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Abstract

To what degree should we ascribe cognitive
capacities to Large Language Models (LLMs),
such as the ability to reason about intentions
and beliefs known as Theory of Mind (ToM)?
Here we add to this emerging debate by (i)
testing 11 base- and instruction-tuned LLMs
on capabilities relevant to ToM beyond the
dominant false-belief paradigm, including non-
literal language usage and recursive intentional-
ity; (ii) using newly rewritten versions of stan-
dardized tests to gauge LLMs’ robustness; (iii)
prompting and scoring for open besides closed
questions; and (iv) benchmarking LLM per-
formance against that of children aged 7-10
on the same tasks. We find that instruction-
tuned LLMs from the GPT family outperform
other models, and often also children. Base-
LLMs are mostly unable to solve ToM tasks,
even with specialized prompting. We suggest
that the interlinked evolution and development
of language and ToM may help explain what
instruction-tuning adds: rewarding cooperative
communication that takes into account inter-
locutor and context. We conclude by arguing
for a nuanced perspective on ToM in LLMs.

1 Introduction

Machines that can think like us have always trig-
gered our imagination. Contemplation of such ma-
chines can be traced as far back as antiquity (Live-
ley and Thomas, 2020), and peaked with the advent
of all kinds of ‘automata’ in the early days of the In-
dustrial Revolution (Voskuhl, 2013) before settling
in computer science from the 1950s (Turing, 1950).
Currently people around the world can interact with
powerful chatbots driven by Large Language Mod-
els (LLMs), such as OpenAI’s ChatGPT (OpenAI,
2023), and wonder to what degree such systems
are capable of thought.

LLMs are large-scale deep neural networks,
trained on massive amounts of text from the web.

*Equal contribution.

They are vastly complex systems: even if all de-
tails about their architecture, training data, and op-
tional fine-tuning procedures are known (which
is currently not the case for the most competitive
models), it is very difficult to oversee their capa-
bilities and predict how they will perform on a
variety of tasks. Researchers from linguistics (Man-
ning et al., 2020), psychology (Binz and Schulz,
2023b; Kosinski, 2023; Webb et al., 2023), psychi-
atry (Kjell et al., 2023), epistemology (Sileo and
Lernould, 2023), logic (Creswell et al., 2022), and
other fields, have therefore started to study LLMs
as new, ‘alien’ entities, with their own sort of intel-
ligence, that needs to be probed with experiments,
an endeavour recently described as ‘machine psy-
chology’ (Hagendorff, 2023). This not only yields
knowledge about what LLMs are capable of, but
also provides a unique opportunity to shed new
light on questions surrounding our own intelligence
(Dillion et al., 2023; Binz and Schulz, 2023a).

Here we focus on attempts to determine to what
degree LLMs demonstrate a capacity for Theory of
Mind (ToM), defined as the ability to work with be-
liefs, intentions, desires, and other mental states, to
anticipate and explain behaviour in social settings
(Apperly, 2010). We first address the question how
LLMs perform on standardized, language-based
tasks used to assess ToM capabilities in humans.
We extend existing work in this area, surveyed in
Section 2, in four ways: by (i) testing 11 mod-
els (see Table 1) for a broader suite of capabilities
relevant to ToM beyond just the dominant false-
belief paradigm, including non-literal language un-
derstanding and recursive intentionality (A wants
B to believe that C intends...); (ii) using newly
written versions of standardized tests with vary-
ing degrees of deviation from the originals; (iii)
including open questions besides closed ones; and
(iv) benchmarking LLM performance against that
of children aged 7-8 (n=37) and 9-10 (n=36) on
the same tasks. Section 3 contains details of our
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test procedures for both children and LLMs. After
reporting the results in Section 4, we turn to the
question how variation in performance of the
LLMs we tested can be explained in Section 5.
We conclude by placing our findings in the broader
context of strong links between language and ToM
in human development and evolution, and tenta-
tively interpret what it means for an LLM to pass
(or fail) ToM tests.

We are aware of issues regarding LLM train-
ing and deployment, for example regarding the
biases they inherit (Lucy and Bamman, 2021; Ben-
der et al., 2021), problems for educators (Sparrow,
2022), and ethical concerns in obtaining human
feedback (Perrigo, 2023). Ongoing reflection on
the use of LLMs is necessary, but outside the scope
of this paper.

2 Background

2.1 Large Language Models

The field of Natural Language Processing (NLP)
has been revolutionized by the advent of Trans-
former models (Vaswani et al., 2017; Devlin et al.,
2019), deep neural networks that can induce lan-
guage structures through self-supervised learning.
During training, such models iteratively predict
masked words from context in large sets of nat-
ural language data. They improve at this task
by building representations of the many morpho-
logical, lexical, and syntactic rules governing hu-
man language production and understanding (Man-
ning et al., 2020; Rogers et al., 2021; Grand et al.,
2022). Models exclusively trained through such
self-supervision constitute what we refer to as
‘base-LLMs’ in this paper.

Base-LLMs can generate natural language when
prompted with completion queries (‘A mouse is
an ...’). They can also be leveraged successfully
for an array of other challenges, such as question-
answering and translation, which often requires
task-specific fine-tuning or prompting with spe-
cific examples, known as few-shot-learning (Brown
et al., 2020). This makes them different from
a new generation of LLMs that we refer to as
‘instruct-LLMs’ in this paper, and to which the
currently most competitive models belong. In
instruction-tuning, various forms of human feed-
back are collected, such as ranking most suitable
responses, which then forms the reward-signal
for further aligning these models to human pref-
erences through reinforcement learning (Ouyang

et al., 2022). The resulting LLMs can be prompted
with natural language in the form of instructions to
perform a wide variety of tasks directly, amounting
to zero-shot learning (Wei et al., 2022).

A key realization is thus that LLMs are given
either no explicitly labelled data at all, or, in the
case of instruct-LLMs, data with human labels per-
taining to relatively general aspects of communica-
tive interaction. As such they are part of a com-
pletely different paradigm than earlier language
models that were trained on, for example, data
sets of human-annotated language structures (e.g.
Nivre et al., 2016). This means that when LLMs
are capable of such tasks as solving co-reference
relationships or identifying word classes (Manning
et al., 2020), this arises as an emergent property
of the model’s architecture and training on differ-
ent objectives. Given that such emergent linguistic
capabilities have been observed (Reif et al., 2019;
Grand et al., 2022), it is a legitimate empirical
question which other capacities LLMs may have
acquired as ‘by-catch’.

2.2 Theory of Mind in Humans and LLMs

ToM, also known as ‘mindreading’, is classically
defined as the capacity to attribute mental states to
others (and oneself), in order to explain and antici-
pate behaviour. The concept goes back to research
in ethology in which Premack and Woodruff (1978)
famously studied chimpanzees’ abilities to antici-
pate behaviour of caretakers. When focus shifted to
ToM in humans, tests were developed that present a
scenario in which a character behaves according to
its false beliefs about a situation, and not according
to the reality of the situation itself––which a suc-
cessful participant, having the benefit of spectator-
sight, can work out (see Section 3.1).

Initial consensus that children could pass ver-
sions of this test from the age of 4 was followed by
scepticism about additional abilities it presumed,
including language skills and executive function-
ing, which led to the development of simplified
false-belief tests based on eye-gaze that even 15
month-olds were found to ‘pass’ (Onishi and Bail-
largeon, 2005). While this line of research also
met important criticism (for a review see Barone
et al., 2019), it highlights two key distinctions in
debate from the past decades: implicit-behavioural
versus explicit-representational and innate versus
learned components of ToM. Some researchers see
results from eye-gaze paradigms as evidence for a
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native or very early developing capacity for belief-
attribution in humans (Carruthers, 2013) and hold
that performance on more complex tests is initially
‘masked’ by a lack of expressive skills (cf. also
Fodor, 1992). Others have attempted to explain eye-
gaze results in terms of lower-level cognitive mech-
anisms (Heyes, 2014) and argued that the capac-
ity for belief-attribution itself develops gradually
in interaction with more general social, linguistic,
and narrative competencies (Heyes and Frith, 2014;
Milligan et al., 2007; Hutto, 2008). Two-systems
approaches (Apperly, 2010) essentially reconcile
both sides by positing that our mindreading ca-
pacity encompasses both a basic, fast, and early
developing component and a more advanced and
flexible component that develops later.

In computational cognitive research, a variety
of approaches to modelling ToM have been pro-
posed (e.g. Baker and Saxe, 2011; Arslan et al.,
2017). More recently neural agents (Rabinowitz
et al., 2018) have been implemented, along with
an increasing number of deep-learning paradigms
aimed at testing first- and second-order ToM via
question-answering. Initially this was done with
recurrent memory networks (Grant et al., 2017;
Nematzadeh et al., 2018) using data sets of clas-
sic false-belief tests from psychology, but after is-
sues surfaced with simple heuristics for solving
such tasks, scenarios were made more varied and
challenging (Le et al., 2019). From the inception
of BERT as one of the first LLMs (Devlin et al.,
2019), we have seen roughly two approaches for
testing ToM in LLMs: many different ToM sce-
narios integrated in large benchmark suites (e.g.
Sap et al., 2022; Srivastava et al., 2023; Sileo and
Lernould, 2023; Ma et al., 2023; Shapira et al.,
2023), and studies that modified standardized ToM
tests as used in developmental and clinical research
for prompting LLMs (e.g. Kosinski, 2023; Ullman,
2023; Bubeck et al., 2023; Brunet-Gouet et al.,
2023; Chowdhery et al., 2022; Moghaddam and
Honey, 2023; Marchetti et al., 2023). This paper
adds to the latter tradition in four respects, as listed
in the introduction.

3 Methodology

Here we describe our tasks and procedures for test-
ing LLMs and children; all code, materials, and
data are on OSF: https://shorturl.at/FQR34.

3.1 ToM Tests

Sally-Anne test, first-order (SA1) –– The Sally-
Anne test (Wimmer and Perner, 1983; Baron-
Cohen et al., 1985) is a classic first-order false
belief test. It relies on a narrative in which Sally
and Anne stand behind a table with a box and a bas-
ket on it. When Anne is still present, Sally puts a
ball in her box. When Sally leaves, Anne retrieves
the ball from the box and puts it in her own basket.
The story ends when Sally returns and the partic-
ipant is asked the experimental question ‘Where
will Sally look for the ball?’ The correct answer is
that she will look in her box. We followed up by
asking a motivation question, ‘Why?’, to prompt an
explanation to the effect of ‘she (falsely) believes
the object is where she left it’.

Sally-Anne test, second-order (SA2) –– While
SA1 targets the participant’s judgement of what a
character believes about the location of an unex-
pectedly displaced object, in SA2 the participant
needs to judge what a character believes that an-
other character believes about the location of an
ice-cream truck (Perner and Wimmer, 1985). Sally
and Anne are in a park this time, where an ice-
cream man is positioned next to the fountain. Anne
runs home to get her wallet just while the ice-cream
man decides to move his truck to the swings. He
tells Sally about this, but unknown to her, he meets
Anne on the way and tells her too. Sally then runs
after Anne, and finds her mother at home, who says
that Anne picked up the wallet and went to buy ice
cream. The experimental question now is ‘Where
does Sally think Anne went to buy ice cream?’,
with as correct answer ‘to the fountain’, also fol-
lowed up with ‘Why?’, to prompt an explanation to
the effect of ‘Sally doesn’t know that the ice-cream
man told Anne that he was moving to the swings’.

Strange Stories test (SS) –– The Strange Sto-
ries test (Happé, 1994; Kaland et al., 2005) depicts
seven social situations with non-literal language
use that can easily be misinterpreted, but causes no
problems to typically developed adults. To under-
stand the situations, subjects must infer the char-
acters’ intentions, applying ToM. For example, in
one of the items a girl wants a rabbit for Christ-
mas. When she opens her present, wrapped in a
big enough box, it turns out that she received a
pile of books. She says that she is really happy
with her gift, after which subjects are asked the
experimental question ‘Is what the girl says true?’,
with correct answer ‘No’. They can motivate their

https://shorturl.at/FQR34
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answer after the question ‘Why does she say this?’,
with as correct answer ‘to avoid her parents’ feel-
ings being hurt’. Items increase in difficulty and
cover a lie, pretend-play scenario, practical joke,
white lie (example above), misunderstanding, sar-
casm, and double bluff.

Imposing Memory test (IM) –– The Imposing
Memory test was originally developed by Kinder-
man et al. (1998), but the test has been revised
several times; we rely on an unpublished version
created by Anneke Haddad and Robin Dunbar (van
Duijn, 2016), originally for adolescents, which we
adapted thoroughly to make it suitable for children
aged 7-10. Our version features two different sto-
ries, followed by true/false questions, 10 of which
are ‘intentionality’ and 12 are ‘memory’ questions.
For instance, in one story Sam has just moved to
a new town. He asks one of his new classmates,
Helen, where he can buy post stamps for a birthday
card for his granny. When Helen initially sends
him to the wrong location, Sam wonders whether
she was playing a prank on him or just got con-
fused about the whereabouts of the shop herself.
He goes and asks another classmate, Pete, for help.
As in the original IM, the intentionality questions
involve reasoning about different levels of recur-
sively embedded mental states (e.g., at third-level:
‘Helen thought Sam did not believe that she knew
the location of the store that sells post stamps’),
whereas the memory questions require just remem-
bering facts presented in the story (e.g., to match
third-level intentionality questions, three elements
from the story are combined: ‘Sam was looking for
a store where they sell post stamps. He told Pete
that he had asked Helen about this’).

3.2 Scoring Test Answers

Test scores for both children and LLMs were deter-
mined in the following way. For each of the SA1
and SA2 items, as well as for the seven SS items, a
correct answer to the experimental question yielded
1 point. These answers were discrete and thus easy
to assess (‘box’, ‘fountain’, ‘no’, etc.). For the mo-
tivation question a consensus score was obtained
from two expert raters, on a range from 0-2, with 0
meaning a missing, irrelevant, or wrong motivation,
1 meaning a partly appropriate motivation, and 2
meaning a completely appropriate motivation that
fully explained why the character in each scenario
did or said something, or had a mental or emotional
mind state. Thus, the maximum score for the SA1,

SA2, and SS was 3 points per item, which were
averaged to obtain a score between 0 and 1. For
each correct answer to a true/false question in the
IM, 1 point was given. All scores and ratings can
be found on OSF.

3.3 Deviations

We tested the LLMs on the original SA and SS
scenarios, but also on manually created deviations
that increasingly stray from their original formula-
tions, to prevent LLMs from leveraging heuristics
and memorizing relevant patterns from the training
data. Thus, deviations probe the degree to which
performance on ToM tests in LLMs generalizes.
Deviation 0 was always the original test scenario
(likely present in the training data); deviation 1 was
a superficial variation on the original with only e.g.,
objects and names changed (similar to Kosinski
(2023)), whereas deviation 2 was a completely new
scenario where only the ToM-phenomenon at issue
was kept constant (e.g., ‘second-order false belief’
or ‘irony’). Since our adaptation of the IM test
has hitherto not been used or published, we did not
include deviations for this test.

3.4 Test Procedures for LLMs

We leveraged 11 state-of-the-art LLMs: 4 base-
LLMs and 7 instruct-LLMs (see Table 1). Inference
parameters were set such that their output was as
deterministic as possible (i.e. a temperature ≊ zero
or zero where possible) improving reproducibility.
Each inference was done independently to avoid
in-context learning or memory leakage between
questions. This means that for each question, the
prompt repeated the following general structure:
[instruction] + [test scenario] + [question].

Instruct-LLMs were prompted in a question-
answering format that stayed as close as possible
to the questionnaires given to children, without any
further custom prompting or provision of exam-
ples. Instructions were also similar to those given
to children (e.g. ‘You will be asked a question.
Please respond to it as accurately as possible with-
out using many words.’). The ‘Why’-questions in
SA1 and SA2 were created by inserting the exper-
imental question and answer the LLM gave into
the prompt: [instruction] + [test scenario] + [ex-
perimental question] + [LLM answer] +[‘Why?’].
This was not necessary for SS, given that experi-
mental and motivation questions could be answered
independently.
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Base-LLMs Source Size
Falcon Penedo et al. (2023) 7B

LLaMA Touvron et al. (2023) 30B
GPT-davinci Brown et al. (2020) 175B

BLOOM Scao et al. (2022) 176B
Instruct-LLMs ” ”
Falcon-instruct Penedo et al. (2023) 7B

Flan-T5 Chung et al. (2022) 11B
GPT-3

(text-davinci-003) Ouyang et al. (2022) 175B
GPT-3.5-turbo Ouyang et al. (2022) 175B

PaLM2 Anil et al. (2023) 175-340B
PaLM2-chat Anil et al. (2023) 175-340B

GPT-4 OpenAI (2023) >340B

Table 1: LLMs used in this study. Model sizes are
undisclosed for GPT-4 and for PaLM2 and PaLM2-chat,
thus we base ourselves on secondary sources for estima-
tions; Knight (2023) and Elias (2023), respectively.

For base-LLMs, known to continue prompts
rather than follow instructions, staying this close
to the children’s questionnaires was not feasible.
For the SA and SS we therefore fed base-LLMs the
scenario as described before, but formulated the
questions as text-completion exercises (e.g. ‘Sally
will look for the ball in the ’). Additionally, when
creating the motivation questions for SA1 and SA2,
we inserted the correct answer to the experimental
question, instead of the LLM’s answer. This was
because base-LLMs so often derailed in their out-
put that the method described for instruct-LLMs
did not yield sensible prompts. Base-LLMs thus
had an advantage here over children and instruct-
LLMs, who were potentially providing a motiva-
tion following up on an incorrect answer they gave
to the experimental question.

For the closed questions in the IM we attempted
to streamline the output of base-LLMs by including
two example continuations in the desired answer
format. These examples were based on trivial in-
formation we added to the scenarios, unrelated to
the actual experimental questions. For example:
‘Helen: I wear a blue jumper today. This is [incor-
rect]’, where it was added in the story that Helen
wears a green jumper. This pushed nearly all base-
LLM responses towards starting with ‘[correct]’ or
‘[incorrect]’, which we then assessed as answers
to the true/false questions. We considered a simi-
lar prompt structure for SA and SS, amounting to
adopting few-shot learning for base-LLMs through-
out (Brown et al., 2020), but given that reformulat-
ing questions as text-completion exercises was by
itself effective to get the desired output format, we
refrained from inserting further differences from

how instruct-LLMs are prompted. It is important to
note that our prompts were in general not optimized
for maximal test performance, but rather designed
to stay as uniform and close to the way children
were tested as possible, enabling a fair comparison
among LLMs and with child performance.

3.5 Test Procedures for Children

Children were recruited from one Dutch and one in-
ternational school in the South-West of the Nether-
lands: 37 children in the younger group (7-8y) and
36 children in the older group (9-10y). Children
were administered digital versions of the SA and
SS for the younger group, and of the IM for the
older group, which they completed individually
on tablets or PCs equipped with a touch screen.
Test scenarios and questions were presented in a
self-paced text format and all SA and SS questions
were followed by an open text field in which they
had to type their answer. As the IM features long
scenarios, voice-overs of the text were included
to alleviate reading fatigue. Here children had to
answer by pressing yes/no after each question. To
reduce memory bottlenecks, accompanying draw-
ings were inserted (see OSF) and navigating back
and forth throughout the tests was enabled. In-
formed consent for each child was obtained from
caretakers, and the study was approved by the Lei-
den University Science Ethics Committee (ref. no.
2021-18). Test answers were evaluated and scored
parallel to the approach for LLMs (Section 3.2).

4 Results

4.1 Sally-Anne

Overall performance on SA1 versus SA2 is given
in Figure 1, left column. Most base-LLMs perform
above child level on first-order ToM (BLOOM,
Davinci, LLaMA-30B) but fall at or or below child
level on second-order ToM. A similar pattern is
visible for instruct-LLMs: most models perform
well above child level on first-order (GPT-4, GPT-
3.5, PaLM2-chat, PaLM2), but not on second-order
ToM. Exceptions are GPT-4 and GPT-3.5: while de-
grading on second-order, they remain above child
level. For both base- and instruct-LLMs, smaller
models tend to perform worse (Falcon-7B, Falcon-
7B-I, FLAN-T5) with GPT-3’s structurally low
scores as striking exception. This is inconsistent
with results reported by (Kosinski, 2023) for GPT-
3, which is probably due to the fact that Kosinski
applied a text-completion approach whereas we
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Figure 1: Performance on Sally-Anne tests for base-LLMs (top row) and instruct-LLMs (bottom row). Left
column depicts performance on first- and second-order ToM (i.e. SA1 vs. SA2), averaged over the original and
rewritten test versions. Middle and left columns depict performance for SA1 and SA2 over levels of deviation from
the original test (0, 1, and 2; see Section 3.3). Dashed lines indicate child performance (n=37, age 7-8 years).

prompted GPT-3 with open questions.
When we consider the performance on SA1 and

SA2 over deviations (middle and right columns
in Figure 1), we see once more that almost all
LLMs struggle with second-order ToM, since per-
formance decreases already on deviation 0 (i.e.
the original test scenario), except for GPT-3.5 and
GPT-4. Yet, it is the combination of second-order
ToM and deviation 2 that pushes also GPT-3.5 and
GPT-4 substantially below child levels, except for
Falcon-7B, although the chat-optimized version of
this model (Falcon-7B-I) fails on all second-order
questions.

4.2 Strange Stories

General performance on SS is given in Figure 2,
left column. Whereas child performance declines
as items become more complex (from 1 to 7; see
Section 3.1), this is overall less the case for LLM
performance. For instruct-LLMs, we see that GPT-
4 approaches perfect scores throughout. GPT-3 and
GPT-3.5 perform at or close to child level on item 1,
after which their performance somewhat declines,
while staying well above child level. Other instruct-
LLMs show a mixed picture: PaLM2-chat and
FLAN-T5 surpass child level earlier than PaLM2.
Interestingly, smaller FLAN-T5 outperforms large
PaLM and PaLM2-chat on more difficult items.
Falcon-7B-I, as smallest instruct-LLM, performs
overall worst.

If performance is plotted over deviations (right
column in Figure 2) we see little impact on most
base-LLMs. For instruct-LLMs, it is striking

that deviation levels have almost no effect on the
larger models (GPT-4, PaLM2, PaLM2-chat, GPT-
3, GPT-3.5), but do more dramatically lower per-
formance of smaller models (FLAN-T5, Falcon-
7B-I). In sum, base-LLMs perform below child
level, except for the most complex items. Several
large instruct-LLMs match or surpass child level
throughout, others only for more complex items.
Unlike for SA, deviation levels seem to have little
negative impact.

4.3 Imposing Memory

The classical finding for the IM test is that error
rates go up significantly for questions involving
higher levels of recursive intentionality, but not for
memory questions on matched levels of complexity,
suggesting a limit to the capacity for recursive ToM
specifically (Stiller and Dunbar, 2007).1 We veri-
fied this for our child data (n=36) with two mixed
linear models for memory and intentional questions
with random intercepts. We included five predictors
that were contrast-coded such that each predictor
indicated the difference in average performance
with the previous level. For intentional questions,
only the difference between level two and one was
significant (β = −0.222, p < .05), marking a cut-
off point after which performance remained con-
sistently low. For memory questions, performance

1While there is consensus in the literature that higher levels
of intentionality are significantly harder for participants than
lower levels, by various measures, there is debate about the
difference with memory questions; see e.g. Lewis et al. (2017).
For a critical discussion of measuring recursive intentionality
in general, see Wilson et al. (2023).
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Figure 2: Performance on Strange Stories for base-LLMs (top row) and instruct-LLMs (bottom row). Left
column shows overall performance, averaged over levels of deviation from the original test. Right column shows
performance over deviation levels, averaged over items. Dashed lines indicate child performance (n=37, 7-8y).

remained high across all levels (> .85), except for
level four, where scores were significantly lower
than at level three (β = −0.292, p < .00), but
went up again at level five (β = 0.208, p < .00).
Thus, in line with earlier work, we find a cut-off
point after which scores on intentionality questions
remained consistently low, compared to scores on
matched memory questions. We have no clear ex-
planation for the dip in performance on memory
questions at level four, but observe that it is driven
by low scores on only one specific question out of
a total of four for this level, which children may
have found confusing.

In Figure 3 we see that all base-LLMs perform
below child level, in general and on both inten-
tionality and memory questions, and there is little
variation in performance, except that larger base-
LLMs (BLOOM, GPT-davinci) improve on higher
levels of recursion. Regarding instruct-LLMs, we
see largely the same picture, as they almost all
perform below child level, in general and on both
types of questions. The exception is GPT-4, which
performs consistently well on all levels and stays
above child level after second-order intentionality.
For the difference between memory and intentional
questions, instruct-LLMs perform better on easier
memory questions, and drop towards the end, while
on intentional questions, they already start lower
and stay relatively constant. Lastly, it is remark-
able that FLAN-T5, as one of the smallest instruct-
LLMs, overall increases performance as recursion
levels go up, and ends at child level. For GPT-3.5,
which performs worst of all instruct-LLMs on this
task, we see the exact opposite.

4.4 Notes on Child Performance
It can be observed that performance for SA was
overall low compared to what could be expected
from children aged 7-8 years: x̄ = 0.45 for SA1
and x̄ = 0.225 for SA2. We have two comple-
mentary explanations for this. Firstly, as discussed
in Section 3.5, children had to read the tests on
a screen, after which they had to type answers in
open text fields. This is a challenging task by itself
that relies on additional skills including language
proficiency, conscientiousness, digital literacy, and
more. Secondly, whereas ‘passing’ originally only
means that a child can work out where Sally will
look (for the ball, or for Anne on her way to buy
ice cream), we also asked for a motivation, which
makes the test more demanding. For the SS, com-
pleted by the same group of children, we see the
expected pattern that scores show a downward ten-
dency as test items increase in difficulty. The older
group, aged 9-10, completed the IM. As discussed
in Section 4.3, scores resonate with earlier work.
Given that we see child performance not as the
central phenomenon under observation in this pa-
per, but rather as a reference for LLM performance,
further discussion is outside our scope.

5 Discussion

Summing up the results for the Sally-Anne tests,
while it is less surprising that base-LLMs and
smaller instruct-LLMs struggle with increasing
test complexity and deviations, it is striking that
second-order ToM immediately perturbs some
large instruct-LLMs (e.g. PaLM2-chat), and that
adding deviations from the original test formula-
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Figure 3: Performance on Imposing Memory test for base-LLMs (top row) and instruct-LLMs (bottom row). Left
column depicts overall performance over five levels of recursion, averaged over deviations. Middle and left columns
depict performance for Memory and Intentional questions. Dashed lines indicate child performance (n=36, 9-10y).

tions pushed performance of even the most com-
petitive models down (e.g. GPT-4, GPT-3.5). This
initially suggests that performance on ToM tasks
does not generalize well beyond a few standard
contexts in LLMs, in line with earlier work (Sap
et al., 2022; Shapira et al., 2023; Ullman, 2023).

For the Strange Stories we saw that base-LLMs
perform generally below child level. Most instruct-
LLMs perform close to or above child level, par-
ticularly as items become more complex and child
performance drops much more dramatically than
LLM performance. Levels of deviation from the
original test formulation seem to have made almost
no impact for the SS, suggesting that the capacity
to deal with non-literal language targeted by the
Strange Stories test does generalize to novel con-
texts. We conclude that instruct-LLMs are quite
capable at interpreting non-literal language, a skill
that in humans involves ToM. Since the training
data of LLMs includes numerous books and fora,
which are typically rich in irony, misunderstanding,
jokes, sarcasm, and similar figures of speech, we
tentatively suggest that LLMs are in general well-
equipped to handle the sort of scenarios covered in
the Strange Stories. This should in theory include
base-LLMs, but it could be that their knowledge
does not surface due to the test format, even after
specialized prompting. Going one step further, we
hypothesize that Sally-Ann is generally harder for
LLMs given that this test relies less on a very spe-
cific sort of advanced language ability, but more
on a type of behaviourally-situated reasoning that
LLMs have limited access to during training (see
also Mahowald et al., 2023).

The Imposing Memory test was the most chal-

lenging for both base- and instruct-LLMs. Since
our version of it was never published before, it con-
stitutes another robustness test, which only GPT-4
as largest instruct-LLM seems to pass well.

The gap between base- and instruct-LLMs is best
summarized in Figure 4. Here we see that no base-
LLM achieves child level: all LLMs approaching
or exceeding child performance are larger instruct-
LLMs. Our adapted prompts and insertion of cor-
rect answers for motivation questions did not make
a difference. We suggest that another issue for base-
LLMs, besides the prompt format, was prompt
length. This was highest for IM, which can explain
why they struggled most with this test. Prompt
length, in relation to the models’ varying context
window sizes and ability to engage in what Hagen-
dorff et al. (2023) call chain-of-thought reasoning,
merits further research (see also Liu et al., 2023).
We tested whether there was a difference between
model performance on closed versus open ques-
tions across all three tasks, but found no signal:
the models that struggled with closed questions
were also those that performed low on open ques-
tions (for more details and additional information
on prompting, see Appendix A on OSF).

Evidence is emerging that most LLM capaci-
ties are learned during self-supervised pre-training
(Gudibande et al., 2023; Ye et al., 2023), which
suggests that base-LLMs are essentially ‘complete’
models. Yet instruction-tuning, even in small
amounts (Zhou et al., 2023), adds adherence to
the desired interaction format and teaches LLMs,
as it were, to apply their knowledge appropriately.
We see a parallel between instruction-tuning and
the role for rewarding cooperative communication
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Figure 4: Grand mean performance (stars) of all mean
test scores (dots) for children and LLMs.

in human evolution and development. It has been
argued extensively that human communication is
fundamentally cooperative in that it relies on a ba-
sic ability and willingness to engage in mental co-
ordination (e.g Verhagen, 2015; Grice, 1975). It
is a key characteristic of the socio-cultural niche
in which we evolved that, when growing up, we
are constantly being rewarded for showing such
willingness and cooperating with others to achieve
successful communicative interactions (Tomasello,
2008). Reversely, if we do not, we are being pun-
ished, explicitly or implicitly via increasing social
exclusion (David-Barrett and Dunbar, 2016). This
brings us back to our context: instruction-tuning
essentially rewards similar cooperative principles,
but punishes the opposite, which may amount to an
enhanced capacity for coordinating with an inter-
action partner’s perspective, in humans and LLMs
alike. This is reflected in performance on ToM
tasks, which are banking on this capacity too.

Finally, we do not claim that LLMs that per-
formed well also have ToM in the way that humans
have it. Validity of cognitive tests such as those
used in ToM research is a general issue (e.g. van
Duijn, 2016). Yet for humans ToM tests are val-
idated ‘quick probes’: decades of research have
shown that proficiency on such tests correlates with
an array of real-world social and cognitive abilities
(Beaudoin et al., 2020). For LLMs we are in a very
early stage of figuring out what is entailed by profi-
con ToM tests: on the one hand it is impressive that
some models show a degree of robust performance,
without explicit training on ToM. On the other hand
it remains an open question whether this amounts
to any actual capacities in the social-cognitive do-
main, in which they are clearly very differently

grounded (if at all) compared to humans.
For future research we believe in the format of

testing models that differ in other respects than just
size, on a varied array of tasks, with multiple tests
per test item, to gain further insight into the aspects
that explain variability in performance. For this,
more openness about architecture and training pro-
cedures of current and future LLMs is imperative.
In addition, we believe to have contributed to the
debate by benchmarking LLM results on child data,
but more of this is needed. We had limited samples
and age distributions, and tests were not presented
in optimal ways (see Section 3.5).

We emphasize that our results need to be seen
within the time frame of late Spring 2023. The
fast pace with which LLMs are currently released
and, in some cases, updated, makes them a moving
target. There are indications that specific capaci-
ties of models from the GPT-family have declined
over time, perhaps as a result of such updates (e.g.,
handling math problems and producing code; Chen
et al., 2023). Future studies need to address how
such developments impact the capacities assessed
in this paper.

6 Conclusion

We have shown that a majority of recent Large
Language Models operate below performance of
children aged 7-10 on three standardized tests rele-
vant to Theory of Mind. Yet those that are largest in
terms of parameters, and most heavily instruction-
tuned, surpass children, with GPT-4 well above all
other models, including more recent competitors
like PaLM2-chat and PaLM2 (see Figure 4). We
have interpreted these findings by drawing a paral-
lel between instruction-tuning and rewarding coop-
erative interaction in human evolution. We concede
that researching the degree to which LLMs are ca-
pable of anything like thought in the human sense
has only just begun, which leaves the field with
exciting challenges ahead.
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