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Abstract

Edge probing tests are classification tasks that
test for grammatical knowledge encoded in to-
ken representations coming from contextual en-
coders such as large language models (LLMs).
Many LLM encoders have shown high perfor-
mance in EP tests, leading to conjectures about
their ability to encode linguistic knowledge.
However, a large body of research claims that
the tests necessarily do not measure the LLM’s
capacity to encode knowledge, but rather re-
flect the classifiers’ ability to learn the problem.
Much of this criticism stems from the fact that
often the classifiers have very similar accuracy
when an LLM vs a random encoder is used.
Consequently, several modifications to the tests
have been suggested, including information the-
oretic probes. We show that commonly used
edge probing test datasets have various biases
including memorization. When these biases
are removed, the LLM encoders do show a
significant difference from the random ones,
even with the simple non-information theoretic
probes 1.

1 Introduction

Word embeddings generated from large corpora
can be expected to encode knowledge about syn-
tax and semantics (Manning et al., 2020). This is
certainly truer for the contextual ones from large
language models such as Elmo (Peters et al., 2018),
BERT (Devlin et al., 2019) or RoBERTa(Liu et al.,
2019b). Edge probing (EP) tests (Liu et al., 2019a;
Tenney et al., 2019a) are standard classification
tasks to probe for such knowledge.

Consider the sentence “The Met is closing soon”,
the word “Met” functions as a noun, referring to
a museum rather than the past form of the verb
“meet”. To determine its part of speech, humans

*The authors contributed equally.
1 The code is available at https://github.com/

Josh1108/EPtest.git

rely on the context words “the” and “is”. If a classi-
fier predicts this token as a noun using only the rep-
resentation from a contextual LLM encoder such
as BERT (i.e., without using the entire sentence), it
is implied that these contextual signals are encoded
within the token representation itself. EP tests aim
to uncover such syntactic and semantic knowledge
encoded (§2).

EP tests are however indirect measures of such
knowledge. A high accuracy of an encoder in an
EP test for a grammatical property in itself does not
necessarily guarantee that the said knowledge is en-
coded. Instead, the score should be significantly
higher than the same from a baseline, which is typ-
ically set as static embedding encoders (Belinkov
and Glass, 2017) or contextual encoders with ran-
dom weights (Zhang and Bowman, 2018; Tenney
et al., 2019a; Liu et al., 2019a).

NLP tasks are typically modeled by datasets, al-
beit imperfectly (Ravichander et al., 2021), and
consequently, the performance of the encoders in
the EP tests are confounded by the choice of the test
dataset and its inherent biases. Despite a long his-
tory of research in edge probing tests, this problem
has not been studied well (Belinkov, 2022).

To bridge this research gap, we propose three
research questions.

RQ1: Are there “annotation artifacts” in the
EP test datasets? Many standard NLP datasets
have data points that can be solved by superfi-
cial cues, i.e., reasoning strategies unrelated to the
expected causal mechanism of the task at hand
(Kaushik et al., 2020). For example, Gururangan
et al. (2018) show that a negation operator in the
premise is a strong predictor of the “contradiction”
class in the SNLI (Bowman et al., 2015) dataset.
Sen and Saffari (2020) show that in popular ex-
tractive machine reading comprehension (MRC)
datasets such as SQuAD (Rajpurkar et al., 2016) or
HotpotQA (Yang et al., 2018), in many cases the
answer phrase can be found in the first sentence of

https://github.com/Josh1108/EPtest.git
https://github.com/Josh1108/EPtest.git
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the context. We analyze 17 EP test datasets across
10 tasks and find different biases in multiple of
them.

RQ2: Do the EP models use heuristics? Ex-
istence of annotation artifacts in the data does not
necessarily imply that the models will learn to use
the related heuristics, eg., predict “contradiction”
whenever the premise contains a negation. We can
a) remove the biased test data (McCoy et al., 2019)
or b) adversarially perturb it (Jia and Liang, 2017)
and observe the performance degradation (if any)
of a model. A significant degradation will indicate
that the model does depend on the heuristic. Us-
ing this technique, we show that the EP classifiers
trained with random encoders do indeed learn to
use the heuristics to a large extent, whereas the
same ones trained with pre-trained encoders do not
in the same capacity.

RQ3: Do the pre-trained encoders encode
grammatical knowledge better than the ran-
dom encoders? A strong criticism of EP tests
is that often the performances of the pre-trained
and the random encoders are not significantly dif-
ferent (Zhang and Bowman, 2018). This is often
attributed to the “classifier knowledge” problem,
i.e., the EP classifier learns the task itself and does
not necessarily depend on the encoder represen-
tations. Various information theoretic probes (Pi-
mentel et al., 2020) have been proposed to solve
this, including a popular one based on the Mini-
mum Description Length (MDL) principle (Grün-
wald, 2000). In this MDL probe (Voita and Titov,
2020), a combined measure defined on the EP
classifier model complexity and its performance
is minimized. The MDL codelengths of contextual-
ized representations such as Elmo are shown to be
much lower than the corresponding random ones
even when their EP test accuracies are very similar.
However, we show this is not strictly necessary,
and the similar performance of a pre-trained and
random encoder can largely be attributed to the EP
test dataset biases, as in when the “biased” data
points are removed, a simple linear or MLP classi-
fier shows a significant difference in the pre-trained
vs random encoder. We investigate this further and
show that Bayesian classifiers such as MDL probes
are not “inherently better” in testing an encoder’s
ability to encode grammatical knowledge.

2 Edge Probing

2.1 Formulation

We base our experiments on the model architec-
ture (Figure 1) and edge probing tasks proposed by
Tenney et al. (2019a) and Liu et al. (2019a), two
cotemporaneous works that introduced the idea of
EP tests on contextual encoders.

Given a sentence S = [T1, ...Tn] of n tokens,
a span sk = [Ti, ...Tj ] is defined as a contiguous
sequence of tokens i to j. Depending on the task,
an individual or a pair of spans is assigned a label.
For example, in the Named Entity Recognition EP
test, the label of the span “Barack Obama” would
be PERSON. In the EP test for Coreference Res-
olution, a pair of spans would be labeled true or
false depending on whether they were co-referent
to each other in a sentence or not.

The input to the EP classifier is an embedding
ei ∈ Rd for a (pair of) span(s) and its goal is to
predict its label. Token representations can be gen-
erated from the top layer (Tenney et al., 2019c) or
the intermediate layers (Liu et al., 2019a) of an
encoder, which is typically a large language model
(LLM) such as BERT, RoBERTa, or Elmo. For
our EP tests, we consider the top-layer representa-
tions.2 Following Liu et al. (2019a), we generate
ei by taking an average of all token embeddings in
the span, which is further averaged over the spans
in the two-span tasks.

The final embedding is passed to an EP classi-
fier (also referred to as a probe), which is either
a) MLP: A multilayer perceptron with one hidden
layer (1024 dim) and a RELU activation, or b) Lin-
ear: A linear layer without any non-linearity. For
all models, the dropout (Srivastava et al., 2014) is
kept at 1e-1.

Liu et al. (2019a) used a linear layer classifier,
and so did Tenney et al. (2019c), who also used
a single hidden layer MLP. Follow-up work by
Hewitt and Liang (2019) and Voita and Titov (2020)
both used single or multiple hidden layer MLPs, but
we didn’t find much difference in our experiments
by increasing the number of layers. Specifically,
Hewitt and Liang (2019) suggested using probes
with high “selectivity”, i.e., they should have a high
accuracy on an EP task, but a low score when the

2Tenney et al. (2019c) uses both the top layer and a mixed
representation from all layers, and Hewitt and Manning (2019)
uses the top layer. As there is not a significant difference in
the mixed vs top layer representations in Tenney et al. (2019c),
we leave the mixed representations for future work.
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Figure 1: The architecture for edge probing tasks.

labels of the same task are randomized (control
tasks). They concluded that simpler, i.e., lower
depth probes showed higher selectivity, which is
another reason for our probe choice.

Crucially, during training, only the parameters
of the probe are changed and the encoder below is
kept frozen. If the LLM encoder truly encodes cer-
tain types of syntactic (eg., identifying constituent
types) or semantic (coreference relation between
phrases) knowledge, we can expect it to have a sig-
nificantly higher performance in the related EP test
than an encoder of the same architecture but with
random weights.

2.2 Edge Probing Tasks and Datasets

To ensure wide coverage, we experiment with 17
EP datasets involving 10 different NLP tasks that
have been used before in Tenney et al. (2019c) and
Liu et al. (2019a). The tasks are described below,
the dataset statistics are presented in Table 1.

Part of Speech Tagging. POS tagging is a
syntactic task, where each token is assigned
one of the possible part-of-speech tags. e.g.
“[Napoleon]NNP Bonaparte was the emperor of
France”, where NNP stands for “Proper Noun, Sin-
gular”. We use 3 different datasets for this task:
the OntoNotes corpus (Weischedel, Ralph et al.,
2013), the Penn Treebank (PTB) corpus (Marcus
et al., 1993) and the Universal Dependencies En-
glish Web Treebank (EWT) corpus (Silveira et al.,
2014).

Named Entity Recognition. NER is a task to
predict the pre-defined semantic category of a span
such as persons, organizations, date, and quantity,
e.g. - “[Napoleon Bonaparte]PERSON was the
emperor of France.” We use the OntoNotes corpus
and the CoNLL 2003 shared task dataset (Tjong
Kim Sang and De Meulder, 2003).

Dataset #Points in the EP test data
Train Test Dev

Part of Speech Tagging
EWT-PoS2 204, 607 25, 097 25, 150
PTB-PoS2 950, 028 56, 684 40, 117
OntoNotes-PoS1 2, 070, 382 212121 290, 013

Named Entity Recognition
CoNLL-2003-NER2 203, 621 46, 435 51, 362
OntoNotes-NER1 128, 738 12, 586 255, 133

Coreference Resolution
DPR1 1, 787 949 379
OntoNotes-Coref1 207, 830 27, 800 26, 333

Syntactic Dependency Classification
EWT-Syn-Dep-Cls2 203, 919 25, 049 25, 110
PTB-Syn-Dep-Cls2 910, 196 54, 268 38, 417

Syntactic Dependency Prediction
EWT-Syn-Dep-Pred1,2 383, 462 45, 901 46, 155
PTB-Syn-Dep-Pred2 1, 820, 225 108, 52976, 820

Semantic Proto-Role Labeling
SPR-11 7, 611 1, 055 1, 071
SPR-21 4, 925 582 630

One Task Datasets
CoNLL-Chunking2 211, 727 47, 377 -
OntoNotes-Const1 1, 851, 590 190, 535255, 133
OntoNotes-SRL1 598, 983 61, 716 83, 362
Semeval-Rel-Cls1 8, 000 2, 717 -

Table 1: Statistics for the EP datasets used in this paper, with
the tasks and in which paper they were used in: Tenney et al.
(2019c)1 or Liu et al. (2019a)2.

Constituency Labeling. The goal of this task is
to recover the constituency parse tree of a sentence,
eg., “[Napoleon Bonaparte]NP was the emperor
of France.”, where NP stands for “Noun Phrase”.
We use the OntoNotes corpus for this task.

POS, NER, and Constituency Labeling are usu-
ally modeled as token-level tagging tasks using
the standard BIO format (Pradhan et al., 2013) but
in the EP tests, they are classification problems.
The classifier predicts the label for a token or a
span, which can be one of the pre-defined ones, eg.,
“ADJ” for Part of Speech, “PER” for NER, or “PP”
for Constituency Labeling or “None” if the input
can not be assigned a label. Importantly, the clas-
sifier has access to only the token representations
and not the whole sentence.

Coreference Resolution. Coreference resolu-
tion is the task of finding anaphoric relations be-
tween spans in a text: e.g. “[Barack Obama]1
is an ex-US president, [He]2 lives in DC with his
wife Michelle.” In the EP tests, this reduces to a
binary classification task: given two spans, predict
whether they refer to each other (“Barck Obama”,
“he”: true) or not (“Michelle”, “he”: false). We
use the OntoNotes corpus as well as the Definite
Pronoun resolution (DPR) dataset (Rahman and
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Ng, 2012), which is considered more challenging.
Semantic Role Labeling. In the SRL task,

the goal is to understand semantic roles (who
did what to whom and when) between spans
(argument) in a sentence and a verb (predi-
cate): eg., “[The waiter]AGENT [spilled]V ERB

[the soup]THEME . In the EP tests, this is mod-
eled as a two-span multi-class classification task
for which the OntoNotes corpus is used.

Chunking. While a constituency parse of a sen-
tence is a hierarchical structure, chunking (Abney,
1992) divides the text into syntactically related non-
overlapping groups of words. We use the CoNLL-
2000-Chunking corpus (Tjong Kim Sang and Buch-
holz, 2000). For the EP tests, this is a one-span
multi-class classification problem.

Semantic Proto-Role Labeling. Proposed by
Reisinger et al. (2015), this is a task of annotating
detailed, non-exclusive semantic attributes, such
as change of state or awareness, over predicate-
argument pairs as in SRL. Similar to the SRL EP
test, this is modeled as a two-span classification
problem, but as there can be more than one poten-
tial attribute of the predicate-argument relation, this
is a multi-label task. We used two datasets, SPR-1
(Teichert et al., 2017), and SPR-2 (Rudinger et al.,
2018), derived from the Penn Treebank and the
English Web Treebank respectively.

Relation Classification. Initially proposed by
(Girju et al., 2009), Relation Classification is the
task of predicting the relation that holds between
two nominals, from a given knowledge base. We
use the SemEval dataset from (Hendrickx et al.,
2010). For the EP tests, this reduces to a two-span
multi-class classification task.

Syntactic Dependency Classification. Given
representations of two tokens from a sentence,
[head] and [mod], the task is to predict the syn-
tactic relationship between the two. We use the
Penn Treebank (Marcus et al., 1993) and English
Web Treebank (Silveira et al., 2014) datasets. For
EP tests, this boils down to a two-span multi-class
classification task.

Syntactic Dependency Prediction. The goal of
this task is to find whether a dependency arc exists
between two tokens in their syntactic structure. We
use the Penn Treebank and the English Web Tree-
bank, the same as in the classification variant. This
is a two-span binary classification task for EP tests.

Where development data was not available from
the source, 10% of the data from the training set

was reserved for validation. In a few other cases,
the testing set had labels not present in the training
set, these data points were discarded. The final
datasets (bar the licensed ones) will be made avail-
able.

3 Annotation Artifacts in EP Test
Datasets

Our analysis indicates that almost all EP test
datasets have a significant repetition bias: many
samples in the training data are repeated in the test.
However, their labels may always not be the same,
for example, in the NER EP test, the span “Google”
might have the label “ORG” or “O” depending
on whether the span refers to the company or the
search engine developed by it.

We ask two questions. In a test dataset, in what
percentage of cases a test data point is in the train-
ing data and has only one label? For example, in
the NER datasets, if the span “Google” appears in
both the training and the test dataset with the only
label “Org”, the EP classifier can successfully clas-
sify it by memorization. We call it the Mem-Exact
heuristic.

Even if the training data contains multiple labels
for a span (eg., both “ORG” and “O”), the EP clas-
sifier might be able to successfully classify it in the
test data by simply learning the label distribution
for the span and not the inherent contextual rela-
tionships. In the Mem-Freq heuristic we find the
percentage of test data points that are present in the
training data and can be classified correctly using
the training label distribution. We also consider
a baseline: the Mem-Uniform heuristic where in-
stead of the true label distribution the class labels
can be predicted by sampling from a uniform dis-
tribution.

Table 2 shows that a large percentage of data
points indeed can be classified heuristically, i.e.,
the dataset has significant biases. Importantly, if an
EP classifier does adopt a heuristic, it would need
no specific representation for the spans, let alone
from a pre-trained or a random one.

4 Do the EP Models Use Heuristics?

Based on the dataset biases discovered in §3, we
hypothesize that the EP classifiers can use heuristic
algorithms, but there will be a difference in the
random vs pre-trained encoders. Specifically, EP
test classifiers with random encoders will learn to
use various heuristics as the input representations
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Dataset Mem-
Exact

Mem-
Freq

Mem-
Uniform

EWT-PoS 89.73 42.85 48.03
PTB-PoS 97.11 42.03 52.62
OntoNotes-PoS 98.06 65.40 35.26
CoNLL-2003-NER 86.87 28.15 67.93
OntoNotes-NER 70.53 23.40 55.58
DPR 28.98 0.21 15.81
OntoNotes-Coref 36.55 16.64 26.51
EWT-Syn-Dep-Cls 37.98 4.56 34.30
PTB-Syn-Dep-Cls 62.17 12.50 51.81
EWT-Syn-Dep-Pred 42.44 13.38 31.99
PTB-Syn-Dep-Pred 68.04 17.37 47.75
SPR-1 5.2 0.47 4.55
SPR-2 7.2 0.42 1.37
CoNLL-Chunking 89.89 57.72 33.88
OntoNotes-Const 45 17.79 33.57
OntoNotes-SRL 32.07 6.98 26.76
Semeval-Rel-Cls 3.35 0.11 3.3

Table 2: Accuracy (in %) of the heuristic algorithms.

themselves do not provide much information. On
the other hand, the same classifier models with pre-
trained encoders will tend to not make use of such
heuristic mechanisms. If the hypothesis is true, we
will see a significant drop in the performance with
the random encoders compared to the pre-trained
encoders when the “heuristically classifiable” data
points are removed from the test data.

4.1 Experimental Setup

We use 4 encoders - BERT (the base-cased version),
RoBERTa (the base version), and their randomized
versions. Following Tenney et al. (2019c), the ran-
dom encoders are the same LLM models randomly
initialized (Glorot and Bengio, 2010) as it is done
before pre-training.

For each encoder and EP classifier model (Linear
and MLP, see §2) we train 3 models.3 The models
showed little variance on the test data (within 0.1%
of the average), therefore, we chose the best model
for the subsequent experiments.

4.2 Results and Analysis

For each heuristic algorithm in §3, we create a “fil-
tered dataset” consisting of the points that can not
be classified using the said algorithm. For each
“EP model” (an encoder + EP classifier), we cal-
culate the accuracy score on the original and the
filtered datasets and report the “drop”, i.e., the rela-
tive reduction percentage: (accoriginal−accfiltered)∗

3Each model was trained for 3 epochs with a batch size
of 16 using the AdamW optimizer (Kingma and Ba, 2015),
a learning rate of 1e-3 and a linear warmup learning rate
scheduler (Howard and Ruder, 2018).

100/accoriginal). A negative drop indicates that the
EP model performed better on the original dataset
vs the filtered one.

Tables 3 and 4 show the results. Firstly, there
is an accuracy drop in both pre-trained (base) and
random encoders with all “Mem-Exact” datasets,
indicating these datasets are more difficult in gen-
eral and both these encoders use the exact memo-
rization heuristic (Augenstein et al., 2017) to some
extent. On the other hand, they do not use the
baseline “Mem-Uniform” heuristic as expected, as
evidenced by the increased accuracy in the filtered
dataset.

More importantly, in a large number of EP
datasets (11 out of 17), the accuracy drop in the
random encoder is higher (indicated by bold) than
that in the pre-trained encoders. Also, this pre-
trained-v-random accuracy drop difference in the
filtered datasets is significant, i.e., > 100%, in
8 out of 11 cases. On the other hand, when the
random encoders show a lower drop than the pre-
trained encoders, the difference is almost always
negligible (eg., EWT-Syn-Dep-Pred). In 4 of the
remaining 6 datasets where we do not see a higher
drop in the random encoders - Semeval-Rel-Cls,
SPR-1, SPR-2, and Definite Pronoun Resolution,
the filtered version of the datasets do not differ
much from the original: as only a small percentage
of the data points can be solved by the Mem-Exact
heuristic.

The accuracy drops are consistent across the
encoder types and EP classifiers. For exam-
ple, on the EWT-PoS dataset, the BERT-base and
the RoBERTa-base encoders have similar drops
both with the Linear and the MLP EP classi-
fiers as do the random versions of these encoders
among themselves. A surprising finding is that
the drop pattern is task-dependent. Among the
tasks with multiple datasets (Table 4), in all POS,
NER, and Syntactic Dependency Classification
datasets, the random encoders show a higher drop
but in the Syntactic Dependency Prediction and
Semantic Proto-Role Labeling tasks, the opposite
is true for all datasets. This is not correlated with
either the dataset size or the number of labels: both
Syntactic Dependency Prediction and Classifica-
tion tasks have a similar number of training data
points, and the Classification task has ≈ 40 labels
whereas the Prediction one has only 2.

The OntoNotes-Coref dataset presents an inter-
esting case as the accuracy scores increase in the
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Dataset Encoder Version Linear MLP

%∆Mem-Ex %∆Mem-Freq %∆Mem-Unif %∆Mem-Ex %∆Mem-Freq %∆Mem-Unif

CoNLL-Chunking
BERT

base 12.03 6.36 0.95 10.36 4.65 0.99
random 25.47 27.61 0.44 32.4 34.6 9.73

RoBERTa
base 10.55 5.34 1.02 9.18 3.86 0.88
random 23.5 26.36 0.21 31.69 34.45 10.65

OntoNotes-Const
BERT

base 13.34 4.38 6.91 10.75 3.33 5.62
random 17.42 7.66 7.36 18.91 7.02 8.95

RoBERTa
base 14.08 4.34 7.32 10.77 3.27 5.69
random 18.55 8.04 7.97 18.44 6.94 8.68

OntoNotes-SRL
BERT

base 7.47 1.9 6.27 5.15 0.87 4.27
random 12.77 2.73 10.36 14.63 3.01 9.92

RoBERTa
base 7.83 1.25 6.52 5.12 0.83 4.29
random 12.7 2.49 10.37 13.83 2.99 9.21

Semeval-Rel-Cls
BERT

base 1.9 0.09 1.04 0.72 0.05 0.67
random 0.75 -0.13 0.84 0.19 0.04 0.27

RoBERTa
base 1.4 0.04 1.3 0.78 0.02 0.72
random 0.53 0 0.33 1.36 -0.04 1.17

Table 3: The effect of heuristic algorithms on EP tasks where each task has only one dataset. Each model is tested with the
original test data and three filtered test datasets. The %∆Mem-Ex shows the percentage drop in the accuracy score from the original
test dataset when the models are tested on the dataset filtered by “Mem-Exact” (the others follow the same nomenclature). Bold
(Italicized) indicates that the random encoder shows a much higher (lower) % drop on the filtered dataset than the base encoder.

filtered datasets. This binary classification dataset
has a significant label imbalance: 78.33% of the
test data has a negative label. If the dataset is
re-sampled to make the distribution balanced, a)
the accuracy score decreases as expected; b) the
accuracy drops in the random encoders become
higher by 19.28 and 7.08 points than the BERT and
RoBERTa encoders respectively when using the
MLP classifier. With the Linear classifier, these
numbers are 3.45 and 8.7.

Overall, it is clear that in many EP test datasets,
the random encoders perform significantly worse
than the pre-trained encoders on the set of data
points that are not heuristically classifiable (specifi-
cally, by the Mem-Exact heuristic). In other words,
they resort to the heuristics more than the pre-
trained ones. This proves our hypothesis.

5 EP Test Results: Random vs
Pre-Trained Encoders

Previously, we have shown that the random en-
coders show a significant memorization bias com-
pared to the pre-trained ones. How does that affect
the EP test results? Table 5 and Table 6 show the EP
test results for the pre-trained and random encoders
on the “Mem-Exact” filtered datasets - except for
the OntoNotes-Coref one, where we use the bal-
anced dataset. As expected, in almost all cases the
pre-trained encoders have a significantly higher
accuracy than the random ones. Compare this with

Voita and Titov (2020) where in 4 out of 7 datasets
that is not the case.

MDL Probe. Voita and Titov (2020) show that
for many EP datasets, a contextual encoder (ElMo)
has the same performance as a random encoder.
This leads to the conclusion that the EP tests, in
reality, measure the classifiers’ ability to learn the
EP task and do not reflect the knowledge encoded
in the representations themselves. To solve this, a
minimum description length (MDL) probe is pro-
posed. We have already seen that the pre-trained
vs random issue is mitigated in the filtered datasets,
but had we used the MDL probes, would our con-
clusions have changed? More importantly, are the
MDL probes necessary in the EP test datasets with
a large number of samples (Table 1)?

In its original formulation, the Minimum De-
scription Length (MDL) principle is a Bayesian
model selection technique. A model class M is
a set of models Mi, for example, M can be “all
polynomials of degree 3” and one Mi can be 5x3.
Between two model classes Ma and Mb, the bet-
ter model class is the one with the lower stochastic
complexity.

Given a supervised classification dataset D with
data points di = ⟨xi, yi⟩, a model M defines a
probability distribution P (yi|xi). From the Kraft-
Mcmillan inequality, there exists a code C for D
with the code length LC(D) = −logP (D) =∑n

i=1−logP (di). Naturally, a better model fit cor-
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Dataset Encoder Version Linear MLP

%∆Mem-Ex %∆Mem-Freq %∆Mem-Unif %∆Mem-Ex %∆Mem-Freq %∆Mem-Unif

EWT-PoS
BERT

base 15.51 2.45 1.5 15.76 1.95 1.75
random 59.15 17.68 -2.9 57.34 15.67 0.69

RoBERTa
base 12.35 1.95 1.46 12.39 1.67 1.38
random 60.4 17.54 -2.88 60.01 16.1 0

PTB-PoS
BERT

base 13.88 0.51 1.26 13.17 0.59 1.18
random 62.46 9.68 -2.86 41.06 5.84 1.92

RoBERTa
base 13.94 0.66 1.06 12.89 0.54 1.17
random 69.64 10.63 -3.71 41.34 5.98 2.03

OntoNotes-PoS
BERT

base 15.45 2.77 0.13 14.75 2.25 0.3
random 71.91 38.31 -9.48 65 24.5 -2.94

RoBERTa
base 14.9 2.55 0.21 13.63 2.45 0.15
random 71.73 40.59 -10.35 47.75 27.98 -3.67

CoNLL-2003-NER
BERT

base 9.16 0.63 3.56 10.67 0.6 4.07
random 34.47 2.43 13.12 32.56 2.81 9.54

RoBERTa
base 8.62 0.58 3.47 8.23 0.48 3.19
random 34.1 2.39 12.98 31.36 2.38 9.7

OntoNotes-NER
BERT

base 5.35 0.32 3.94 5.35 -0.51 4.43
random 29.3 14.98 5.15 35.47 13.31 8.37

RoBERTa
base 5.41 0.52 3.65 4.55 -1.04 4.43
random 29.24 14.57 5.28 29.26 9.43 7.03

EWT-Syn-Dep-Cls
BERT

base 8.7 0.13 8.36 6.72 0.46 6.09
random 29.36 0.69 27.95 26.98 2.01 24.13

RoBERTa
base 8.12 -0.04 7.91 6.74 0.48 6.04
random 30.48 0.86 28.57 26.94 1.88 24.39

PTB-Syn-Dep-Cls
BERT

base 9.23 0.14 7.92 6.76 0.48 5.2
random 36.12 0.97 29 32.28 2.35 23.96

RoBERTa
base 9.44 0.29 8.03 6.72 0.51 5.19
random 36.76 0.73 29.8 32.17 2.25 24.05

EWT-Syn-Dep-Pred
BERT

base 4.52 0 4.59 5.27 1.29 4.14
random 5.66 0.74 4.95 4.71 1.14 3.46

RoBERTa
base 6.64 0.91 5.57 5.05 1.18 3.97
random 5.58 0.86 4.66 4.95 1.04 3.66

PTB-Syn-Dep-Pred
BERT

base 6.49 0.45 5.43 3.72 1.51 2.5
random 4.77 0.3 3.68 2.67 1.17 1.93

RoBERTa
base 7.47 0.96 5.73 4.58 2 2.91
random 3.57 -0.09 3.12 2.55 1.04 1.69

SPR-1
BERT

base 0.38 0.04 0.31 0.35 0.05 0.29
random 0.08 0 0.1 0.66 -0.02 0.73

RoBERTa
base 0 0 -0.01 0.39 0.04 0.33
random 0.07 0 0.08 0.36 0.05 0.36

SPR-2
BERT

base 1.96 0 0.31 1.08 0 0.22
random 1.37 0 0.17 1.8 0 0.29

RoBERTa
base 1.55 0 0.28 1.65 0 0.34
random 1.55 0 0.24 1.5 0 0.26

DPR
BERT

base 4.37 0 1.52 0.73 -0.22 1.13
random 0.92 -0.2 2.91 0.92 0.22 0.2

RoBERTa
base 1.26 0.2 1.93 0.81 0.19 3.34
random 0.38 0.22 0.84 -0.5 -0.22 -1.26

OntoNotes-Coref
BERT

base -2.92 -1.61 -0.99 0.84 0.58 0.88
random -7.42 -4.59 -3.18 0.78 1.55 0.72

RoBERTa
base -3.47 -1.66 -1.45 1.05 0.87 0.86
random -6.76 -4.84 -2.46 0.4 1.15 0.58

Table 4: The effect of heuristic algorithms on EP tasks where each task has multiple datasets. The structure follows Table 3.

responds to higher probability values and lower
code lengths.

The stochastic complexity of the dataset D with

respect to the model class M is the shortest code
length of D when D is encoded with the help
of class M. Given M and D, one can find the
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Dataset BERT RoBERTa
pre-
trained

random pre-
trained

random

EWT-PoS 79.74 25.93 83.71 24.61
PTB-PoS 83.33 24.79 83.52 19.90
OntoNotes-PoS 81.62 17.43 83.30 17.29

CoNLL-2003-NER 87.96 54.26 88.65 54.42
OntoNotes-NER 87.95 35.83 88.83 35.11

DPR 48.37 49.70 50.15 49.55
OntoNotes-Coref 70.53 60.41 72.9 58.44

EWT-Syn-Dep-Cls 69.35 32.60 71.78 31.36
PTB-Syn-Dep-Cls 78.58 33.59 79.19 32.96

EWT-Syn-Dep-Pred 66.54 62.66 67.72 63.63
PTB-Syn-Dep-Pred 64.45 63.14 63.93 64.20

SPR-1∗ 70.68 60.66 67.21 61.38
SPR-2∗ 75.12 69.88 76.61 70.41

CoNLL-Chunking 81.43 50.29 84.40 50.81
OntoNotes-Const 62.17 38.15 62.81 38.21
OntoNotes-SRL 67.79 44.45 68.71 44.96
Semeval-Rel-Cls 55.10 22.39 50.88 24.35

Table 5: Accuracy scores (Micro f1 for ∗) on the filtered EP
test dataset, with the Linear classifier. Bold indicates where
the random encoders have a significantly lower score than the
pre-trained ones, and Italicized indicates they have a higher
score.

Dataset BERT RoBERTa
pre-
trained

random pre-
trained

random

EWT-PoS 79.93 31.48 84.33 28.83
PTB-PoS 84.31 48.84 84.86 47.99
OntoNotes-PoS 82.98 27.98 84.17 40.82

CoNLL-2003-NER 86.6 57.34 89.44 58.14
OntoNotes-NER 84.55 38.53 87.38 41.77

DPR 59.94 49.7 51.63 50.3
OntoNotes-Coref 85.91 73.09 87.4 73.12

EWT-Syn-Dep-Cls 80.57 42.43 81.63 42.35
PTB-Syn-Dep-Cls 86.85 44.12 87.42 44

EWT-Syn-Dep-Pred 79.26 72.65 81.38 73.41
PTB-Syn-Dep-Pred 86.72 80.05 86.19 81.17

SPR-1∗ 81.97 63.68 83.7 63.5
SPR-2∗ 77.91 72.06 77.31 71.5

CoNLL-Chunking 84.88 50.15 86.97 50.54
OntoNotes-Const 70.55 49 71.05 49.44
OntoNotes-SRL 80.26 51.06 80.86 51.34
Semeval-Rel-Cls 65.04 26.01 63.8 26.03

Table 6: Accuracy scores (Micro f1 for ∗) on the filtered EP
test dataset, random vs pre-trained encoders with the MLP
classifier. Bold indicates where the random encoders have a
significantly lower score than the pre-trained ones.

Mi (with parameters θi) through maximum like-
lihood estimation that leads to the maximum P ,
hence the minimum code length L(D|θ̂(D)) =
−logP (D|θ̂(D)).

Crucially, we are not allowed to fit a different θ

and build a new code C ′ with each new dataset D′.
Ideally, we would like to have a single code C∗ that
can yield the minimum length for all datasets but
that is not possible if M contains more than one
model. Nevertheless, it is possible to construct C∗

such that: (Grünwald, 2000)

LC∗(D) = L(D|θ̂(D)) +K∗ (1)

Equation 1 is a combination of the “goodness of
model fit” (better estimate of θ̂ =⇒ smaller code
length) and the model complexity (K∗). K∗ can
be approximated for a regular model class M con-
taining models with p parameters as:

K∗ ≈ p

2
logn+ Ck (2)

where n is the length of the dataset D and Ck is
negligible for large n (Grünwald, 2000).

Voita and Titov (2020) calculate the code lengths
of two EP classifiers with random and pre-trained
encoders and show that the second one has a lower
code length. This is one of the reasons for using
the minimization of codelengths (which is termed
“MDL probe”) as an alternative to normal classi-
fiers. In the implementation, these two encoders
are frozen and hence provide two datasets, so the
model selection problem is essentially inverted:
there is one model class (say, the class of Linear
models) and two datasets (token encodings from
random and pre-trained encoders): what would two
different code lengths mean?

Voita and Titov (2020) follows Blier and Ol-
livier (2018) in determining code lengths for DNN
models because the approximation in eq. (2) is
not correct for complex DNNs. But the EP classi-
fiers are not DNNs, they are simple linear models
whose code lengths should be approximable by
eq. (2). But as eq. (2) shows, the code lengths are
not dependent on the datasets as long as the num-
ber of data points is large, which is true for most
EP datasets (see Table 1). This raises the question
of whether the MDL probe is an inherently better
choice for comparing the encoding of information
in the encoders.

6 Related Work

Previous research has primarily focused on study-
ing different aspects of pre-trained language mod-
els (LMs), such as linguistic knowledge (Liu et al.,
2019a) and attention patterns (Clark et al., 2019).
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The paradigm of classifier-based probing tasks
is well-researched (Ettinger et al., 2016) and has
gained popularity with the introduction of bench-
mark EP datasets that we utilize here (Tenney et al.,
2019a). Typically, internal layers of large language
or machine translation models are used as features
for auxiliary prediction tasks related to syntactic
properties, such as part-of-speech (Shi et al., 2016;
Blevins et al., 2018; Tenney et al., 2019b), tense
(Shi et al., 2016; Tenney et al., 2019b), or subject-
verb agreement (Tran et al., 2018; Linzen et al.,
2016). For a comprehensive survey, refer to Be-
linkov and Glass (2019).

EP tests are not direct evaluations of models
since they use another model (called probe) to ex-
tract and evaluate the linguistic features within an
encoding. Because of this, it is not clear if the re-
sults reflect the quality of encoding or the probe’s
ability to learn the task (Hewitt and Liang, 2019;
Voita and Titov, 2020; Pimentel et al., 2020). We
delve into this topic further in Section 5. Additional
details can be found in Belinkov (2022).

7 Conclusion

EP tests are classification tasks to measure an
LLM’s ability to encode syntactic and semantic
knowledge. However, in many EP datasets, there is
not a significant difference between the random
vs pre-trained encoders, which raises questions
about the validity of the tests (the “classifier knowl-
edge” problem). We analyze 17 datasets across 10
datasets to find various biases and show that the EP
classifiers are more prone to use heuristic mecha-
nisms when random encoders are used instead of
the pre-trained ones. When the dataset biases are
removed, the pre-trained encoders do show a signif-
icant difference from the random ones as expected.
Information-theoretic probes have been proposed
before to solve the “classifier knowledge” problem,
we show why they might not be necessary. Future
work would extend the findings of this study to
fine-tuned models.

Limitations

There are two important limitations of this study:
1. We analyze a large number of standardized EP
test datasets that have been extensively used before,
but the paradigm of diagnostic classifiers is quite
broad and our findings should not be automatically
extended to datasets not used in this study. Also,
we do not propose an automated way to remove bi-

ases from the existing or newly created datasets. 2.
While we argue the popular MDL probe might not
be necessary for all EP test datasets (particularly,
the ones with a large number of data points), this
paper should not be construed as a general criti-
cism of the MDL probes or the area of information-
theoretic probing.
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