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Abstract
Language models are often used as the back-
bone of modern dialogue systems. These mod-
els are pre-trained on large amounts of writ-
ten fluent language. Repetition is typically pe-
nalised when evaluating language model gen-
erations. However, it is a key component of
dialogue. Humans use local and partner spe-
cific repetitions; these are preferred by human
users and lead to more successful communi-
cation in dialogue. In this study, we evaluate
(a) whether language models produce human-
like levels of repetition in dialogue, and (b)
what are the processing mechanisms related to
lexical re-use they use during comprehension.
We believe that such joint analysis of model
production and comprehension behaviour can
inform the development of cognitively inspired
dialogue generation systems.

1 Introduction

Human production in dialogue is influenced by
many factors within the recent conversational
history, leading speakers to repeat recently used
lexical and structural elements of their own
and their partners’ language. These factors can
involve conceptual pacts speakers make in order
to establish common ground (Brennan and Clark,
1996), priming of lexical or syntactic cues which
influences their subsequent re-use (Bock, 1986),
and other social, interpersonal, cognitive, or
neural influences (Pickering and Garrod, 2005;
Danescu-Niculescu-Mizil et al., 2012; Hasson
et al., 2012; Fusaroli et al., 2014).

Language models, which are often used as the
backbone of modern dialogue systems, should
learn to attend to such factors in order to success-
fully mimic human linguistic behaviour in interac-
tion. The pre-training data of these models typi-
cally contains fluent monologic language and lit-
tle diverse dialogue data—and indeed one goal of
building language generators is having them pro-
duce fluent language. A key aspect of achieving

fluency is the avoidance of repetition: repetitions
are typically thought of as evidence of degenerate
production (Li et al., 2016a,b; Welleck et al., 2019;
Holtzman et al., 2019).

Recent advances in conversational language
models, such as ChatGPT, demonstrate neural mod-
els’ impressive performance in producing human-
like, proficient language. However, despite these
advances, they are yet to display human-like com-
municative behaviour (i.e., adhering to Gricean
maxims—the verbosity of such models can be
high), and more nuanced, local, and partner-
specific interactions. Humans in dialogue use spe-
cific communication strategies which rely on repeti-
tion, and, in particular, these are local and partner-
specific (Schlangen, 2004; Pickering and Garrod,
2005; Sinclair and Fernández, 2023). We start from
the desideratum that dialogue response generation
models should also produce human-like levels of
repetition. While excessive levels of repetition,
designed to mimic alignment, can hinder natural-
ness (Isard et al., 2006; Foster et al., 2009), hu-
mans generally prefer generated dialogue that con-
tains higher levels of alignment (Lopes et al., 2015;
Hu et al., 2016), which also lead to more success-
ful communication in human-human dialogue (Xi
et al., 2021; Isard et al., 2006). Moreover, elements
of alignment have been successfully incorporated
in chat bots (Hoegen et al., 2019; Gao et al., 2019).

Investigating and understanding the mechanisms
which drive more human-like patterns of repetition
is critical to creating more human-like natural
language generation and dialogue systems. We
therefore study whether models reproduce the
repetition behaviour humans display in spoken
dialogue, and the extent to which this repetition
is affected by contextual cues. In particular, we
focus on locality effects, comparing repetition
patterns of speakers with respect to their own, and
their partner’s language. We investigate language
models’ production behaviour, via measuring
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the extent to which they generate similar local
repetitions to humans, and their comprehension
behaviour, through measuring the salience they
assign to a given portion of the local dialogue
context when comprehending an utterance.

2 Background

2.1 Human Repetition and Alignment

Local repetition of shared language between speak-
ers is one of many lower-level linguistic signals
indicating the presence of interactive alignment be-
tween speakers (Pickering and Garrod, 2004a). It
is thought to contribute to more successful commu-
nication (Pickering and Garrod, 2005) as it allows
speakers to establish and maintain shared common
ground (Brennan and Clark, 1996; Pickering
and Garrod, 2004b). Developing local routines—
shared sequences of repeated language (Pickering
and Garrod, 2005; Garrod and Pickering, 2007)—
can also indicate mutual understanding between
speakers (Wilkes-Gibbs and Clark, 1992; Gallotti
et al., 2017). Producing repeated language in
dialogue, either at a word level, or, in the case
of routines, a construction level, is influenced by
many factors in the local context. Speakers can
be primed by language they have been recently
exposed to, which may, in addition to the coor-
dination and alignment factors mentioned above,
play a role in the choice to repeat language locally
(Tooley and Traxler, 2010). Priming effects can
take place at multiple levels (from phonetic, lexical
and syntactic to gesture, gaze and body posture),
and are well attested in human dialogue (Brennan
and Clark, 1996; Pardo, 2006; Reitter et al., 2006a;
Holler and Wilkin, 2011; Rasenberg et al., 2020).

Alignment and coordination between speakers
in dialogue are often measured in terms of local
linguistic ‘alignment effects’, i.e., whether adja-
cent utterances contain high linguistic overlap, and
whether the incidence of repetitions decays with the
distance between utterances (Reitter et al., 2006b;
Xu and Reitter, 2015; Sinclair et al., 2018; Sinclair
and Fernández, 2021; Giulianelli et al., 2022). Lo-
cal shared construction use has been linked to more
successful grounded communication (Fusaroli
et al., 2014; Reitter and Moore, 2007, 2014; Ward
and Litman, 2007; Friedberg et al., 2012; Sinclair
and Schneider, 2021; Norman et al., 2022). Local
alignment is also affected by whether a speaker
repeats their own or their partner’s language, both
in humans and in human-agent dialogue settings

(Reitter et al., 2006b; Sinclair et al., 2018; Dup-
lessis et al., 2017; Sinclair et al., 2019). We focus
our attention on these short term, local repetition
effects and structure our analyses accordingly.

2.2 Understanding the Behaviour of
Language Models

Analysing model behaviour is a key approach when
investigating patterns of model repetition, for ex-
ample, paradigms from psycholinguistics can be
repurposed to this end (e.g., Futrell et al., 2019).
During language comprehension, language models
have been shown to be prone to structural prim-
ing effects, in a manner with parallels to find-
ings in humans. In particular, recency of prime
to target within the input context heavily influences
the likelihood of the congruent structure (Sinclair
et al., 2022). It is less clear, however, to what
extent models are affected by priming and repe-
tition during language production, or generation,
and what the mechanisms are that drive their com-
prehension behaviour. One method for explain-
ing model behaviour is to employ interpretability
techniques such as attribution methods. Attribu-
tion methods (Covert et al., 2021) allow for a high-
level explanation of model behaviour that aligns
strongly with how humans explain their decision-
making, i.e., based on counterfactual examples
(Yin and Neubig, 2022): how would the predic-
tion have changed if a particular input feature
was not present? Attribution methods have been
used to examine linguistic patterns in model be-
haviour, and it has been argued they provide more
comprehensive insights than attention heatmaps
(Bastings and Filippova, 2020), because attention
only determines feature importance within a partic-
ular attention head, and not for model predictions
as a whole (Jain and Wallace, 2019). Linguistic
phenomena investigated using attribution methods
include co-reference, negation, and syntactic struc-
ture (Jumelet et al., 2019; Wu et al., 2021; Nayak
and Timmapathini, 2021; Jumelet and Zuidema,
2023). Within conversational NLP, feature attribu-
tion methods have been used to identify salient fea-
tures in task-oriented dialogue modelling (Huang
et al., 2020), dialogue response generation (Tuan
et al., 2021), and turn-taking prediction (Ekstedt
and Skantze, 2020). However, relatively little work
involves these techniques used to analyse human
alignment behaviour in dialogue, in terms of pat-
terns of local repetition, which we make our focus.
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3 Experimental Setup

In this study, we investigate (a) to what extent repe-
tition patterns in dialogue can be explained in terms
of the re-use of lexical material in the local context;
(b) whether LMs learn to generate repetitions with
properties similar to those observed in human inter-
action and (c) how this relates to generation quality,
as well as (d) whether LMs are influenced by the
presence of repetitions in the local context when
comprehending dialogue utterances. This section
introduces the dialogue data and the language mod-
els used to study these four questions.1

3.1 Corpora

We choose two high-quality, naturalistic dialogue
corpora, transcribed from spoken human interac-
tions, with different conversational dynamics and
well attested local repetition patterns at a lexi-
cal and structural level (Reitter et al., 2006a; Sin-
clair and Fernández, 2021). Although larger scale
conversational corpora exist, often these consist
of more artificial interactions (e.g., very short or
highly closed-domain).

Map Task. The Map Task corpus (Anderson et al.,
1991) comprises 128 dialogues between speakers
participating in a navigational task. Speakers have
either an instruction giver or instruction-follower
role: they either describe a route, or attempt to
follow and mark the described route, on their map.

Switchboard. The Switchboard corpus (Godfrey
et al., 1992) contains 1,155 dialogues between par-
ticipants making conversation over the telephone
about one of a pre-specified range of common con-
versational topics. Speakers in this setting have
equal status, with no pre-defined roles.

Extracting sample contexts. We are interested
in evaluating the extent to which repetition occurs
at a local level, therefore we extract sample con-
texts of 10 utterances, using a sliding window ap-
proach. Of these, utterances 1-9 are the context,
and utterance 10 is the target utterance which we
investigate. Since we are interested in between- vs.
within-speaker effects, we define utterances based
on speech turns—i.e. each time a speaker changes,
we consider this a new utterance. Details of the
corpora and extracted samples are in Table 1.

1https://github.com/the-context-lab/attribalign

Switchboard Map Task

Full dialogues 1,155 128
Number of utterances 86.64±39.1 207.62±103.2
Unique vocabulary 19,927 1,882

Samples (of 10 utterances) 8,705 2,395
Words per utterance 14.6 ± 18.95 8.39 ± 9.21

Table 1: Corpus statistics.

3.2 Language Models

We select three autoregressive neural language
models for our analysis: DialoGPT (DGPT; Zhang
et al., 2020), GPT2 (Radford et al., 2019), and
OPT (Zhang et al., 2022). We select DGPT as
a model specifically designed for dialogue (yet
still trained on written language, which differs sig-
nificantly from our transcribed spoken language);
GPT2 as its estimates are shown to be predictive of
comprehension behaviour, even more so than larger
LM variants (Shain et al., 2022; Oh and Schuler,
2023); and OPT, which has demonstrated competi-
tive performance across a range of benchmarks (Pa-
perno et al., 2016; Park, 2023). We fine-tune for 20
epochs, using an early stopping technique to save
the best performing model based on perplexity.2

4 Producing Repetitions

We expect human repetition patterns to be highly
local, given prior results showing priming effects
in the same corpora (e.g., Reitter and Moore,
2007; Sinclair et al., 2018; Sinclair and Fernández,
2021). We also expect repetition patterns to be
modulated by which dialogue partner is being
repeated. In particular, we expect between-speaker
repetition patterns to be the strongest given that
developing shared routines can signal alignment
and coordination of speakers’ mental models
or interpersonal synergy (Pickering and Garrod,
2005, 2004a; Fusaroli et al., 2014). We firstly
analyse locality and between- vs. within-speaker
repetition in human-produced utterances, then
investigate whether the same patterns occur in
model generations.

4.1 Methods

4.1.1 Measures of Repetition
To differentiate between routines vs. shared
language, we compute two main measures of
lexical repetition, at the word level, and in terms
of shared word sequences (constructions; see

2More details of model sizes can be found in Appendix C.

https://github.com/the-context-lab/attribalign
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Section 4.1.2), with which we hope to capture
between-speaker routines. We measure repetition
between utterance pairs, at varying distances from
one another within a given context sample. We
define additional measures to capture established
human dialogue behaviours.

Vocabulary Overlap. To compute vocabulary
overlap, VO , we exclude punctuation, and calcu-
late VO as the proportion of words w in the current
turn tc that also appear in a previous turn tp:

V O =
|wtc ∩ wtp |

|wtc |
(1)

Construction Repetition. After extracting a
shared inventory of constructions (Section 4.1.2)
for a dialogue, we measure the proportion of rep-
etition of shared constructions C as construction
overlap CO as:

CO =
|Ctc ∩ Ctp |

|wtc |
(2)

Between vs. Within-Speaker Repetition. This bi-
nary measure describes whether the producer of
utterance tc and tp is the same (within) or different
(between).

Locality. We measure locality as the distance in
utterance index between tc and tp. We take repe-
tition decay, a negative effect of distance d on the
shared constructions between tc and tp, as evidence
of a local repetition effect.

Specificity. We calculate how sample-specific the
extracted constructions are, and for each tc, report
average specificity of the repeated constructions.
We measure specificity using pointwise mutual
information (PMI), computed as follows:

PMI(c, s) = log2
P (c|s)
P (c)

(3)

Higher PMI indicates a construction c is more
strongly associated with, or specific to, the
sample s it occurs within due to the frequency of
occurrence in this context being higher relative to
its general usage.

4.1.2 Construction Extraction Procedure
To extract repeated constructions we make use of
dialign, a framework for sequential pattern mining
(Dubuisson Duplessis et al., 2017).3 We then dis-
card repeated expressions with fewer than two al-
phanumeric tokens (following Sinclair and Fernán-
dez, 2021). Repeated expressions consisting solely

3https://github.com/GuillaumeDD/dialign

of punctuation or of more than half filled pauses
are also excluded. We further discard construc-
tions which contain periods, commas and question
marks, to avoid constructions which include sen-
tence boundaries: these do not contain the lexical
elements we are interested in. We define the re-
sulting shared lexicon as constructions. Table 2
provides details of their properties. 4

Switchboard MapTask
M±Std Med. Max M±Std Med. Max

Construction
Length 2.1 ± 0.4 2.0 5 2.4 ± 0.8 2.0 11
Frequency 3.0 ± 1.2 3.0 6 3.3 ± 1.1 3.0 6
Rep. Dist. 3.6 ± 2.7 3.0 8 3.3 ± 2.7 3.0 8
Incidence 1.6 ± 1.1 1.0 10 2.0 ± 1.1 2.0 8
PMI 6.8 ± 3.4 6.6 11.5 7.2 ± 2.2 7.6 9.6

Utterance
CO 0.004 ± 0.035 0.0 1.0 0.024 ± 0.13 0.0 2.8
VO 0.13 ± 0.23 0.008 1.0 0.13 ± 0.24 0.0 1.0

Table 2: Construction properties. Repetition distance
(Rep. Dist.) measured in utterances.

4.1.3 Generating Dialogue Utterances
For each sample in our dataset of extracted dialogue
excerpts, we precede each of the 9 utterances in the
context with its speaker label, and append a final
speaker label, corresponding to the upcoming tar-
get speaker, to the end. We then generate the target
utterance using ancestral sampling (Bishop, 2006;
Koller and Friedman, 2009) to study an unbiased
representation of the model’s predictive distribu-
tion. We set the maximum generation length to
64 tokens, and take the presence of a newline to
indicate the end of an utterance, discarding any
further generated text beyond this.5 The resulting
text we refer to as the target. To ensure that we
take into account that a given context could support
multiple targets—production variability is known
to be high in dialogue (see, e.g., Giulianelli et al.,
2023)—and to ensure our results are robust, we
generate 5 utterances per context sample.

Evaluating generation quality. We measure the
quality of a generated target utterance compared to
the human reference in terms of their n-gram over-
lap (BLEU; Papineni et al., 2002) and semantic sim-
ilarity (BERTScore; Zhang et al., 2019). We also

4Appendix E.1 contains examples of constructions and
how they are repeated, Appendix D filled pauses.

5While the average token length for both datasets is rela-
tively low, some utterances can be much longer. We analysed
the distribution and select 64 as the maximum length since
95% and 99% of utterances fall below this length in Switch-
board and in Map Task, respectively.

https://github.com/GuillaumeDD/dialign
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evaluate generations using perplexity, as computed
using independent models, both independently of
(PPLii), and conditioned on the context (PPLid);
we choose GPT-2 for the same reasons highlighted
in Section 3.2, and Pythia (pythia-1.4b) (Bider-
man et al., 2023) for its open-source, highly per-
formant properties. We additionally make use of
MAUVE (Pillutla et al., 2021) to capture higher-
level distributional differences between human- vs.
model-produced text.

4.2 Analysis

4.2.1 Human vs. Model Repetitions
To analyse local production behaviour, we evaluate
the extent to which human and model-produced
utterances’ CO is sensitive to between-speaker rep-
etition, locality, and context-specificity.

The speaker being repeated affects CO and VO in
humans and models. Dialogue partners differ in
terms of what they repeat of their own vs. their part-
ner’s language (Reitter et al., 2006a; Sinclair et al.,
2018), thus we expect to find differences in our
human data. We also expect that if speakers make
use of local routines (Pickering and Garrod, 2005),
then between-speaker CO will be relatively higher.
We observe that humans do indeed repeat construc-
tions shared with their dialogue partner more so
than they do those not shared (CO : Map Task:
t = 12.78, p < 0.05. Switchboard: t = 17.74,
p < 0.05 ). We observe the inverse effect for VO ,
showing speakers repeat their own language rela-
tively more so than they do their dialogue partner
(VO . Map Task: t = −13.64, p < 0.05. Switch-
board: t = −26.66, p < 0.05). While models
exhibit global human-like CO and VO patterns to
some degree, for example GPT2 tuned is no differ-
ent to human CO for within-speaker in Switch-
board (t = −0.18, p = 0.86), and between-speaker
in Map Task (t = −1.86, p = 0.06), these effects
are not consistent across models or corpora. Fig-
ure 1 illustrates these results, details of statistical
differences in Appendix E.

Humans produce repetitions locally. To evalu-
ate the local effects of repetition, we employ linear
mixed-effect models, including dialogue, sample
and speaker identifiers as random effects.6 We con-
firm that CO decays with the distance between

6Full model output can be found in Appendix H. We in-
clude dialogue, sample and speaker as random effects, to allow
for group-level variability in the linear model.

Figure 1: Human and model repetition properties. B
indicates base models, T tuned models.

a given utterance and those preceding it (β =
−0.001, p < 0.05, 95% CI = [−0.001:−0.001]);
this is not the case for VO (Figure 2a). Decay ef-
fects for CO are stronger for between-speaker rep-
etition in both corpora. That is, speakers are more
likely to repeat their partner’s language locally.
Interestingly, in Switchboard, decay effect are
not observable when looking at the dialogue as a
whole (Sinclair and Fernández, 2021). We hypoth-
esise that other, less locally repeated constructions
may drive down this effect when analysing the dia-
logues as a whole, or that some constructions may
have multiple short bursts of local repetition over
the course of a dialogue (Pierrehumbert, 2012).

Models learn some patterns of local repetition.
We find that fine-tuned models learn turn-sensitive
patterns of local repetition to some extent. Fig-
ure 2b demonstrates that models can learn simi-
lar patterns of local repetition to those observed
in human dialogue. The most dramatic improve-
ment in similarity to human behaviour is for DGPT.
We find that in Switchboard, both models and hu-
mans show significant local repetition effects of
CO independent of VO effects. Investigating CO
in more detail, while human repetitions are sensi-
tive to the length of the construction (longer con-
structions predict CO : β = 0.035, p < 0.05,
95% CI = [0.025:0.045]), this is not the case for
models, for which the frequency of the repetition
in the sample plays an important role in predicting
CO (e.g. GPT2 repetition frequency: (β = 0.01,
p < 0.05, 95% CI = [0.007 : 0.013])). For Map
Task, we find that humans repeat highly specific
repetitions locally (CO β = 0.006, p < 0.05,
95% CI = [0.003 : 0.009]), however this is only
true for GPT2 (β = 0.001, p < 0.05, 95% CI =
[0.0:0.002]). Full model results in Appendix H.1.
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(a) Human CO , VO & PMI (b) Human vs. Model CO & VO . (c) Specificity (PMI ) of repeated constructions.

Figure 2: Repetition effects for construction overlap CO and vocabulary overlap VO . Patterns of human vs. model
repetition across contexts.

Models don’t consistently produce speaker-
specific repetitions. We find that while all models
display significant CO speaker effects similar to
humans, when taking into account other contex-
tual factors, their behaviour with respect to speci-
ficity varies. While Figure 2c demonstrates that
the PMI of constructions decays with distance,
human speakers show no significant independent
effect of PMI when predicting CO in either cor-
pus. GPT2 exhibits the most similar behaviour to
the human data in terms of the effect of distance
and speaker on PMI in Map Task, however learns
a significant negative relationship with PMI for
Switchboard, not present in the human data. Full
model results in Appendix H.1

PPLm ↓ PPLgii ↓ PPLgid ↓ PPLpii ↓ PPLpid ↓ BLEU BertF1 Mve

SW
GPT2 B 15.110 3.770 2.870 60.879 12.985 0.009 0.710 0.035

T 12.020 3.830 2.880 50.608 12.790 0.010 0.730 0.049
OPT B 37.540 3.750 2.870 54.706 12.799 0.010 0.700 0.052

T 15.130 3.830 2.870 45.488 12.635 0.014 0.733 0.069
DGPT B 6935.000 7.050 2.970 1323.338 14.064 0.000 0.656 0.006

T 10.910 3.570 2.870 41.700 12.735 0.016 0.730 0.049
MT

GPT2 B 16.170 4.920 3.190 136.421 18.353 0.006 0.679 0.101
T 7.930 5.250 3.220 208.630 18.193 0.014 0.702 0.245

OPT B 72.100 5.270 3.210 199.344 18.189 0.006 0.682 0.103
T 9.700 5.730 3.240 294.677 18.384 0.016 0.712 0.339

DGPT B 13014.000 6.670 3.280 998.832 19.852 0.002 0.662 0.041
T 8.050 5.320 3.220 235.385 18.007 0.016 0.699 0.176

Table 3: Generation quality results. SW: Switch-
Board. MT: MapTask. PPLm: Perplexity of the
models under scrutiny on the analysis set. Perplexity
of GPT2 (PPLgix) and PYTHIA (PPLpix) on model-
produced utterances (ii independent of, and id depen-
dent on context). B: base models, T: fine-tuned models.
Mve: MAUVE score. Bold indicates the better value
between base and fine-tuned variants.

4.2.2 Repetition vs. Quality
Finally, we investigate whether automatic NLG
metrics capture human-likeness of repetition. This
is an important aspect of naturalness in dialogue

which the metrics are not explicitly designed for.
Table 3 shows the relative generation quality of our
base and fine-tuned models. Extended results can
be found in Appendix B. All models demonstrate
improvement with fine-tuning, although GPT2 base
as an evaluator detects less difference than Pythia.
This is expected, given their training data contains
either little dialogue data, or a comparatively very
different style of dialogue.

We find that the closer the levels of CO and
VO are to human-produced language,7 the higher
BertF1, BLEU, and the lower the evaluation model
perplexity both dependent and independent of the
context. This correlation is strongest for GPT2 with
ρ = −0.395, p < 0.05 for VO and ρ = −0.258,
p < 0.05 for CO . This is perhaps to be expected
for reference-based metrics, so we additionally
inspect whether human-like CO levels correlate
with MAUVE, a corpus-level metric, finding that
more similar CO levels between human and model
inversely correlate with MAUVE quality (above
ρ = 0.7, p < 0.05 across models).8 This tells
us either that better corpus-level metrics need to
be defined or, perhaps, that corpus-level evalua-
tion is not really appropriate for dialogue where
quality is determined by local and highly contex-
tually dependent cues. This is in keeping with
challenges in evaluating dialogue (Zhang et al.,
2021; Liu et al., 2016), and suggests standard NLG
evaluation approaches should be complemented by
dialogue-specific metrics like the ones we use in
our analysis.

7We measure this as the absolute value of the difference
between human and model values.

8Table 9 in Appendix G provides a detailed breakdown of
these results.
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5 Interpreting Model Comprehension
Behaviour

In the previous section, we investigated patterns of
repetition in models’ production behaviour. Now
we turn our attention to their comprehension be-
haviour, making use of interpretability techniques
to analyse what properties of the utterances in the
context are more salient in determining expecta-
tions for a given target utterance. We expect mod-
els to learn patterns of turn-taking from the struc-
ture and contents of the context utterances (Wolf
et al., 2019; Ekstedt and Skantze, 2020; Gu et al.,
2020). We also expect that higher salience will be
assigned to repetitions with local antecedents, in
line with recency effects observed in model prim-
ing behaviour (Sinclair et al., 2022).

5.1 Methods

5.1.1 Feature Attribution
We obtain attributions over the dialogue context for
a given target utterance, extracting scores for each
token over the entire preceding context.9 We are
interested in examining behavioural patterns at the
utterance level, in order to investigate the influence
of their distance from the target, and design a mea-
sure to capture the relative boosting effects of the
context for a given target utterance. This approach
allows us to inspect attribution patterns across the
context with respect to properties of the target ut-
terance as a whole, allowing us to conduct similar,
complementary analyses to the previous section.

A wide range of feature attribution methods
exist (Lundberg and Lee, 2017; Murdoch et al.,
2019). It remains an open question, however,
which of these methods are most faithful with
respect to the true model behaviour (Bastings et al.,
2022). Some methods resolve this through defining
theoretical properties that need to be satisfied by
the method (Sundararajan et al., 2017). We focus
on one such method, DeepLift (Shrikumar et al.,
2017), which, besides its attractive theoretical
properties, is also considerably more compute
friendly than alternative attribution methods.

5.1.2 Attribution Aggregation Procedure
We design a measure that allows us to capture the
relative effects that individual utterances in the lo-
cal context have on models’ utterance comprehen-
sion. Our measure aggregates over per-token attri-

9For creating the attributions we make use of Inseq (Sarti
et al., 2023) and Captum (Kokhlikyan et al., 2020).

butions for a full utterance, returning relative pre-
diction boosting effects of tokens within context ut-
terances, speaker label tokens, and the target itself.

A given sample will consist of speaker label
tokens, indicative of the change in speaker, e.g.

‘A:’ and ‘B:’, the 9 context utterances, and the
target utterance text. This can look like the
following, with the speaker label tokens in orange,
context utterances in dark blue, and the final target
utterance of interest in light blue:
A: how are you? B: great, it’s sunny A: about time
B: agreed. A: I love sun B: me too A: makes me
think of the beach B: the beach is great A: so great
B:great, we should go to the beach!

Firstly, we create the feature attribution scores
of each token in the input wi with respect to the
prediction of each token in the target utterance wt:

Φ ∈ R|wi|×|wt|×nemb (4)

Since feature attribution methods provide an
importance score on the embedding level, we
sum these scores along the embedding dimension
nemb.10 Next, we sum the Φ matrix along the
dimension of the tokens in the target utterance (wt):
creating a single score for each input token with
respect to the target as a whole. Then, we create
a single importance score for each individual input
utterance or turn separator, denoted as a set Ti that
contains the indices of the ith utterance:

Φ′ ∈ R|T |, Φ′
i =

∑
j∈Ti

∑
k

∑
l

Φj,k,l (5)

Note that the target utterance itself also yields
importance scores of earlier tokens in the target
with respect to later predictions.

The scores of Φ′ are still unbounded, and can
vary greatly between samples and models. We
apply two further operations to allow sample and
model comparison: we normalise the scores by the
maximum absolute Φ′ score, which maps the scores
between -1 and 1, and we then centre the scores
around the mean. This expresses the contribution
of each element in the input as its relative boosting
effect with respect to the other elements in the input

Φ′′ =
Φ′

max (|Φ′|) (6)

ϕ = Φ′′ − mean(Φ′′) (7)

10We could opt for the L2 norm as well, but this would
hide negative contribution effects (Bastings et al., 2022).



261

5.2 Analysis

We now investigate model attribution patterns
over the dialogue context. Our goal is to find
out whether a model’s comprehension behaviour
exhibits robust patterns explainable through known
psycholinguistic effects thought to influence human
language producers, in particular local, between-
speaker repetition patterns. While we are currently
unable to understand precisely where humans place
salience when comprehending, a large body of psy-
cholinguistic research points to patterns of priming
and alignment behaviour detectable from brain
signals (Hasson et al., 2012; Futrell et al., 2019),
and uses our understanding of the brain to inform
analysis of neural language models (Hasson et al.,
2020). We will contrast this analysis of model com-
prehension behaviour to the previous study of their
production behaviour. We expect tuned models, the
more human-like producers, to comprehend human
language in a manner better predicted by factors
thought to influence human processes—such as
locality and priming effects—than base models.

5.2.1 Attributions Over Human Utterances
Humans and models display priming effects, which
can be explained via accounts of residual activation,
and they are sensitive to turn-taking (Ten Bosch
et al., 2005; Tooley and Traxler, 2010; Ekstedt and
Skantze, 2020; Sinclair et al., 2022). We thus ex-
pect attribution patterns to be sensitive to utterance
position and speaker shifts within the context. Fig-
ure 3 shows how results change with fine-tuning.

Utterance comprehension is influenced by context
locality in open domain dialogue. When compre-
hending utterances from a given speaker, models
fine-tuned on Switchboard learn to attribute more
salience to utterances in the nearby context, more
strongly so when these are produced by the other
speaker. This effect is strongest for GPT2 (β =
−0.009, p < 0.05, 95% CI = [−0.011:−0.007]).
For Map Task, we do not see such a clear trend,
with different behaviours between models. Even
though evidence for sensitivity to utterance
position and speaker shifts in comprehension is
only found in one of the two corpora, this is an
interesting result when juxtaposed to our analysis
of production behaviour. It seems to indicate that
while models learn to understand differences in
speakers and in distance within the local context of
open-domain dialogue, this does not always trans-
late to human-likeness of production behaviour.

Figure 3: Relative attribution properties to human utter-
ances over the dialogue context.

Figure 4: Relative attribution importance of speaker
labels over the dialogue context.

Construction repetition in the local context pre-
dicts attribution patterns. High lexical repetition
between context and target has been shown to boost
priming effects in models (Sinclair et al., 2022),
however, less is known about how this translates to
attribution patterns. In line with priming results, we
expect that attribution patterns over context utter-
ances will be predicted by both construction and vo-
cabulary overlap. We see mixed results across mod-
els, finding that only for Switchboard, GPT2 dis-
plays significant positive effect of CO (β = 0.277,
p < 0.05, 95% CI = [0.239 : 0.315]) on attri-
bution strength, independent of VO and distance
effects. Surprisingly, however, the effect of VO
on attribution strength is negative (β = −0.308,
p < 0.05, 95% CI = [−0.346 :−0.270]). More
remains to be done to precisely understand the re-
lationship between the repetitions themselves and
the local attribution patterns we observe, as well as
to identify other factors driving this behaviour.

5.2.2 Attribution Over Special Tokens
While we are most interested in models’ compre-
hension behaviour with respect to the utterance
text in the context, we also investigate their be-
haviour over speaker labels. The effect of struc-
tural tokens on the performance and behaviour of
LMs is an ongoing area of research (Wolf et al.,
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2019; Gu et al., 2020; Ekstedt and Skantze, 2020;
Wallbridge et al., 2023). Speaker labels like ‘A:’
and ‘B:’ provide models with important informa-
tion about the turn-taking dynamics of dialogues.
Figure 4 shows that models learn, through fine-
tuning, to attribute salience to speaker labels in
a more uniform manner (note how the curves of
tuned models are flatter). We find significant dif-
ferences between base and tuned models in both
corpora, with the highest boost in uniformity for
DGPT (Switchboard: β = 0.002, p < 0.05,
95% CI = [0.002 :0.002], Map Task: β = 0.005,
p < 0.05, 95% CI = [0.005 : 0.005]).11 Specu-
latively, this could be taken as an indication that
the models have learned to more consistently use
these as structural markers of turn-taking. The dis-
crepancy between the uniform attribution patterns
over speaker labels and the decaying salience as-
signed to utterance text is an interesting finding that
deserves more attention in future research.

6 Discussion & Conclusion

Repetition behaviour in dialogue, whether driven
by local priming (Bock, 1986), alignment ef-
fects (Pickering and Garrod, 2004b), conceptual
pacts (Brennan and Clark, 1996), or routinisa-
tion (Pickering and Garrod, 2005; Garrod and Pick-
ering, 2007), is well attested in humans. In this
study, we investigate the extent to which language
models are sensitive to, and display the same local,
context-specific, and shared patterns of construc-
tion repetition observed in human dialogue. We
conduct an in-depth analysis using two corpora of
English task-oriented and open-domain dialogue,
and three autoregressive neural language models.

Analysing human interactions, we find that
within highly local contexts (we consider dialogue
samples consisting of 10 utterances), repetition ef-
fects decay with distance from antecedents, par-
ticularly when repetitions are between dialogue
partners, rather than of a speaker’s own language.
This contrasts with and complements previous
work finding no evidence of locality effects within
Switchboard, the same open domain corpus, when
considering dialogues as a whole rather than in
short excerpts (Sinclair and Fernández, 2021), sug-
gesting that some repeated constructions may occur
in multiple short bursts (Pierrehumbert, 2012) over
the course of a dialogue—a phenomenon that is not
easily captured by more ‘global’ analyses.

11Full breakdown of results in Appendix H.2.

We then evaluate model behaviour under two
lenses: production behaviour, analysed in terms of
the repetition of shared constructions (i.e., word
sequences re-used by both dialogue participants) in
model generations, and comprehension behaviour,
measured by models’ attribution of salience to con-
textual units when processing human-produced dia-
logue. We find that models learn, via fine-tuning, to
generate more human-like patterns of construction
re-use, although the degree to which repetitions are
local, context-specific, and shared varies by model.
We also find that while reference-based generation
quality metrics correlate with the human-likeness
of the repetitions produced, corpus-level metrics
like MAUVE fail to capture this important aspect
of dialogue quality. This highlights the need for
more refined corpus-level approaches to statisti-
cal evaluation which take into account local and
highly contextually dependent phenomena, or at
least for their integration with instance-level anal-
yses (Deng et al., 2022; Giulianelli et al., 2023).
Making use of feature attribution techniques, which
provide interpretations of models’ comprehension
behaviour, we then explore the extent to which
models are sensitive to properties of the context
thought to influence human propensity to produce
aligned (i.e., locally repeated and context-specific)
language. We observe that when comprehending
utterances, tuned models assign salience to speaker
labels in a more uniform manner, and that in open-
domain dialogue, models learn to assign salience
over the context in a more local manner.

We will follow up this study with experiments
where our proposed attribution aggregation proce-
dure is performed specifically over construction
tokens in the target utterance. This may allow for
more fine-grained interpretation of the relationship
between repetitions and the observed local effects,
as well as to investigate further psycholinguistic
factors which may drive the tight coupling of local
context and next utterance generation. We hope our
experimental setup will inspire future work that
attempts to create stronger connections between
language model behaviour and findings from psy-
cholinguistics. In particular, we look forward to
seeing our attribution-based methodology being ap-
plied to other dialogue-specific phenomena, and the
local, dyad-specific repetition measures we inves-
tigate applied to the development and evaluation
of more adaptive and context-sensitive dialogue
response generation systems.
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Limitations

Limitations of our work are that it is only conducted
on English-spoken corpora, for two kinds types of
dialogue context (conversational given a range of
popular topics, and navigational task-oriented) and
of that, native speakers of English only. Repetition
patterns of dialogues in different conversational
contexts, with language users of different cultures
and in different languages may vary, and the pat-
terns that models learn for these may also vary.
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B Language Model Fine-Tuning

We fine-tune GPT-2 (Radford et al., 2019),
OPT (Zhang et al., 2022), and DialoGPT (Zhang
et al., 2020) for 20 epochs, using an early stopping
technique to save the best performing model (based
on its perplexity). Table 4 shows the perplexity of
all models, pre-trained and fine-tuned, on the evalu-
ation set. Models significantly adapt to the domain
in training, given the low fine-tuned perplexities.

C Language Model Sizes

The considered language models have the follow-
ing number of parameters. GPT2: 124M, OPT:
125M, DGPT: 117M, PYTHIA: 1.4B.

D Filled Pauses

We define filled pauses using the part-of-speech
tags in Map Task and Switchboard. Map Task:
uh-huh, er, um, mm-mm, eh, uh, mm, uh-uh, nah,
mm-hmm, erm, ehm, huh, hmm, mmhmm. Switch-
board: hm, huh, uh, um-hum, huh, huh-uh, uh,
uh-huh, um.

PPL ↓ Prec Rec F1 BLEU BP ↓ LR ↓ Mve L±Std

SW
GPT2 B 15.110 0.722 0.704 0.710 0.009 0.744 0.772 0.035 11.9 ± 14.7

T 12.020 0.745 0.720 0.730 0.010 0.496 0.588 0.049 8.8 ± 10.5
OPT B 37.540 0.703 0.702 0.700 0.010 0.859 0.868 0.052 13.0 ± 13.8

T 15.130 0.737 0.733 0.733 0.014 0.824 0.838 0.069 12.6 ± 12.9
DGPT B 6935.000 0.667 0.648 0.656 0.000 0.148 0.343 0.006 3.3 ± 3.5

T 10.910 0.737 0.728 0.730 0.016 0.955 0.956 0.049 14.3 ± 15.8
MT
GPT2 B 16.170 0.681 0.680 0.679 0.006 0.827 0.841 0.101 7.1 ± 6.2

T 7.930 0.705 0.702 0.702 0.014 0.849 0.859 0.245 7.4 ± 6.1
OPT B 72.100 0.686 0.681 0.682 0.006 0.701 0.738 0.103 6.1 ± 6.4

T 9.700 0.723 0.705 0.712 0.016 0.631 0.685 0.339 5.7 ± 5.2
DGPT B 13014.000 0.668 0.659 0.662 0.002 0.391 0.516 0.041 3.7 ± 2.8

T 8.050 0.701 0.700 0.699 0.016 0.990 0.990 0.176 8.5 ± 7.9

Table 4: Post-training metrics of models. SW: Switch-
board. MT: Map Task. Precision (Prec), recall (Rec)
and F1 are averages over multiple samples and part
of BERTScore. LR: length ratio (BLEU). BP: brevity
penalty (BLEU). PPL: Perplexity. B: base models. T:
tuned models. Mve: MAUVE score. L: mean target
utterance length (in words). Bold indicates best values
across models per corpora per metric.

E Construction Repetitions

E.1 Construction Examples
Table 5 contains two dialogue excerpts with re-
sponses generated by a tuned OPT model. Phrases
highlighted bold refer to constructions generated
by the model.

Table 6 lists the most frequent constructions
generated by fine-tuned models, grouped by lo-
cality. Local and global constructions are defined
as having a repetition distance of ≤ 4 and > 4,
respectively. The table contains the top three most
frequent produced constructions per model, per
dataset, per locality.

E.2 Repetition Properties
Tables 7 and 8 contain detailed repetition statis-
tics with statistical significance test results. In
both corpora, DGPT learns to best approximate hu-
man target lengths after fine-tuning (TH columns
of all models: −15, −92.8, and −38.59 (t) for
DGPT, GPT2, and OPT, respectively. p < 0.05 for
all). It generates significantly longer responses
(t = −412.64, p < 0.05). Models robustly gener-
ate more dialogue-specific shared constructions af-
ter fine-tuned on Switchboard (t: −109.41, 57.44,
−19.15, p < 0.05). After fine-tuned on Map Task,
models learn to generate less dialogue-specific con-
structions (t: 19.83, 27.43, 22.85, p < 0.05).
Models learn to produce more distant shared con-
structions after trained on both open-ended and
task-oriented dialogue data (SW: t: −4.34, −10.2,
−20.6, MT: t: −10.76, −0.19 (p ≥ 0.05, excep-
tion), −8.53, p < 0.05). DGPT exhibits higher lev-
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Selected local dialogue sample excerpts

A: but . that is a very good point. i am from west
virginia so i understand what you are saying there
B: uh-huh.
A: and it’s it’s a very good point.
B: (OPT) uh-huh. yeah, uh, where i was, uh, i went
to a church in west virginia and uh, they always
wore suits (...)

B: and there’s a lot of graft, like people trying to
tell them, oh, giving them information that was free
to them anyway if they just knew how to get it.
A: uh, yeah, exactly.
B: yeah.
A: (OPT) yeah, there’s a lot of corruption,

B: right, so that’s that’s right, so i’m coming back
back down the paper again
A: ah, yeah back down the paper
B: uh-huh aye turn right
A: (DGPT) and then you go through the paper and
past the chapel, to the right of the page

A: okay right, you went down past burnt forest
B: i went underneath burnt forest
A: well, you weren’t meant to
B: well you said draw round the cottage
A: okay right, you’re meant to come down from
the start
B: (OPT) okay right

A: oh, yeah, yeah, yeah.
B: in the summer or like in the easter time, like
around now?
A: (HUMAN) no, usually in the summer time.

Table 5: Example local repetitions produced by tuned
models.

els of construction overlap (CO) after fine-tuned
on both Switchboard and Map Task (both between
and within speakers), closely approximating human
patterns (SW: t: −23.09, −11.45, MT: t: −29.75,
−14.75, p < 0.05). GPT2 and OPT generally learn
to produce lower CO values, but they already ex-
hibit highly human-like construction overlap scores
in their pre-trained states (SW: t: 6.83, 2.68, 16.52,
3.18, p < 0.05, MT: t: −1.62, −1.4, 0.75, 1.05,
p ≥ 0.05).

F Attributions To Target

We additionally analyse Target vs. Context vs.
Speaker Label salience patterns. Regarding the
speaker labels in the context (i.e., sequences con-
taining non-utterance tokens: A:, <eos>), the effect
of special or structural tokens on the performance
and behaviour of LLMs is an ongoing area of re-
search (Wolf et al., 2019; Gu et al., 2020; Wall-
bridge et al., 2023; Ekstedt and Skantze, 2020),
we expect model attribution behaviour to be more

Figure 5: Attribution patterns for Speaker labels and
Utterances in the dialouge Context (Ctx) during model
comprehension of human Target (Tgt) utterances. The
y-axis measures the relative boosting effect.

similar between tuned models.
From Figure 5, we observe far higher variance

in attribution over the target utterance than over
the utterances in the context, with a similar rel-
ative difference between the speaker label in the
target vs. those in the context. We observe very
few consistent patterns across models in terms of
relative boosting effects, except for speaker label
Ctx, which becomes more relatively uniform (and
closer to 0) with tuning. We observe that GPT2
learns to attribute relatively higher salience over
the text in the context utterances than to that in
the target. In other words, they learn to place rela-
tively more importance on the target utterance itself
(Switchboard: t = −8.01, p < 0.05; Map Task:
t = −14.42, p < 0.05).

G Generation Quality

To perform a comparable correlation analysis of
MAUVE scores and possibly influencing factors,
we treat each model generation (we generate five re-
sponses to each sample) as a separate corpus. This
allows us to compute multiple MAUVE scores for
each model (instead of just one score that is based
on all the model generations). For best practices,
MAUVE requires at least a few thousand exam-
ples to run (the original paper uses 5000). Since
we have 2, 395 samples in Map Task and 8, 705
samples in Switchboard, we select the number of
samples used for MAUVE score computation to be
3, 000. We make use of all the Map Task samples
for computation, and randomly sample model gen-
erations when we have more than 3, 000 examples
available. We obtain five MAUVE scores for each
model (base and fine-tuned), resulting in 30 scores
for each corpus.

Table 9 shows a full breakdown of the most con-
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distance Human GPT2 OPT DGPT

MT

local
the diamond mine the trout farm the diamond mine the abandoned cottage
the concealed hideout the diamond mine the fallen pillars have you got
the rope bridge to the left to the left the rift valley

global
the pine forest of the concealed hideout edge of the map outside of the
don’t have a and a half don’t have a graveyard a saloon bar
the outlaws’ hideout two inches below where of the walled city up the map

SW

local
a lot of a lot of a lot of a lot of
i don’t know i don’t know i don’t know i don’t know
the peace corps freedom of speech one of the the peace corps

global
i used to it was just do you think you’re supposed to
would be a paying sales tax i think it i don’t know if
going to be some of them because i was and a lot

Table 6: Example constructions from tuned models. MT: Map Task, SW: Switchboard. Local: repetition distance
≤ 4; global: repetition distance > 4.

H DGPT GPT2 OPT
B T BH TH BT B T BH TH BT B T BH TH BT

SW
target len. 15.369 3.251 14.271 -174.840 -15.000 -412.640 11.925 8.802 -47.420 -92.800 108.160 13.026 12.599 -32.460 -38.590 14.090
constr. len. 2.176 2.117 2.185 -30.660 5.200 -55.900 2.196 2.186 11.070 5.750 9.400 2.239 2.215 33.810 21.410 19.790
PMI 8.520 8.053 8.821 -42.450 25.740 -109.410 8.424 8.907 -8.020 33.190 -57.440 9.147 9.303 53.330 67.020 -19.150
freq. 2.689 2.607 2.662 -21.530 -7.460 -22.690 2.778 2.672 24.660 -4.600 49.790 2.677 2.648 -3.230 -11.610 14.530
rep. dist. 3.525 3.363 3.891 -1.220 5.840 -4.340 3.586 3.990 0.980 7.040 -10.200 3.104 3.774 -6.870 3.950 -20.600
CO

between 0.006 0.002 0.006 -16.910 -1.270 -23.090 0.008 0.005 6.830 -2.520 16.070 0.011 0.007 16.520 4.340 23.460
within 0.001 0.000 0.001 -9.860 -2.060 -11.450 0.002 0.001 2.680 -0.180 4.600 0.002 0.001 3.180 -0.400 6.340

VO
between 0.116 0.107 0.122 -6.350 5.340 -15.770 0.132 0.125 12.700 7.920 8.530 0.137 0.126 18.620 8.920 17.100
within 0.161 0.106 0.149 -34.490 -7.960 -38.130 0.172 0.170 6.720 5.980 1.470 0.146 0.159 -10.800 -1.190 -16.190

Table 7: Switchboard repetition statistics with statistical significance tests. Red values indicate statistical
insignificance (p ≥ .05). All values not highlighted red are statistically significant. The human (H), base model (B),
and tuned model (T) columns contain averages. The base model–human (BH), tuned model–human (TH), and base
model–tuned model (BT) comparison columns contain computed t-statistics. Rep. dist.: repetition distance. Target
len.: target utterance length (in words). Constr. len.: construction length (in words). Between/within: between- and
within-speaker. Freq.: frequency.

H DGPT GPT2 OPT
B T BH TH BT B T BH TH BT B T BH TH BT

MT
target len. 8.607 3.701 8.488 -75.490 -1.710 -175.650 7.119 7.411 -22.220 -17.870 -10.990 6.062 5.670 -37.910 -44.360 15.530
constr. len. 2.373 2.272 2.240 -20.790 -28.610 11.740 2.321 2.287 -11.000 -18.390 13.830 2.427 2.403 11.210 6.270 8.260
PMI 7.063 7.339 7.113 18.580 3.220 19.830 7.652 7.341 39.130 18.180 27.430 7.956 7.722 60.480 44.730 22.850
freq. 3.249 2.980 2.999 -35.100 -32.780 -4.180 3.214 3.180 -4.590 -9.000 7.310 3.230 3.105 -2.470 -19.060 29.250
rep. dist. 3.281 2.736 3.554 -5.830 3.950 -10.760 3.439 3.447 2.270 2.390 -0.190 3.245 3.625 -0.530 4.840 -8.520
CO

between 0.028 0.010 0.028 -20.600 -0.480 -29.750 0.027 0.026 -1.620 -1.860 0.320 0.029 0.024 0.750 -3.890 7.820
within 0.011 0.004 0.009 -14.300 -4.100 -14.750 0.010 0.010 -1.400 -2.380 1.370 0.012 0.009 1.050 -3.650 7.540

VO
between 0.118 0.121 0.130 1.350 5.470 -6.160 0.118 0.117 0.020 -0.340 0.660 0.139 0.137 8.570 7.260 1.480
within 0.164 0.124 0.158 -13.920 -2.190 -19.590 0.149 0.162 -5.630 -0.380 -8.910 0.157 0.180 -2.370 5.050 -12.890

Table 8: Map Task repetition statistics with statistical significance tests. Red values indicate statistical
insignificance (p ≥ .05). All values not highlighted red are statistically significant. The human (H), base model (B),
and tuned model (T) columns contain averages. The base model–human (BH), tuned model–human (TH), and base
model–tuned model (BT) comparison columns contain computed t-statistics. Rep. dist.: repetition distance. Target
len.: target utterance length (in words). Constr. len.: construction length (in words). Between/within: between- and
within-speaker. Freq.: frequency.
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Metric Type Model ρ p
Construction Overlap B DGPT 0.914 0
Construction Overlap B GPT2 0.933 0
Construction Overlap B OPT 0.888 0.001
Construction Overlap T DGPT 0.698 0.025
Construction Overlap T GPT2 0.808 0.005
Construction Overlap T OPT 0.976 0
Prop. Repetition B DGPT 0.905 0
Prop. Repetition B GPT2 0.91 0
Prop. Repetition B OPT 0.944 0
Prop. Repetition T DGPT 0.637 0.047
Prop. Repetition T GPT2 0.747 0.013
Prop. Repetition T OPT 0.98 0

Table 9: MAUVE ρ correlation results. Metrics are
the absolute value of the difference between model and
human levels of CO and repetition, thus a positive corre-
lation indicates an inverse correlation of the two metrics
of human-likeness

sistent results across models. Since we are inter-
ested in general properties which apply to conver-
sational corpora, we combine both Map Taskand
Switchboardin this analysis. We find a strong ρ
correlation across models, weakest for DGPT.

H Linear Mixed Effects Regression
Results

To evaluate local effects, specifically the relation-
ship between utterances in the context and the tar-
get utterance, we employ linear mixed-effect mod-
els, including dialogue and sample identifiers as
random effects.

H.1 Production: Repetition Effects
To measure repetition effects we fit separate models
for construction overlap CO , and vocabulary over-
lap VO , making these the dependent variables. We
include dialogue and sample as random effects to
allow for group-level variability in the linear model.
We firstly investigate the effects of speaker, and dis-
tance. To measure repetition in the human data,
we include speaker, and distance given speaker as
fixed effects. To measure repetition in models, we
follow the same process as for the human data, but
adding model type (base or tuned) and their in-
teraction with distance as additional fixed effects.
Results for VO can be found in Table 10, and CO
in Table 11.

We then conduct a second analysis, this time to
investigate the impact of different properties of con-
structions on the CO effects. We include speaker,
distance, construction length, specificity (PMI) and
frequency as independent fixed effects. Results can
be found in Table 12.

H.2 Comprehension: Attribution Effects
To measure Attribution strengths over the context
utterances during model comprehension of human-
produced target utterances, we made attribution the
dependent variable.

H.3 Attribution Over Human Utterances
To investigate the effect of local context repetition
on model attribution strengths to context utterance
text during target utterance comprehension, we in-
clude speaker, distance, construction overlap, vo-
cabulary overlap, average construction PMI, and
construction frequency as fixed effects. Results can
be found in Table 13.

H.4 Attribution Over Special Tokens
To investigate the effect of distance on model attri-
bution to speaker labels within the context during
target utterance comprehension, we include dis-
tance, model type (base or tuned) and their inter-
action as fixed effects. Results can be found in
Table 14.
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Switchboard Map Task
Coef. Std. z P > |z| [0.025 0.975] Coef. Std. z P > |z| [0.025 0.975]

Human
Intercept 0.119 0.002 58.807 0.000 0.115 0.122 0.137 0.004 33.787 0.000 0.129 0.145
S[T.same] 0.064 0.003 19.889 0.000 0.058 0.071 0.033 0.007 5.013 0.000 0.020 0.045
dist:S[diff] -0.001 0.000 -1.868 0.062 -0.001 0.000 -0.005 0.001 -6.592 0.000 -0.006 -0.003
dist:S[same] -0.005 0.001 -10.705 0.000 -0.006 -0.004 -0.002 0.001 -1.488 0.137 -0.004 0.000

GPT2
Intercept 0.129 0.001 110.696 0.000 0.127 0.132 0.129 0.002 67.475 0.000 0.125 0.133
S[T.same] 0.076 0.002 48.199 0.000 0.073 0.080 0.050 0.003 19.480 0.000 0.045 0.056
type[T.tuned] -0.011 0.001 -10.672 0.000 -0.013 -0.009 -0.002 0.002 -1.357 0.175 -0.006 0.001
dist:S[diff]:type[base] 0.000 0.000 2.142 0.032 0.000 0.001 -0.003 0.000 -9.877 0.000 -0.003 -0.002
dist:S[same]:type[base] -0.008 0.000 -36.207 0.000 -0.009 -0.008 -0.008 0.000 -20.167 0.000 -0.008 -0.007
dist:S[diff]:type[tuned] 0.002 0.000 11.460 0.000 0.002 0.002 -0.002 0.000 -8.011 0.000 -0.003 -0.002
dist:S[same]:type[tuned] -0.006 0.000 -28.161 0.000 -0.007 -0.006 -0.004 0.000 -10.058 0.000 -0.005 -0.003

OPT
Intercept 0.147 0.001 147.422 0.000 0.145 0.149 0.158 0.002 69.367 0.000 0.153 0.162
S[T.same] 0.034 0.001 25.623 0.000 0.032 0.037 0.034 0.003 11.096 0.000 0.028 0.040
type[T.tuned] -0.015 0.001 -16.526 0.000 -0.017 -0.013 -0.010 0.002 -5.213 0.000 -0.014 -0.007
dist:S[diff]:type[base] -0.003 0.000 -19.647 0.000 -0.003 -0.003 -0.005 0.000 -14.935 0.000 -0.006 -0.004
dist:S[same]:type[base] -0.008 0.000 -38.836 0.000 -0.008 -0.007 -0.009 0.000 -19.171 0.000 -0.009 -0.008
dist:S[diff]:type[tuned] -0.001 0.000 -5.039 0.000 -0.001 -0.000 -0.002 0.000 -7.227 0.000 -0.003 -0.002
dist:S[same]:type[tuned] -0.003 0.000 -12.382 0.000 -0.003 -0.002 -0.001 0.000 -2.042 0.041 -0.002 -0.000

DGPT
Intercept 0.104 0.001 69.536 0.000 0.101 0.107 0.142 0.002 65.090 0.000 0.138 0.146
S[T.same] 0.047 0.002 27.535 0.000 0.043 0.050 0.027 0.003 9.267 0.000 0.021 0.032
type[T.tuned] 0.018 0.001 13.055 0.000 0.015 0.020 0.001 0.002 0.427 0.669 -0.003 0.005
dist:S[diff]:type[base] 0.001 0.000 3.648 0.000 0.000 0.001 -0.004 0.000 -11.628 0.000 -0.005 -0.003
dist:S[same]:type[base] -0.007 0.000 -23.073 0.000 -0.008 -0.007 -0.010 0.000 -22.139 0.000 -0.011 -0.009
dist:S[diff]:type[tuned] 0.001 0.000 3.920 0.000 0.000 0.001 -0.004 0.000 -11.219 0.000 -0.004 -0.003
dist:S[same]:type[tuned] -0.005 0.000 -22.278 0.000 -0.006 -0.005 -0.004 0.000 -9.171 0.000 -0.005 -0.003

Table 10: Repetition effects for Vocabulary Overlap VO . S indicates speaker, type indicates model type (base or
fine-tuned), diff indicates whether the two utterances come from different speakers, or between-speaker repetition,
and same indicates whether the two utterances come from the same speakers, or within-speaker repetition.

Switchboard Map Task
Coef. Std. z P > |z| [0.025 0.975] Coef. Std. z P > |z| [0.025 0.975]

Human
Intercept 0.009 0.000 31.878 0.000 0.009 0.010 0.047 0.002 29.468 0.000 0.043 0.050
S[T.same] -0.007 0.000 -14.930 0.000 -0.008 -0.006 -0.033 0.003 -12.807 0.000 -0.038 -0.028
dist:S[diff] -0.001 0.000 -15.367 0.000 -0.001 -0.001 -0.005 0.000 -15.659 0.000 -0.005 -0.004
dist:S[same] -0.000 0.000 -2.386 0.017 -0.000 -0.000 -0.001 0.000 -1.471 0.141 -0.001 0.000

GPT2
Intercept 0.010 0.000 63.140 0.000 0.009 0.010 0.037 0.001 54.133 0.000 0.036 0.038
S[T.same] -0.006 0.000 -27.845 0.000 -0.006 -0.005 -0.023 0.001 -25.390 0.000 -0.025 -0.021
type[T.tuned] -0.003 0.000 -19.413 0.000 -0.004 -0.003 -0.000 0.001 -0.624 0.533 -0.002 0.001
dist:S[diff]:type[base] -0.001 0.000 -19.494 0.000 -0.001 -0.000 -0.003 0.000 -21.228 0.000 -0.003 -0.002
dist:S[same]:type[base] -0.000 0.000 -12.555 0.000 -0.001 -0.000 -0.001 0.000 -5.939 0.000 -0.001 -0.001
dist:S[diff]:type[tuned] -0.000 0.000 -7.264 0.000 -0.000 -0.000 -0.003 0.000 -21.669 0.000 -0.003 -0.002
dist:S[same]:type[tuned] 0.000 0.000 2.012 0.044 0.000 0.000 -0.001 0.000 -5.276 0.000 -0.001 -0.001

OPT
Intercept 0.016 0.000 103.178 0.000 0.015 0.016 0.043 0.001 58.941 0.000 0.042 0.045
S[T.same] -0.011 0.000 -52.886 0.000 -0.011 -0.010 -0.024 0.001 -24.048 0.000 -0.025 -0.022
type[T.tuned] -0.006 0.000 -32.546 0.000 -0.006 -0.005 -0.010 0.001 -13.559 0.000 -0.012 -0.009
dist:S[diff]:type[base] -0.001 0.000 -49.486 0.000 -0.001 -0.001 -0.004 0.000 -26.986 0.000 -0.004 -0.003
dist:S[same]:type[base] -0.001 0.000 -17.805 0.000 -0.001 -0.001 -0.002 0.000 -10.631 0.000 -0.002 -0.001
dist:S[diff]:type[tuned] -0.001 0.000 -25.315 0.000 -0.001 -0.001 -0.002 0.000 -16.731 0.000 -0.002 -0.002
dist:S[same]:type[tuned] 0.000 0.000 8.118 0.000 0.000 0.000 -0.000 0.000 -0.706 0.480 -0.000 0.000

DGPT
Intercept 0.004 0.000 21.791 0.000 0.003 0.004 0.022 0.001 33.796 0.000 0.020 0.023
S[T.same] -0.004 0.000 -24.266 0.000 -0.004 -0.004 -0.019 0.001 -23.392 0.000 -0.021 -0.018
type[T.tuned] 0.003 0.000 16.913 0.000 0.003 0.003 0.013 0.001 19.424 0.000 0.012 0.014
dist:S[diff]:type[base] -0.000 0.000 -10.319 0.000 -0.000 -0.000 -0.002 0.000 -19.909 0.000 -0.003 -0.002
dist:S[same]:type[base] 0.000 0.000 3.740 0.000 0.000 0.000 0.000 0.000 0.303 0.762 -0.000 0.000
dist:S[diff]:type[tuned] -0.000 0.000 -10.197 0.000 -0.000 -0.000 -0.002 0.000 -17.875 0.000 -0.002 -0.002
dist:S[same]:type[tuned] -0.000 0.000 -8.171 0.000 -0.000 -0.000 -0.001 0.000 -9.446 0.000 -0.002 -0.001

Table 11: Repetition effects for Construction Overlap CO . S indicates speaker, type indicates model type (base or
fine-tuned), diff indicates whether the two utterances come from different speakers, or between-speaker repetition,
and same indicates whether the two utterances come from the same speakers, or within-speaker repetition.
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Switchboard Map Task
Coef. Std. z P > |z| [0.025 0.975] Coef. Std. z P > |z| [0.025 0.975]

Human
Intercept 0.074 0.021 3.505 0.000 0.033 0.116 0.099 0.028 3.554 0.000 0.045 0.154
S[T.same] -0.006 0.011 -0.533 0.594 -0.029 0.016 -0.031 0.015 -2.061 0.039 -0.060 -0.002
dist -0.003 0.001 -4.506 0.000 -0.005 -0.002 -0.004 0.001 -3.330 0.001 -0.006 -0.001
avg_constr_len 0.057 0.006 10.155 0.000 0.046 0.068 0.133 0.007 18.607 0.000 0.119 0.146
pmi_avg 0.001 0.001 0.865 0.387 -0.001 0.003 0.003 0.002 1.427 0.154 -0.001 0.008
freq_constr -0.014 0.004 -3.392 0.001 -0.023 -0.006 -0.035 0.005 -7.074 0.000 -0.045 -0.025

BASE

GPT2
Intercept 0.048 0.010 4.629 0.000 0.028 0.068 0.109 0.014 7.533 0.000 0.081 0.137
S[T.same] -0.026 0.006 -4.395 0.000 -0.037 -0.014 -0.017 0.008 -2.138 0.032 -0.033 -0.001
dist -0.004 0.001 -8.614 0.000 -0.006 -0.003 -0.005 0.001 -5.689 0.000 -0.006 -0.003
avg_constr_len 0.058 0.003 19.832 0.000 0.052 0.064 0.127 0.004 29.966 0.000 0.119 0.135
pmi_avg 0.002 0.000 3.454 0.001 0.001 0.002 0.004 0.001 3.865 0.000 0.002 0.006
freq_constr 0.005 0.002 2.150 0.032 0.000 0.009 -0.016 0.003 -6.018 0.000 -0.022 -0.011

OPT
Intercept 0.022 0.007 3.110 0.002 0.008 0.036 0.088 0.016 5.516 0.000 0.057 0.119
S[T.same] -0.025 0.005 -5.151 0.000 -0.034 -0.015 -0.030 0.010 -3.134 0.002 -0.049 -0.011
dist -0.004 0.000 -9.875 0.000 -0.004 -0.003 -0.007 0.001 -8.165 0.000 -0.008 -0.005
avg_constr_len 0.077 0.002 41.700 0.000 0.073 0.081 0.134 0.004 37.148 0.000 0.127 0.141
pmi_avg 0.001 0.000 3.862 0.000 0.001 0.002 0.004 0.001 3.105 0.002 0.001 0.006
freq_constr -0.000 0.002 -0.232 0.816 -0.004 0.003 -0.003 0.003 -1.162 0.245 -0.009 0.002

DGPT
Intercept 0.314 0.084 3.759 0.000 0.150 0.478 0.162 0.035 4.594 0.000 0.093 0.231
S[T.same] -0.041 0.039 -1.059 0.290 -0.117 0.035 -0.011 0.017 -0.623 0.533 -0.044 0.023
dist -0.010 0.004 -2.844 0.004 -0.017 -0.003 -0.006 0.002 -3.210 0.001 -0.010 -0.002
avg_constr_len 0.083 0.027 3.099 0.002 0.030 0.135 0.115 0.009 12.720 0.000 0.097 0.132
pmi_avg 0.000 0.007 0.059 0.953 -0.013 0.014 0.008 0.003 2.914 0.004 0.003 0.014
freq_constr -0.019 0.009 -2.059 0.039 -0.037 -0.001 -0.002 0.007 -0.237 0.812 -0.015 0.012

TUNED

GPT2
Intercept 0.202 0.020 10.227 0.000 0.163 0.241 0.059 0.014 4.282 0.000 0.032 0.087
S[T.same] -0.030 0.010 -2.920 0.004 -0.051 -0.010 -0.031 0.007 -4.447 0.000 -0.044 -0.017
dist -0.005 0.001 -5.801 0.000 -0.007 -0.004 -0.006 0.001 -7.508 0.000 -0.007 -0.004
avg_constr_len 0.067 0.006 11.523 0.000 0.055 0.078 0.128 0.004 28.787 0.000 0.119 0.137
pmi_avg -0.010 0.001 -11.189 0.000 -0.012 -0.008 0.004 0.001 4.017 0.000 0.002 0.005
freq_constr 0.004 0.004 1.032 0.302 -0.004 0.013 -0.011 0.003 -4.175 0.000 -0.016 -0.006

OPT
Intercept 0.056 0.010 5.793 0.000 0.037 0.075 0.192 0.018 10.965 0.000 0.158 0.227
S[T.same] -0.025 0.006 -4.117 0.000 -0.038 -0.013 -0.057 0.010 -5.581 0.000 -0.077 -0.037
dist -0.003 0.000 -6.406 0.000 -0.004 -0.002 -0.006 0.001 -6.700 0.000 -0.008 -0.004
avg_constr_len 0.064 0.003 24.984 0.000 0.059 0.069 0.123 0.004 28.582 0.000 0.114 0.131
pmi_avg 0.001 0.000 3.123 0.002 0.001 0.002 -0.001 0.001 -1.085 0.278 -0.004 0.001
freq_constr -0.004 0.002 -2.011 0.044 -0.009 -0.000 -0.022 0.003 -6.438 0.000 -0.029 -0.016

DGPT
Intercept 0.023 0.009 2.429 0.015 0.004 0.041 0.124 0.015 8.252 0.000 0.094 0.153
S[T.same] -0.015 0.005 -3.130 0.002 -0.024 -0.006 -0.026 0.007 -3.524 0.000 -0.040 -0.011
dist -0.005 0.000 -10.320 0.000 -0.006 -0.004 -0.005 0.001 -5.817 0.000 -0.006 -0.003
avg_constr_len 0.054 0.003 18.517 0.000 0.048 0.059 0.110 0.005 22.849 0.000 0.100 0.119
pmi_avg 0.001 0.000 2.872 0.004 0.000 0.002 -0.002 0.001 -2.332 0.020 -0.004 -0.000
freq_constr 0.003 0.002 1.717 0.086 -0.000 0.007 -0.013 0.003 -4.412 0.000 -0.019 -0.007

Table 12: Repetition details for CO taking into account length, sepcificity (PMI) and construction frequency (freq).
S indicates speaker, type indicates model type (base or fine-tuned), diff indicates whether the two utterances come
from different speakers, or between-speaker repetition, and same indicates whether the two utterances come from
the same speakers, or within-speaker repetition.
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Switchboard Map Task
Coef. Std. z P > |z| [0.025 0.975] Coef. Std. z P > |z| [0.025 0.975]

BASE

GPT2
Intercept 0.399 0.010 39.506 0.000 0.380 0.419 0.457 0.016 28.858 0.000 0.426 0.488
S[T.same] 0.003 0.006 0.493 0.622 -0.009 0.014 -0.015 0.008 -1.752 0.080 -0.031 0.002
dist_from_prev_turn 0.002 0.001 3.559 0.000 0.001 0.003 -0.000 0.001 -0.199 0.842 -0.002 0.002
constr_overlap 0.323 0.015 22.127 0.000 0.294 0.351 0.190 0.024 7.797 0.000 0.142 0.237
vocab_overlap -0.383 0.013 -30.143 0.000 -0.408 -0.358 -0.198 0.023 -8.626 0.000 -0.243 -0.153
pmi_avg 0.003 0.001 5.488 0.000 0.002 0.004 -0.001 0.001 -1.038 0.299 -0.004 0.001
freq_constr 0.008 0.002 3.090 0.002 0.003 0.012 0.002 0.003 0.725 0.469 -0.004 0.008

OPT
Intercept 0.534 0.012 46.370 0.000 0.511 0.556 0.516 0.018 29.281 0.000 0.481 0.551
S[T.same] -0.002 0.007 -0.338 0.736 -0.016 0.011 0.039 0.008 4.822 0.000 0.023 0.055
dist_from_prev_turn -0.014 0.001 -22.485 0.000 -0.016 -0.013 -0.008 0.001 -7.799 0.000 -0.010 -0.006
constr_overlap 0.039 0.017 2.258 0.024 0.005 0.072 0.035 0.021 1.716 0.086 -0.005 0.076
vocab_overlap -0.041 0.014 -2.928 0.003 -0.068 -0.013 -0.034 0.020 -1.704 0.088 -0.073 0.005
pmi_avg 0.000 0.001 0.065 0.949 -0.001 0.001 -0.000 0.001 -0.217 0.828 -0.003 0.002
freq_constr 0.001 0.003 0.341 0.733 -0.005 0.006 -0.000 0.003 -0.119 0.905 -0.007 0.006

DGPT
Intercept 0.524 0.071 7.365 0.000 0.384 0.663 0.482 0.041 11.645 0.000 0.401 0.563
S[T.same] -0.024 0.036 -0.647 0.518 -0.095 0.048 0.061 0.020 3.071 0.002 0.022 0.100
dist_from_prev_turn 0.012 0.004 2.871 0.004 0.004 0.020 0.007 0.003 2.704 0.007 0.002 0.012
constr_overlap 0.018 0.083 0.215 0.829 -0.145 0.181 -0.086 0.052 -1.656 0.098 -0.187 0.016
vocab_overlap -0.023 0.085 -0.275 0.784 -0.191 0.144 0.095 0.047 2.018 0.044 0.003 0.188
pmi_avg 0.001 0.007 0.174 0.861 -0.013 0.016 0.007 0.003 2.116 0.034 0.001 0.014
freq_constr -0.011 0.009 -1.218 0.223 -0.028 0.007 -0.017 0.008 -2.032 0.042 -0.033 -0.001

TUNED

GPT2
Intercept 0.463 0.017 26.730 0.000 0.429 0.497 0.436 0.015 29.226 0.000 0.406 0.465
S[T.same] -0.033 0.009 -3.510 0.000 -0.051 -0.014 -0.013 0.008 -1.590 0.112 -0.030 0.003
dist_from_prev_turn -0.009 0.001 -9.436 0.000 -0.011 -0.007 0.001 0.001 1.416 0.157 -0.001 0.003
constr_overlap 0.277 0.020 14.149 0.000 0.239 0.315 0.183 0.024 7.511 0.000 0.135 0.230
vocab_overlap -0.308 0.019 -15.922 0.000 -0.346 -0.270 -0.202 0.022 -9.113 0.000 -0.245 -0.159
pmi_avg 0.001 0.001 1.018 0.309 -0.001 0.003 -0.001 0.001 -0.753 0.451 -0.003 0.001
freq_constr 0.007 0.004 1.729 0.084 -0.001 0.015 0.006 0.003 1.963 0.050 0.000 0.013

OPT
Intercept 0.528 0.013 39.783 0.000 0.502 0.554 0.494 0.017 29.608 0.000 0.461 0.526
S[T.same] -0.004 0.008 -0.499 0.618 -0.020 0.012 0.002 0.009 0.234 0.815 -0.015 0.019
dist_from_prev_turn -0.004 0.001 -5.376 0.000 -0.005 -0.002 0.001 0.001 1.536 0.124 -0.000 0.003
constr_overlap 0.021 0.019 1.129 0.259 -0.016 0.058 -0.022 0.021 -1.026 0.305 -0.063 0.020
vocab_overlap -0.039 0.016 -2.508 0.012 -0.070 -0.009 0.012 0.021 0.575 0.566 -0.029 0.052
pmi_avg -0.001 0.001 -1.377 0.168 -0.002 0.000 -0.001 0.001 -0.568 0.570 -0.003 0.002
freq_constr 0.001 0.003 0.195 0.845 -0.006 0.007 0.004 0.003 1.108 0.268 -0.003 0.011

DGPT
Intercept 0.472 0.013 35.438 0.000 0.446 0.498 0.445 0.017 25.447 0.000 0.411 0.479
S[T.same] 0.003 0.008 0.401 0.689 -0.012 0.019 -0.006 0.010 -0.637 0.524 -0.026 0.013
dist_from_prev_turn 0.001 0.001 1.285 0.199 -0.001 0.003 0.005 0.001 4.126 0.000 0.002 0.007
constr_overlap 0.022 0.021 1.039 0.299 -0.019 0.063 0.064 0.028 2.305 0.021 0.010 0.118
vocab_overlap -0.046 0.017 -2.748 0.006 -0.079 -0.013 -0.055 0.025 -2.225 0.026 -0.104 -0.007
pmi_avg 0.001 0.001 1.169 0.242 -0.001 0.002 -0.002 0.001 -1.264 0.206 -0.004 0.001
freq_constr 0.001 0.003 0.360 0.719 -0.005 0.008 0.011 0.004 2.716 0.007 0.003 0.019

Table 13: Attribution effects over human utterances. S indicates speaker, type indicates model type (base or fine-
tuned), diff indicates whether the two utterances come from different speakers, or between-speaker repetition, and
same indicates whether the two utterances come from the same speakers, or within-speaker repetition. constr_overlap
indicates CO , vocab_overlap indicates VO , PMI indicates specificity, and freq, frequency of shared constructions.

Switchboard Map Task
Coef. Std. z P > |z| [0.025 0.975] Coef. Std. z P > |z| [0.025 0.975]

GPT2
Intercept 0.552 0.000 2122.312 0.000 0.551 0.552 0.554 0.001 878.909 0.000 0.552 0.555
m_type[T.tuned] -0.009 0.000 -42.336 0.000 -0.009 -0.008 -0.029 0.001 -53.563 0.000 -0.030 -0.028
dist 0.000 0.000 16.487 0.000 0.000 0.001 -0.004 0.000 -48.544 0.000 -0.004 -0.004
dist:m_type[T.tuned] -0.001 0.000 -13.645 0.000 -0.001 -0.000 0.004 0.000 37.490 0.000 0.004 0.004

OPT
Intercept 0.502 0.000 1599.293 0.000 0.502 0.503 0.519 0.001 730.825 0.000 0.518 0.520
m_type[T.tuned] -0.003 0.000 -11.565 0.000 -0.003 -0.002 -0.020 0.001 -26.957 0.000 -0.021 -0.018
dist -0.001 0.000 -37.286 0.000 -0.001 -0.001 -0.003 0.000 -31.255 0.000 -0.004 -0.003
dist:m_type[T.tuned] 0.001 0.000 26.777 0.000 0.001 0.002 0.004 0.000 26.279 0.000 0.004 0.004

DGPT
Intercept 0.488 0.000 1079.600 0.000 0.488 0.489 0.501 0.001 550.576 0.000 0.499 0.503
m_type[T.tuned] 0.017 0.000 42.653 0.000 0.017 0.018 -0.003 0.001 -2.734 0.006 -0.005 -0.001
dist -0.003 0.000 -37.818 0.000 -0.003 -0.002 -0.004 0.000 -29.147 0.000 -0.004 -0.004
dist:m_type[T.tuned] 0.002 0.000 22.719 0.000 0.002 0.002 0.005 0.000 25.426 0.000 0.005 0.005

Table 14: Attribution effects over speaker labels. m_type indicates model: either base or tuned. dist indicates
distance between context and target utterances.


