59.9 46.8 42.2 61.8
GPT2-Base-PPO 69.5 81.3 82.0 67.3 60.9 61.7 61.4 45.5 59.9 46.8 39.8 61.5

GPT2-Large 69.5 82.7 83.0 32.4 61.4 62.2 54.4 58.6 66.8 46.8 61.5 61.7
GPT2-Large-PPO 69.5 84.3 82.3 66.7 59.5 64.0 79.6 53.5 67.4 46.8 61.5 66.8

Table 2: Performance on (Super)GLUE benchmarks. The task shortcuts correspond to the following datasets:
Corpus of Linguistic Acceptability (CoLA), the Stanford Sentiment Treebank (SST-2), the Microsoft Research
Paraphrase Corpus (MRPC), the Quora Question Pairs (QQP), the Multi-Genre Natural Language Inference (MNLI),
the mismatched version of MNLI (MNLI-mm), the Question Natural Language Inference (QNLI), the Recognizing
Textual Entailment (RTE), the BoolQ, the Multi-Sentence Reading Comprehension (MultiRC), and the Winograd
Schema Challenge (WSC). The overall largest scores are in bold.

Model CR_C LC_C MV_C RP_C SC_C CR_LC CR_RTP MV_LC MV_RTP SC_LC SC_RP AVG

Baselines

OPT-125m 97.2 82.6 100.0 99.8 88.1 75.3 67.1 66.3 66.8 84.8 62.0 80.9
RoBERTa-base 93.0 100.0 100.0 100.0 89.0 68.3 66.8 66.6 80.2 67.4 67.4 81.7
T5-base 95.1 100.0 100.0 99.8 88.7 76.7 69.4 67.0 67.7 72.7 68.0 82.3

Ours

GPT2-Base 96.7 99.8 99.7 100.0 95.5 68.2 68.3 66.6 67.0 74.6 76.5 83.0
GPT2-Base-PPO 85.9 99.8 99.9 99.9 93.3 71.7 67.9 66.6 67.0 68.4 70.5 81.0

GPT2-Large 91.2 98.5 99.9 100.0 94.0 67.3 68.5 66.6 66.8 71.9 69.4 81.3
GPT2-Large-PPO 93.6 99.8 99.4 100.0 96.2 70.0 66.7 66.6 66.9 73.1 68.1 81.9

Table 3: Performance on MSGS benchmarks. The MSGS shortcuts correspond to the respective tasks as follows:
CR_RTP maps to control_raising_relative_token_position, CR_LC maps to control_raising_lexical_content_the,
SC_RP maps to syntactic_category_relative_position, SC_LC maps to syntactic_category_lexical_content_the,
MV_RTP maps to main_verb_relative_token_position, MV_LC maps to main_verb_lexical_content_the. The
shortcuts RP_C, LC_C, SC_C, CR_C, and MV_C correspond to the tasks relative_position_control, lexi-
cal_content_the_control, syntactic_category_control, control_raising_control, and main_verb_control, respectively.
The overall largest scores are in bold.

a range of language understanding abilities. The
GPT2-Large-PPO model stands out with the high-
est average score of 66.8, underlining the poten-
tial for enhanced performance using larger mod-
els fine-tuned with PPO. Other models present
comparable average scores across the SuperGLUE
tasks. Compared to the Majority Label base-
line, the GPT-2 models exhibit varied levels of
performance enhancement across different tasks.
Specifically, the GPT2-Base model outperforms
the baseline in SST-2, QQP (F1), MNLI, MNLI-
mm, QNLI, and BoolQ. Similarly, the GPT2-Base-
PPO model surpasses the baseline in the same tasks:
SST-2, QQP (F1), MNLI, MNLI-mm, QNLI, and
BoolQ. The GPT2-Large model demonstrates supe-
rior performance over the baseline in SST-2, MRPC
(F1), MNLI, MNLI-mm, QNLI, BoolQ, and WSC.

While, the GPT2-Large-PPO model outperforms
the majority baseline in all tasks except for CoLA
and MultiRC, marking significant performance im-
provement in SST-2, MNLI-mm, and QNLI, with
an increase of 34.1, 28.3, and 44.2 respectively.

The performance across various models and
tasks exhibits considerable variability, showing that
different models may excel in distinct language un-
derstanding domains. The superior scores of the
GPT2-Large-PPO model suggest that larger models
fine-tuned with PPO could enhance performance,
yet further examination reveals inconsistencies. Fi-
nally, we note that the PPO training only improves
the performance of the GPT2-Large model, sug-
gesting that PPO training may require a model with
a minimum number of parameters to work in the
limited data setting. However, more experiments
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Model Overall Nouns Predicates Function words

GPT2-Base 2.05 1.98 1.84 2.62
GPT2-Base-PPO 2.06 1.99 1.83 2.66

GPT2-Large 2.05 1.98 1.83 2.63
GPT2-Large-PPO 2.05 1.98 1.82 2.63

Table 4: Performance on the Age-of-acquisition bench-
marks. This table presents Mean Absolute Deviation
(MAD) scores in months, comparing the actual average
age-of-acquisition (AoA) of words by American English
speaking children with the predicted AoA based on the
model’s average surprisal scores. A lower MAD score
indicates a better fit between the actual and predicted
AoA.

are needed to confirm this finding.

Performance on MSGS benchmarks Table 3
shows the results of testing GPT2 models of differ-
ent sizes on the MSGS benchmark. These results
help us understand how well the models use and
generalize different language and surface features.
Among the models, the GPT2-Base model outper-
forms other models with the highest average score
of 83.0. This suggests that GPT2-Base, despite
being a smaller model, has effectively learned to
generalize across a range of linguistic and surface
features. This might be due to the model’s efficient
use of its limited parameters. Instead of overfitting
to less important details in the training data.

Performance on Age-of-acquisition benchmarks
According to Portelance et al. (To Appear), a
smaller mean absolute deviation (MAD) score in-
dicates a better alignment between the model’s pre-
dictions and the actual average age-of-acquisition
(AoA) of words in children. Table 4 shows sim-
ilar MAD scores across all models for all word
categories (Overall, Nouns, Predicates, and Func-
tion words). This suggests that all models exhibit
similar levels of accuracy in predicting the AoA
of words, and their word-learning sequences align
closely with the natural language acquisition pat-
terns observed in children.

Performance on Human Evaluation. In Table 5,
we report the results of our human evaluation. The
findings indicate that the GPT2-Base and GPT2-
Large models exhibit comparable average grammar
scores. However, the GPT2-Base-PPO model per-
forms significantly worse (p-value < 0.001) than
the GPT2-Base in grammar and creativity evalua-
tions. The result is consistent with the BablyLM
automated evaluation metrics, where the GPT-Base-

Model Gram. Creat. Consist. PCoh

GPT2-Base 7.84 6.11 3.49 1.94
GPT2-Base-PPO 6.82*** 5.66** 3.37 1.89

GPT2-Large 7.65 6.23 3.94 2.35
GPT2-Large-PPO 7.62 6.21 4.48** 2.87*

Table 5: Performance on Human Evaluation. Gram.
(Grammar), Creativity (Creat.), Consistency (Consist.),
and Plot Coherence (PCoh). Significant differences
based on a paired t-test are marked with * (p-value < .1),
** (p-value < .05), and *** (p-value <.001).

PPO generally underperforms GPT-Base. Table 6
shows several examples from our TinyStory analy-
sis. Specifically, the GPT2-Base-PPO tends to gen-
erate repetitive and lengthy stories, likely contribut-
ing to its poorer grammar and creativity perfor-
mance. Furthermore, when comparing the GPT2-
Large and GPT2-Large-Base models in Table 5,
their performance levels for Grammar and Creativ-
ity are similar, showing that PPO had minimal im-
pact on the Large model for both metrics.

We also find significant differences in Con-
sistency (Const.) and Plot Coherence (PCoh)
between GPT-Large and GPT2-Large-PPO. In-
tuitively, these metrics evaluate generative mod-
els’ capability in following the beginning of the
story background rather than just content creation.
Our findings indicate that the performance scores
for GPT2-Base and GPT2-Base-PPO models are
fairly similar, but both are lower than those of the
GPT2-Large model variants. Again, this indicates
that the large models outperform the smaller mod-
els, even though we trained on a relatively small
dataset. Moreover, the GPT2-Large-PPO model
significantly improves consistency and plot coher-
ence scores compared to the standard GPT2-Large
model. This suggests that large models (at least
GPT2-Large in our case) can integrate the reward
model to generate better outputs than the GPT2-
base (smaller model).

We analyze the large model outputs in Table 6.
Specifically, in the second story from Table 6, the
beginning of the story is set as “Awkward I was
driving into the McDonald’s beside school.” Dis-
tinct differences can be seen when comparing the
narrative continuations generated by the GPT2-
Large and GPT2-Large-PPO models. For example,
the GPT2-Large model diverges from the initial
context, transitioning abruptly from the act of driv-
ing into McDonald’s to a sudden need to return to
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Prompt gpt2-base gpt2-base-ppo gpt2-Large gpt2-large-ppo

Aquarium closed Yester-
day I went to the aquar-
ium.

It was on the way to the
museum and there was a
lot of fish in it. (10/7/7/7)

It was one of the most important
things I’ve ever seen in my life.
The first thing I want to tell you
is that we are not going to be able
to help each other. The first thing
I want to tell you is that we are
not going to be able to help each
other. We are going to be able to
help each other. (6/6/1/1)

" It was full of fish, and
there were so many differ-
ent kinds of things to eat.
" (10/8/8/7)

" It was full of fish. He
looked at it and he said,
""I’m going to tell you a
story."" (10/9/8/7)

Awkward I was driving
into the McDonald’s be-
side school.

I’m going to tell you some-
thing,"" he said. ""You’re
going to have to do it,
don’t you? " (9/7/4/1)

"I don’t know what to do,"" he
said. ""I’m not going to tell any-
one about it."" " (9/7/4/1)

It was about two-and-a-
half hours ahead of my
time. It was then that I
realized that I had to get
back to work. (9/7/4/1)

"I didn’t know how to
drive, but I thought it was
great fun. " (10/7/7/7)

Tie Game The teams were
tied and this was the last
inning.

It was also the first time
that Tie Game would be
able to play the part of the
game. (6/2/9/8)

" ""Tie Game"" was released on
August 26, 2010. It is the second
single from Tie Game." (8/7/8/1)

It’s hard to imagine how
easy it would have been
for them to come up with
us. (9/6/2/1)

" That’s what I’m trying
to figure out, so let’s try it
again. " (9/6/2/1)

Table 6: Performance comparison of various models on grammar, creativity, consistency with the beginning of
the story, and plot coherence. The scores in the parentheses represent the evaluations for Grammar, Creativity,
Consistency, and Plot, respectively.

work. This abrupt shift disrupts the narrative flow
and doesn’t seamlessly connect with the story’s be-
ginning. On the other hand, the GPT2-Large-PPO
model manages to retain focus on the primary ac-
tivity of driving in its generated story. Although it
introduces an inconsistency by stating the character
doesn’t know how to drive, it maintains the plot
around the theme of a character recklessly driving
without knowing how to do so. This suggests that
the GPT2-Large-PPO model has a stronger adher-
ence to the initial instructions and makes a better
attempt at following them.

Summary of Findings and Limitations. Over-
all, we found that the GPT-2-Large generally
works better than GPT-2-base with and without
PPO. Also, PPO made significant improvements
to the model’s consistency and plot coherence
on the storytelling task when used with the large
model. However, PPO generally hurts performance
with the smaller GPT-2-Base model.

There were several limitations to our study. First,
a major limitation of this work is the lack of com-
parison with architectures beyond GPT-2. More-
over, comparisons to even larger models should
be made in the future. We were limited by the
computational resources required for large-scale
testing during the BabyLM shared task timeline.
Next, we had a limited-size reward model dataset.
Future work should explore the impact of reward
model dataset size and variety. Future work should
explore the impact of reward model dataset size
and variety. Additionally, the study did not explore

the hyperparameter tuning for the reward model
and the loss function in depth. Exploring different
settings for hyperparameters and examining alter-
native methods for reward training, such as varying
the weighting of the loss terms, could yield differ-
ent results and improve the model’s performance
in the storytelling task. Finally, we only had one
annotator for the human evaluation and were lim-
ited in size. A more extensive human study could
find more intricate differences between the models.

6 Conclusion

In this study, we investigated whether the small
pretrained model, with its limited data size, can
also benefit from RLHF, thus potentially improv-
ing its overall performance. We evaluate the two
variants of the GPT-2 model: the GPT-2 Base
model with 125M parameters and the larger GPT-2
Large model with 774M parameters. Both variants
are pretrained on the 100M words BabyLM Chal-
lenge dataset. We then fine-tune both models using
RLHF and evaluate their ability to acquire new lin-
guistic patterns and storytelling ability, including
generating coherent and creative English text while
adhering to the story background. We observe that
RLHF has a little or negative effect on the smaller
model. However, a substantial increase in model
parameters noticeably enhances the larger model’s
performance in storytelling tasks. In summary, our
experiments shed light on the behavior of small lan-
guage models fine-tuned using RLHF to perform
storytelling tasks in a limited dataset setting.
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