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Abstract

Generics are statements that express generalizations and are used to communicate generalizable knowledge. While generics
convey general truths (e.g., Birds can fly), they often allow for exceptions (e.g., penguins do not fly). Nonetheless, generics
form the basis of how we communicate our commonsense about the world [1, 2]. We explored the interpretation of generics
in Masked Language Models (MLMs), building on psycholinguistic experimental designs. As this interpretation requires a
comparison with overtly quantified sentences, we investigated i) the probability of quantifiers, ii) the internal representation
of nouns in generic vs. quantified sentences, and iii) whether the presence of a generic sentence as context influences
quantifiers’ probabilities. The outcomes confirm that MLMs are insensitive to quantification; nevertheless, they appear to
encode a meaning associated with the generic form, which leads them to reshape the probability associated with various

quantifiers when the generic sentence is provided as context.
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1. Introduction

Generic generalizations, or generics, are sentences
such as Birds fly and Cars have four wheels, which
allow us to convey information about categories, or
kinds, of individuals. They are used to communicate
information that extends beyond the present context
and express our knowledge about the world, including
beliefs, stereotypes, or prejudices (e.g., Women are more
sensitive than men, as well as the less harmful Italians
eat spaghetti). Generics can be considered one of the
cornerstones of human cognition since they allow us
to conceptualize the properties we attribute to cat-
egories and thus organize our experience of the world [3].

The most distinctive feature of generics is that
they allow for exceptions [4]. For example, Birds fly is
judged true even if there are birds that cannot fly (e.g.,
penguins): in this case, therefore, the corresponding
universal statement (All birds fly) is false. Different
generalizations tolerate exceptions to varying degrees.
Thus, some generic statements might be better para-
phrased with all, others with most, and others with
some, but —unlike quantified statements —they do not
explicitly contain information about the prevalence of
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the property in the category (i.e., how many members of
the category possess the property). Similarly, there is no
unambiguous relationship between the prevalence of a
property among category members and the acceptability
of the corresponding generic as true. For example, the
generalization Lions have manes is accepted even if only
male adult lions have manes, but the generalization
Lions are males is rejected.

Given these properties, the meaning of generalizations
can be considered “vague”, and their interpretation
can be assumed to be derived by people through
world knowledge and pragmatic skills [5]. Most of
the experimental studies conducted on generics are
cognitively driven and based mainly on contrasting
generics with overtly quantified sentences [3]; in other
words, quantifiers are used to approximate the vague
meaning of generics.

In this paper, we investigate the interpretation of
generalizations in Large Language Models (LLMs) of
the Transformer family, building on psycholinguistic
experimental designs (in particular, Leslie et al. [6] and
Cimpian et al. [7]). Since comparison with quantification
seems to be necessary to decode the meaning of generics,
we also used quantifiers.

We present three tasks related to different but comple-
mentary research questions:

1. Are LLMs biased towards some quantifiers more
than others? We computed the probability of sev-
eral quantifiers appended to a generic statement.
This analysis serves as a baseline to understand
the probability distribution of quantifiers and if
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there is any bias towards some of them (for ex-
ample, a generic overgeneralization effect such
as that found in humans by Leslie et al. [6]).

2. Are the hidden representations of generics similar
to those of quantified phrases? We extracted the
hidden representation of words in generic and
quantified sentences and compared their repre-
sentation pairwise to understand which quanti-
fied nominal phrase approximates the meaning
of generics better.

3. Are LLMs showing the same prevalence effect as hu-
mans? We reproduced the experimental design of
Cimpian et al. [7] Implied Prevalence task to test
whether the presence of the generic as a premise
impacts the probability of selected quantifiers.

The data and code that we used for the experiments
are publicly available'.

2. Related Works

2.1. Generics in Human Cognition

Experimental evidence has revealed a generic bias for
which people tend to overgeneralize from the truth of a
generic to the truth of the corresponding universal state-
ment [6, 8, 9]. For example, people tend to accept the
statement All lions have manes as true, even though it is
not, because they rely on the truth of the corresponding
generic Lions have manes. This effect is known as the
generic overgeneralization (GOG) effect [6]. It is detected
only on certain categories of generics, namely those of
minority characteristic and majority characteristic gener-
ics, i.e., generics that predicate properties that are true
for a minority or the majority of category members.

Cimpian et al. [7] conducted a series of studies inves-
tigating the relationship between genericity and preva-
lence and found an inferential asymmetry in the meaning
of generics. People tend to judge a generic sentence about
a novel category as true even if they have been informed
that only a certain percentage of the kind (on average, up
to less than 70 percent) possess the property in question
(Truth Condition task). However, when asked to estimate
how many members of the kind possess the property,
given the generic (Implied Prevalence task), they tend to
assign very high percentages (on average, very close to
100 percent). This study indicates that generic sentences
require little evidence to be judged true but have substan-
tial implications, since the properties they predicate tend
to be interpreted as applying to virtually all members of
the category.

'https://github.com/claudiacollacciani/
Interpretation- of- Generalization-in-Masked-Language-Models

2.2. Genericity in NLP

Most of the NLP literature on genericity has focused on
the creation and annotation of resources for identifying
generic expressions as opposed to non-generic ones and,
based on these resources, on the development of auto-
matic annotation systems [10, 11, 12, among others]

To the best of our knowledge, there are no studies in-
vestigating the interpretation of generalizations by LLMs,
except for the recent work by Ralethe and Buys [13],
which addresses the generic overgeneralization effect
in BERT and RoBERTa. The authors argue that these
models suffer from overgeneralization by assessing how
many times one or more of all, every, most, some, few and
many are predicted in a masked sentence like [MASK]
lions have manes: the higher the rank of the quantifiers,
the stronger the LM exhibits the GOG effect. However,
the GOG effect refers to the acceptance of universally
quantified sentences, not just quantified ones; therefore,
we can speak of overgeneralization only when the pre-
ferred quantifier is the universal one (all or every). For
this reason, we first propose a similar task to evaluate
the probability distribution of various quantifiers, distin-
guishing between them qualitatively.

3. Materials and Methods

Data For this study, we selected the generic sentences
from the dataset of Allaway et al. [14]. The authors ex-
tracted 653 generics about objects, animals, and plants
from Bhagavatula et al. [15] and annotated them into
three categories obtained unifying theories from linguis-
tics and philosophy, by condensing the five types of gener-
ics proposed by Leslie [16, 17] and Khemlani et al. [18]. In
quasi-definitional sentences, the property is essential
to a concept, thus is considered a defining characteristic
of the concept (e.g., triangles have three sides). In this
type of sentences, the generic is de facto equivalent to
the corresponding universal quantified statement (e.g.,
all triangles have three sides). In principled sentences,
the property has a strong association with the concept.
This category includes both properties that are viewed as
inherent, or connected in a principled way with a concept
(e.g., birds can fly.), and properties that are uncommon
and often dangerous (e.g., sharks attack swimmers); this
last case is the one that Leslie [16, 17] defines striking. Fi-
nally, characterizing sentences express a non-accidental
relationship between property and concept, based only
on absolute or relative prevalence among category mem-
bers. These generics concern properties that are neither
deeply connected to the concept nor striking, but occur in
the majority (majority characteristic generics for [16, 17],
e.g., Cars have radios) or in the minority of members of
the category (minority characteristic generics for [16, 17],
e.g., Lions have manes).
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From the original batch, we restricted our choice to
207 generic sentences, picking only the ones in the bare
plural form (e.g., Tigers are striped), excluding indefi-
nite and definite singulars (e.g., A/The tiger is striped).
All these syntactic forms can express generic meanings,
but the bare plural is the only surface form in English
that gives rise to a generic interpretation unambiguously
[19]. For this and other reasons, this is considered as the
paradigmatic case, and it is the one that has been used in
the psycholinguistic experiments from which we draw
inspiration.

Models We experimented with BERT and RoBERTa,
two bidirectional Masked Language Models (MLMs)
based on the Transformer architecture. BERT [20] is
trained both on a masked language modeling task and
on a next sentence prediction task, as the model receives
sentence pairs in input and has to predict whether the
second sentence is after the first one in the training data.
BERT has been trained on the BookCorpus and the En-
glish Wikipedia for around 3300M tokens. We employed
the bert-base-uncased and bert-large-uncased
pre-trained versions, which differ in terms of parameters
(110M and 340M parameters, respectively). On the other
hand, RoBERTa [21] has the same architecture as BERT;
however, it introduces several parameter optimization
choices, such as dynamic masking, a larger batch and
vocabulary size, and the removal of the next sentence
prediction objective. Another key difference is the larger
training corpus: RoBERTa was trained on 160GB of texts.
We relied on the Huggingface’s Transformers” Library
to load the models and carry on our experiments.

4. Experiments

4.1. Experiment 1: Probability
distribution of Quantifiers in MLMs

In the first place, we needed to assess what was the
most expected quantifier for the sentences in our dataset.
Therefore, we modified the original generic sentences
by placing the special token [MASK] at the beginning of
each sentence, as in ‘[MASK] strawberries have a sweet
flavor! Then, we computed the conditional log proba-
bility of quantifiers few, some, many, most, and all in
the masked position, following previous works in quan-
tification [22, 13, 23]. The conditional log probability is
defined as

(1)

where c are the words preceding and following the critical
word in the sentence.

p(w;) = log Py (wilc)

Zhttps://huggingface.co/docs/transformers/index

This analysis serves as a baseline to understand the
probability distribution of quantifiers, if there is any bias
towards some of them (i.e., overgeneralization effect), and
possibly whether the belonging of sentences to different
categories impacts it (as observed for humans by Leslie
et al. [6]).

Results Figure 1 reports the quantifiers distributions
for the base models, as the larger counterparts show a
similar trend (all boxplots are in Appendix B). Overall,
all models consider few the least likely. This outcome
reflects our expectations: as the selected sentences are
all generalizations, they are, in most cases, referable to
a substantial number of category members, rarely to
‘few’ members. Apart from that, BERT and RoBERTa
show different probability distributions of quantifiers,
regarding some and all in particular. BERT models assign
a higher probability to the existential and proportional
quantifiers (some, many, and most) than the universal
quantifier all, and some is overall the most expected. The
differences among the quantifier scores are statistically
significant’, with few exceptions (see Appendix B). It is

3By relying on Wilcoxon Signed-Rank Test statistical test.
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Figure 1: Probability distributions per quantifier for MLM-
base variants in Experiment 1.
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worth noticing that the reported distributions remain the
same even when we separate the analysis by sentence
categories. In other words, BERT models are not sensitive
to the pragmatic differences of the selected sentences.

Conversely, both all and some are the most expected
quantifiers for RoBERTa. Accordingly, the universal
quantifier all seems to be more expected by RoBERTa
than by BERT, but this distribution is not constant for
all three sentence conditions. In quasi-definitional and
characterizing sentences, some and all have the same
probability; alternatively, some is more expected in prin-
cipled sentences. We could draw that, for principled
sentences, the model prefers not to overgeneralize the
property to all members of the category. This behavior
seems to approximate Leslie et al. [6] results: people tend
to overgeneralize (i.e., to accept as true the universal
sentence corresponding to the generic) in the case of
characterizing sentences, while they do not overgeneral-
ize (correctly) in the case of striking sentences (included
in the principled category).

Regardless, the observed trends could be determined
by the overall frequency of the quantifiers. As a san-
ity check, we extracted their frequency from a large
corpus of English, enTenTen21 [24, 25]. We found
that freq(some) > freq(all) > freq(many) >
freq(few) > freq(most) (frequencies are reported
in Appendix A). This pattern confirms that few is not
the less probable because of a frequency effect but for
the properties of the sentence. Conversely, most is the
less frequent but has a probability score similar to the
more frequent many and all. Finally, some is overall the
most frequent quantifier. This observation could partially
reflect the probability outputs of BERT; however, it is not
the case for RoBERTa scores.

4.2. Experiment 2: Representation of
words in Generics and Quantified
Sentences

The architecture of MLMs allows us to follow the trans-
formations of each token throughout the neural network.
Previous works in BERTology have reported that internal
representations, also known as contextualized embed-
dings, encode syntactic and semantic properties in differ-
ent hidden layers [26]. However, it is complex to localize
semantic phenomena, as they spread across the entire
model [27]. For our purposes, we decided to compare the
contextualized embedding of a target token (strawberries)
in the generic sentence (strawberries have a sweet flavor)
with the embedding of the target token in each of the
corresponding quantified sentences (e.g., all strawberries
have..). Following Timkey and van Schijndel [28], for
each layer, we computed the similarity of the two con-
textualized embeddings by relying on Spearman’s p cor-

relation®.

This study has a twofold aim: i) Identify the quanti-
fier that shifts the noun representation closer to that of
the generic statement (if possible), and ii) Localize the
layers where quantification emerges. To the best of our
knowledge, no previous work has explored the internal
representations of quantified expressions in relation to
genericity.

Results Figure 2 illustrates how the Spearman’s p be-
tween the noun and the quantified version changes with
respect to each hidden layer in BERT and RoBERTa base
(see Appendix C for the plots of larger models and the
ones reporting correlations by sentence categories). The
first layers do not show a difference among correlations,
meaning that representations characterized by the differ-
ent quantifiers are practically identical; this is expected,
as the context is limitedly attended by the model in these
layers. The following layers show a gradual change in
correlation values, but BERT and RoBERTa show differ-
ent patterns. For the first, we observe a slight decrease
in scores from layers 3 to 9 (but the correlation values
are still above 0.9). Conversely, the peak of the curve is
at layer 5 for RoBERTa (p 0.76), while the other internal

“The authors reported that Spearman’s p is more robust to rogue
dimensions contextual language models than cosine or Euclidean
similarity measures.
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layers have a constant value of around 0.73. In the last in-
termediate layers (8-10), we observe some drifting away
between the values for the different quantifiers, indicat-
ing that the contribution of the quantifiers differs from
one to another. For instance, in BERT-base and large the
noun quantified by some is the most similar to the cor-
responding non-quantified. At the same time, RoOBERTa
has generics similar to all, which could be interpreted as
an overgeneralization effect.

Intriguingly, the most similar representations are the
most probable quantifiers of the previous experiment,
thus confirming that the choice of the quantifier is not a
frequency effect but is related to providing a representa-
tion closer to that of the generic statement. However, the
values for the various quantifiers always remain close
to each other and follow the same trend, so it is hard
to disclose how the meaning of the quantifier affects
the noun representation. Finally, all models worsened
their performance at the last layer - the one producing
the most context-specific representations [29], indicating
that contextual information weakens the quantification
signal.

4.3. Experiment 3: Implied Prevalence
effects in MLMs

As observed above, MLMs are not particularly sensitive
to quantifiers, and the probability choices are indepen-
dent of the sentence’s meaning. This outcome is mainly
due to the fact that these models are agnostic to world
knowledge. Therefore, we decided to test the relation
between quantification and generalization from a more
formal point of view: we examined how models interpret
generalizations aside from their content, that is, whether
they contain any linguistic information associated with
the form of generics.

We reproduce the experimental design of Cimpian
et al. [7] Implied Prevalence task, in which people were
presented with a generic sentence about a novel animal
category and then asked to estimate how many members
of the category possess the characteristic predicated by
the generic (e.g., Information: Morseths have silver fur.
Question: What percentage of morseths do you think have
silver fur?). In this case, world knowledge is not called
into play, unlike in Leslie et al. [6]’s experiments: the
categories employed are made up, and thus lack associa-
tions to properties in the speakers’ mind. Since models
do not seem to encode the world knowledge necessary
to interpret generics on account of their content (with
the partial exception of RoBERTa), this experimental de-
sign may be suitable for investigating instead the default
interpretation they associate with a generic form.

We build the stimuli using the generic sentence as
the premise in the following way: Strawberries have a
sweet flavor means that [MASK] strawberries have a sweet
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Figure 3: Probability distributions per quantifier for MLM-
base variants in Experiment 3.

flavor. As in Experiment 1, we compute the log proba-
bility of quantifiers (few, some, many, most, and all) in
the masked position. This last study should answer the
following question: Does the presence of a generic sen-
tence impact the quantifier preference, compared to the
a-contextualized version of the first analysis?

Results Figure 3 reports the quantifiers distributions
for the base models, as the larger counterparts show the
same trend (all boxplots are in Appendix D). Surprisingly,
the most expected quantifier is now all for all models’.
BERT shows an inversion in the ratio between the proba-
bility associated with the universal quantifier all and that
associated with the other quantifiers (apart from few),
which in the first experiment were all more expected
than all, whereas now are all less expected. The pattern
exhibited by RoBERTa shows a less striking change than
BERT; however, the probability of all with respect to the
other quantifiers is still higher than in Experiment 1. As
an additional check, we performed the same test with a
very small dataset of 24 generic sentences about novel

>The differences among the quantifier scores are statistically signifi-
cant; a few exceptions are listed in Appendix D.



categories (non-words) from Cella et al. [30],° to be sure
that the content of the sentences would not affect the
results. As we expected, we obtained the same pattern
as with our dataset.

The results of this experiment, when compared with
the baseline for the choice of quantifiers in Experiment
1, suggest that the presence of a generic sentence as a
premise does indeed have an impact on the preference of
the quantifier by the models. When the generalization is
provided as context, the preferred quantifier becomes all.
This behavior mirrors that of people, observed in Cimpian
et al. [7] experiments and later replications: people tend
to estimate very high percentages (on average very close
to 100 percent) in the Implicit Prevalence task.

5. Discussion and Conclusions

In this paper, we analyzed the interpretation of generics
in MLMs through psycholinguistic experimental designs
that exploited quantified expressions to investigate the
understanding of generic ones.

The first two experiments raise questions about
the codification of quantifiers, as it seems that the
models do not substantially exhibit a strong sensitivity
to quantifiers and do not encode a semantic difference
in the representation of quantification. Altogether,
our results suggest that the models do not appear
to contain the commonsense knowledge required
to interpret generics that differ in content through
quantifiers. However, they seem to have encoded a
meaning associated with the generic form, which leads
them to reshape the probability associated with various
quantifiers when the generic sentence is provided as
context. In the last experiment, we observed that the
models prefer the universal quantifier unanimously
if preceded by a generic utterance. People behave
similarly when tested on novel categories, that is,
non-word categories for which subjects have no prior
understanding. However, people can modulate their
interpretations of generalizations in a real language
setting through their world knowledge of real categories.
Regardless, MLMs tend to treat real and invented
categories equally, being agnostic to world knowledge.
For this reason, this could be a potentially harmful bias.

The presented analysis has theoretical and methodologi-
cal implications. First, we observed that the language of
generalization is a complex phenomenon that is hard
to investigate in human processing and even more in
LLMs, mostly because the investigation of generics’
interpretation makes use of quantifiers, and language

®The authors reproduced the experiment of Cimpian et al. [7], ob-
taining the same results.

models often fail in tasks related to quantification.
Another problem lies in the fact that it is difficult to
test autoregressive models (e.g., GPT family) on tasks
such as the one used in Experiment 1 because, as they
do not have access to the right context, they do not
have sufficient information to modulate the probabilities
associated with the various quantifiers accordingly.
Finding ways to test autoregressive models in addition
to MLMs would be desirable.

In this paper, we have not directly investigated
the aspect of the attention in MLMs. Future research
could address this aspect. Furthermore, future work
could involve the definition of alternative tasks for
investigating generalizations to make comparing models
and human interpretations easier. Psycholinguistic tests
on this phenomenon often rely on truth judgments,
and we should be cautious about comparing human
truth judgments with model outputs since they lack
commonsense knowledge comparable to that of humans.
Overall, further investigations are needed to clarify the
interpretation of generics in language models.
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Figure 4: Probability distributions per quantifier for BERT
and RoBERTa variants in Experiment 1.
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In the tables below, we also report the results of the C. Experiment 2: A Iaye r-wise

statistical test performed to verify if the difference in
probabilities of quantifiers is statistically significant or

not.
Model Groupl  Group2 p-value  Significance
bert-base  few some 1.023e-35  significant
bert-base  few many 1.023e-35  significant
bert-base  few most 7.204e-35  significant
bert-base  few all 2.538e-34  significant
bert-base  some many 4.439e-30  significant
bert-base  some most 2.390e-26  significant
bert-base  some all 6.709e-21  significant
bert-base  many most 8.841e-04  significant
bert-base  many all 8.854e-06  significant
bert-base  most all 3.054e-03  significant
bert-large  few some 1.023e-35  significant
bert-large  few many 1.084e-35  significant
bert-large  few most 1.536e-35  significant
bert-large  few all 7.630e-35  significant
bert-large  some many 4.051e-24  significant
bert-large  some most 1.296e-19  significant
bert-large  some all 1.958e-17  significant
bert-large  many most 5.408e-02  not significant
bert-large  many all 3.407e-05  significant
bert-large  most all 6.600e-05  significant
Table 2
Wilcoxon Signed-Rank Test on BERT variants for Experiment
1.
Model Groupl  Group2 p-value  Significance
RoBERTa-base  few some 1.450e-35  significant
RoBERTa-base  few many 1.291e-35  significant
RoBERTa-base  few most 6.319¢-33  significant
RoBERTa-base  few all 9.364e-34  significant
RoBERTa-base  some many 2.023e-19  significant
RoBERTa-base  some most 2.724e-08  significant
RoBERTa-base ~ some all 4.231e-02  significant
RoBERTa-base =~ many most 8.949¢-01  not significant
RoBERTa-base ~ many all 8.148e-03  significant
RoBERTa-base =~ most all 6.013e-05  significant
RoBERTa-large  few some 1.023e-35  significant
RoBERTa-large  few many 1.272e-35  significant
RoBERTa-large  few most 7.414e-35  significant
RoBERTa-large  few all 3.472e-34  significant
RoBERTa-large  some many 4.334e-14  significant
RoBERTa-large  some most 1.612e-01  not significant
RoBERTa-large  some all 5.842e-02  not significant
RoBERTa-large ~ many most 6.901e-06  significant
RoBERTa-large ~ many all 1.639e-02  significant
RoBERTa-large  most all 5.972e-01  not significant

Table 3

Wilcoxon Signed-Rank Test on RoBERTa variants for Experi-

ment 1.

analysis of MLMs
representations

We report the plots for the base and large variants of
BERT and RoBERTa, with respect to each hidden layer.
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Figure 5: Spearman’s p between the noun in generic sentence
and its quantified variant across models layers.



We also report the same plots with the correlation D. Experiment 3: BOXplOtS and

scores for each sentence category. While the trends are Wil L :
ilcoxon statistical analysis
the same for the three conditions, the values have a slight Y

difference in the means, with quasi-definitional sentences  yy, report the boxplots for the base and large versions of
having a higher correlation than the other two types. BERT and RoBERTa for experiment 3.

BERT-base-uncased Spearman correlation

BERT base uncased

0.96
-2
£ 094
$ '
H Quantifier
S o0 quantifier o 4
g — Gen Al o
£ —— Gen_Few S
g —— Gen_Many o
T e Most 2 -6 N §
—— Gen_Some.
category
088 o character 8
- invirtue _
- quasidef
[ 2 4 6 8 10 12
Layer -10 3
BERT-large-uncased Spearman correlation Few Some Many Most Al
quantifier
096 BERT large uncased
[
H
209
g Quantifier —2
g quantifier
5 — Gen Al
E ep | — Genfew
g —— Gen Many 4
o — Gen_Most 2
— Gen some 2 .
- g
category i _6 [}
090 | o character 2
—w- invirtue - .
- quasidet + N
-8
o 5 10 15 20 25
Layer
ROBERTA-base Spearman correlation -10
Quantifier 3
o0ss quantifier
Few Some Many Most Al
quantifier
076
s ROBERTA base
Son -5.0
0
g -15
Eon 5
& 3 ~10.0
070
-125
e
o8 ¢ 5 -15.0
o 0
0 2 s 6 8 10 2 g
Layer -17.5 '}
.
ROBERTA-large Spearman correlation 200
0.850 Duantlf:eir
auantifer
— Gen Al -225
0825 | — Gen Few
—— Gen_Many 250 Iy
. 0.800 — Gen_Most :
§ —— Gen_Some Few Some Many Most All
g category f
E 0775 | o craracter quantifier
g - invirtue
8 0750 - quasidef £ : ROBERTA large
& o725 i " -5.0
0.700 715
0675 100
0 5 10 15 20 25
Layer g -125
9
- s . . o
Figure 6: Spearman’s p between the noun in generic sentence < -150
and its quantified variant across models layers, by sentence -175 * -
categories. 500 ¢
225
Few Some Many Most Al
quantifier

Figure 7: Probability distributions per quantifier for BERT
and RoBERTa variants in Experiment 3.



In the tables below, we also report the results of the
statistical test performed to verify if the difference in
probabilities of quantifiers is statistically significant or
not.

Model Groupl  Group2 p-value  Significance
bert-base  few some 1.701e-35  significant
bert-base  few many 1.116e-35  significant
bert-base  few most 1.140e-34  significant
bert-base  few all 3.357e-35  significant
bert-base  some many 2.399e-07  significant
bert-base  some most 1.335e-04  significant
bert-base  some all 2.599e-02  significant
bert-base  many most 7.970e-01  not significant
bert-base  many all 7.696e-07  significant
bert-base  most all 3.920e-10  significant
bert-large  few some 1.023e-35  significant
bert-large  few many 1.084e-35  significant
bert-large  few most 1.536e-35  significant
bert-large  few all 7.630e-35  significant
bert-large  some many 4.051e-24  significant
bert-large  some most 1.296e-19  significant
bert-large  some all 1.958e-17  significant
bert-large  many most 5.408e-02  not significant
bert-large  many all 3.407e-05  significant
bert-large  most all 6.600e-05  significant
Table 4

Wilcoxon Signed-Rank Test on BERT variants for Experiment
3.

Model Groupl  Group2 p-value  Significance
RoBERTa-base  few some 1.084e-35  significant
RoBERTa-base  few many 5.788e-34  significant
RoBERTa-base  few most 3.992e-35  significant
RoBERTa-base  few all 1.652e-35  significant
RoBERTa-base = some many 4.769e-21  significant
RoBERTa-base  some most 2.381e-01  not significant
RoBERTa-base ~ some all 5.573e-08  significant
RoBERTa-base  many most 1.141e-19  significant
RoBERTa-base ~ many all 2.409e-27  significant
RoBERTa-base =~ most all 4.718e-10  significant
RoBERTa-large  few some 3.169e-35  significant
RoBERTa-large  few many 3.326e-34  significant
RoBERTa-large  few most 7.521e-35  significant
RoBERTa-large  few all 2.515e-35  significant
RoBERTa-large  some many 3.979e-10  significant
RoBERTa-large  some most 5.351e-11  significant
RoBERTa-large  some all 3.152e-20  significant
RoBERTa-large ~ many most 1.723e-23  significant
RoBERTa-large ~ many all 7.571e-28  significant
RoBERTa-large ~ most all 3.265e-07  significant
Table 5

Wilcoxon Signed-Rank Test on RoBERTa variants for Experi-
ment 3.
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