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Abstract

In this work, we investigate cross-lingual meth-
ods for metaphor detection of adjective-noun
phrases in three languages (English, German
and Polish). We explore the potential of min-
imalistic neural networks supported by static
embeddings as a light-weight alternative for
large transformer-based language models. We
measure performance in zero-shot experiments
without access to annotated target language
data and aim to find low-resource improve-
ments for them by mainly focusing on a k-shot
paradigm. Even by incorporating a small num-
ber of phrases from the target language, the gap
in accuracy between our small networks and
large transformer architectures can be bridged.
Lastly, we suggest that the k-shot paradigm
can even be applied to models using machine
translation of training data.

1 Introduction

Metaphors are a phenomenon of figurative lan-
guage where meaning about a more abstract con-
cept is expressed by applying it to a more concrete
domain. According to cognitive linguistic theories
by Lakoff and Johnson (1980), they are systematic
linguistic instantiations of so-called Conceptual
Metaphors. An example of a conceptual metaphor
is EMOTION IS LIQUID, which manifests in ex-
pressions such as bubbly personality, his anger
boiled over and overflowing joy. Other definitions
describe metaphors as novel usages of words, in
which the semantic preference of the syntactic ar-
guments is violated. As an example, to eat prefers
animate subjects and edible objects. The metaphor
The job ate his confidence violates this preference
(Wilks, 1975). Previous studies show metaphors to
make up a substantial portion of natural language1

and heavily influence decision-making in discourse
(Thibodeau and Boroditsky, 2011), making their

1The VUA Metaphor Corpus by Steen et al. (2010) anno-
tates around 12% as metaphoric.

detection a valuable topic in NLP. Since concep-
tual metaphors are based around semantic concepts
and not words, they are shared throughout simi-
lar cultures and can sometimes be directly trans-
lated (Er griff mein Argument an - He attacked
my argument). In other cases, the same concep-
tual metaphor might exist in two languages, but is
lexicalized differently. While a direct translation
of Seine Stimmung war im Keller - His mood was
in the basement could most likely still be under-
stood, a more conventional phrasing would be His
mood plummeted or He was feeling down. There-
fore, metaphor detection across different languages
is an interesting topic worth exploring. However,
most annotated metaphor resources center on En-
glish.

In this paper, we investigate the application
of modern zero-shot methods without access to
annotated target language data for cross-lingual
metaphor detection of adjective-noun phrases in
three different languages. We go on to soften
the zero-shot limitation and measure how smaller
feed-forward models can become competitive to
transformer-based systems, by incorporating a
small number of target language phrases into
the training process. Lastly, we apply the same
few-shot paradigm to improve models which use
machine-translated data and discuss the results.

2 Related Work

Previous works about metaphor detection were
mostly monolingual and supervised. They often
leveraged additional resources, static word embed-
dings and in more recent experiments pre-trained
transformer models (Wilks et al. (2013), Do Dinh
and Gurevych (2016), Choi et al. (2021)). The lat-
ter is currently the most commonly used option.
In a shared task about metaphor detection in 2020
(Leong et al., 2020), more than half of all partici-
pants used some variation of a transformer archi-
tecture. Recent concerns regarding the alternative
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usage of static word embeddings for metaphor de-
tection were also voiced for theory based reasons
(Maudslay and Teufel, 2022). Work addressing
cross-lingual metaphor detection includes Tsvetkov
et al. (2014), where semantic features and word vec-
tors were used to transfer English metaphor knowl-
edge about adjective-noun or verb-subject-object
phrases into Spanish, Farsi and Russian, Schneider
et al. (2022), an unsupervised approach for a trans-
fer from German to middle high German based
on self-trained fasttext embeddings (Grave et al.,
2018) and Sanchez-Bayona and Agerri (2022) who
present first zero-shot results between their newly
created Spanish corpus and the English VUAMC
by Steen et al. (2010) by using XLM-RoBERTa
(Conneau et al., 2019), a transformer based multi-
lingual language model.

This leaves many possible approaches to cross-
lingual transfer-learning for metaphor detection un-
explored. A common way to allow for this trans-
fer in other tasks is machine translation to convert
training data from the source language into the
target language or vice versa (Eger et al., 2018).
Joulin et al. (2018a) provide a lightweight alterna-
tive to bigger transformer models, by aligning static
fasttext embeddings across 44 languages through
a cross-domain similarity local scaling criterion.
While multilingual models do work in zero-shot
scenarios, Lauscher et al. (2020) show the benefit
of shifting to a k-shot scenario, in which small tar-
get language datasets of size k are incorporated into
training. Similarly, Keung et al. (2020a) present
findings which support that using a development set
in the target language can improve performance by
preventing catastrophic forgetting of multilingual
knowledge during training. More recently, Large
Language Models such as ChatGPT2, are used as
zero-shot or few-shot in-context learning systems
(Laskar et al. (2023), Yuan et al. (2023)). ChatGPT
is a model of the GPT-3.5 or GPT-4 series, which is
trained through a reinforcement learning from hu-
man feedback component (Christiano et al., 2017)
and also possesses multilingual knowledge.

3 Task and Data

This paper focuses on binary classification of the
metaphoricity of adjective-noun tuples, since this
setup had the most available data in several lan-
guages. In these phrases, the metaphoric meaning
can stem from the conceptual transfer of either the

2https://chat.openai.com/

Example Inputs Gold Label
wet towel, old man, . . . 0
broken home, cultural barrier, . . . 1

Table 1: Example classification schema for the metaphor
detection task of adjective-noun phrases. 1 indicates a
metaphorical and 0 a literal meaning.

Size %M #adj ppa
DE 1677 25.5 297 5.6
EN 1968 50.0 668 2.9
PL 2052 50.4 241 8.5

Table 2: Comparison of the annotated source datasets.
By measuring the simple attributes share of metaphoric
phrases (%M), number of adjective types (#adj) and
phrases per adjective (ppa), we can show how the dif-
ferent strategies result in different distributions.

meaning of the adjective (stale idea) or the noun
(economic slump). We collected corpora of labeled
phrases big enough for both training and testing in
English, German and Polish. A small sample can
be seen in Table 1.

The English corpus (Tsvetkov et al., 2014) is
balanced for both classes, and consists of metaphor
annotations of the 1000 most common adjectives
and their co-occuring nouns in the TenTen Web
corpus.3 It has been filtered to exclude phrases
which without context can be interpreted literally
and metaphorically (e.g. drowning students).

The German corpus (Sick, 2020) follows the
same annotation procedure as Tsvetkov et al. and
is extracted from the German deTenTen134 cor-
pus. The resulting dataset is not balanced be-
tween classes, but rather reflects the distribution of
metaphoric tokens in natural language. The Fleiss’
κ (Fleiss, 1971) measuring inter-annotator agree-
ment is 0.34. Since this is a low IIA, we filter the
corpus and only include phrases for which at least
4 of the 5 annotators agreed.

The Polish corpus (Mykowiecka et al., 2018)
is constructed by preparing a list of metaphori-
cal phrases and enriching it with additional com-
mon phrases in the National Corpus of Polish
(Przepiórkowski and Patejuk, 2014), using the
same adjectives. After we removed phrases that
were labeled as Both metaphorical and literal,

3https://www.sketchengine.eu/
ententen-english-corpus/

4https://www.sketchengine.eu/
detenten-german-corpus/

https://chat.openai.com/
https://www.sketchengine.eu/ententen-english-corpus/
https://www.sketchengine.eu/ententen-english-corpus/
https://www.sketchengine.eu/detenten-german-corpus/
https://www.sketchengine.eu/detenten-german-corpus/


100

the corpus is almost perfectly balanced (1018
metaphors and 1034 literal phrases).

Due to the similar collection strategies, we
can observe examples of the same concep-
tual metaphors being present in every corpus.
(EMOTIONALLY INDIFFERENT IS COLD: cold jus-
tice, kalte Grausamkeit and zimna kalkulacja). A
comparison of all sources can be seen in Table 2.
To even out the differences in size, we trim every
corpus down to the size of DE, while keeping the
overhang in a separate set for later experiments. We
then perform a 70:15:15 train, dev, test split, result-
ing in 1173 phrases for training and 252 each for
developing and testing. Since we use our own test
splits, we have no previous results from literature
to compare against.

4 Experiments

In this section, we describe a series of binary classi-
fication experiments of our collected phrases. Each
experiment described is conducted for all six possi-
ble combinations of training and test splits of our
three available languages. We prioritize stability
of our results over ideal hyperparameters and aim
to ensure a fair comparison. Therefore, in all fol-
lowing experiments, we incorporate early stopping,
learning rate warm-up and report the average result
of ten majority vote ensembles with seven seeds
each.

4.1 Upper Bound

Previous work for similar semantic tasks have
shown big gaps in performance between cross-
lingual and monolingual set-ups (Nozza, 2021; Hsu
et al., 2019). As an approximation of an achievable
upper-bound for our cross-lingual models, we first
conduct monolingual experiments with language-
dependent BERT variations5 and light-weight, fully
connected feed forward neural networks, using fast-
text word embeddings6.

4.2 Zero-shot Models

The cross-lingual zero-shot experiments of this sec-
tion are defined by the absence of annotated target
language examples in the training dataset. We com-
pare models of three different categories for cross-
lingual zero-shot metaphor detection. The first

5All BERT variations are finetuned with a learning rate of
2e-5 and Adam’s epsilon of 1e-8 for 8 epochs

6All our fasttext networks consist of three hidden layers
(h1 = 300, h2 = 150, h3 = 50), with a dropout chance of
5% and are trained for 5 epochs.

category consists of networks powered by aligned
fasttext word embeddings by Joulin et al. (2018b).
We train three additional variations of this architec-
ture:

• fasttext+TrTr and fasttext+TrTe, with trans-
lations of the training data into the target lan-
guage or the test data into the source lan-
guage.7

• fasttext+TarDev which employs a develop-
ment set in the target language as proposed by
Keung et al. (2020b). Using a development set
in the target language can enable a checkpoint
selection that best suits the test data.

The second category encompasses the two mul-
tilingual pre-trained transformer models MBERT
(Devlin et al., 2018) and XLM-R8, which are fine-
tuned on the source language for the classification.

The final category describes a set of experiments,
utilizing ChatGPT 9 as a classifier via prompting:

• ChatGPT is not given any additional infor-
mation.

• ChatGPT+ex is provided with 20 random
examples from the source language’s training
split before (In-Context Few-shot Learning)

• ChatGPT+MIP is provided with the (trans-
lated) Metaphor Identification Procedure by
Group (2007) and asked for corresponding
annotations (In-Context Instruction Learning)

Example prompts for all three ChatGPT methods
can be found in the Appendix.

4.3 k-shot for Fasttext Models
Just as proposed by Lauscher et al. (2020), in
this series we relax the zero-shot limitation to ex-
plore an inexpensive approach of mitigating the
gap between cross-lingual and monolingual perfor-
mance. We incorporate k randomly sampled data
points from the target language’s training, devel-
opment or overhang data into the training process
of the fasttext baseline. This sample is different

7We use the neural machine translation Amazon Translate,
provided by the Amazon Web Service. It has to be noted that
using a big NMT service such as Amazon Translate adds a
hidden compute to all related experiments.

8XLM-R is finetuned with a learning rate and Adam’s
epsilon of 10e-5 for 6 epochs

9GPT-3.5 model of the May 3, 16k version with a tempera-
ture of 0.05
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huggingface
transformer model

BERT
ACC

fasttext
ACC

DE german-bert 80.5 79.3
EN bert-base 88.9 83.7
PL dkleczek/bert-base-polish-uncased-v1 85.9 86.9

Table 3: For each language, the used monolingual
BERT model from the huggingface model hub and the
accuracies produced by said monolingual BERT’s exper-
iments and the monolingual experiments using fasttext
word embeddings.

for each seven seed ensembles and each set of size
k is a subset of another set of a larger k. We re-
port results for k ∈ {0, 10, 25, 50, 100, 200, 1173},
where k = 1173 shows the maximum achievable
effect by including the whole training split of the
target language.

4.4 k-shot for Translated Train Models

Lastly, we examine if even transformer-based
language models, which are supported by ma-
chine translation, can still benefit from the k-shot
paradigm. For this, we finetune monolingual BERT
models in the target language on the translated train-
ing data as our k = 0 baselines. We then add addi-
tional k phrases of the training, development and
overhang split of the target language. These are un-
translated and authentical data points. To contrast
their effect to the addition of more translated train-
ing data, we use the test split of the source language
dataset to also finetune models with additional k
translated phrases.

5 Results

In this section, we present the results of the experi-
ments we conducted. For all of them, we report the
accuracy on the test sets.

5.1 Upper Bound

Table 3 contains the results of the monolingual
experiments. Overall, the BERT baselines outper-
form the fasttext model and the German dataset
yields the lowest accuracy. However, this mainly
serves as a potential upper-bound for the upcoming
cross-lingual experiments.

5.2 Zero-Shot Models

Table 4 displays the accuracy of all zero-shot mod-
els. Generally, accuracy of all zero-shot systems
varies across language pairs and models, with the
inclusion of the German dataset seemingly often
leading to worse results. Across all systems and

DE
->EN

DE
->PL

EN
->DE

EN
->PL

PL
->DE

PL
->EN

avg.

fasttext 48.2* 60.0 63.6 68.3 59.0 62.9 60.3
fasttext+TrTr 59.9 65.8 47.6* 72.2 63.1 68.6 62.8
fasttext+TrTe 44.4* 55.1 56.7 65.4 60.7 68.6 58.4
fasttext+TarDev 48.1* 59.9 65.4 68.2 59.5 62.3 60.5
XLM-R 59.3 60.8 62.5 67.3 49.5* 74.6 62.3
MBERT 60.2 63.0 66.3 66.8 49.4* 68.0 62.2
ChatGPT 57.1 63.1 62.6 63.1 62.6 57.1 60.9
ChatGPT+ex 56.7 63.1 55.1 68.6 53.1 48.0* 57.4
ChatGPT+MIP 77.3 65.0 57.9 65.9 56.0 74.6 66.1

Table 4: Report of all the zero-shot baseline systems
for every available language pair and the average across
all language pairs. For ChatGPT, there is no actual
source language from which we transfer knowledge to
a target language. Therefore, the results for the two
source languages are always identical. We mark every
model worse than a random baseline with *.

languages, ChatGPT+MIP performed the best and
achieves an average accuracy of 67%. On average,
the other transformer models were able to outper-
form the plain fasttext architecture, albeit not for
every language pair. When utilizing machine trans-
lation however, the models with translated training
data nullified the gap to the transformer models in
almost every pair, while the models with translated
test data became worse overall. How dependent
this behaviour is on the used translation service
was not examined. We also observe that the inclu-
sion of a development set in the target language
does not bring a notable improvement to our fast-
text architecture. This could be due to the small
training data size, where not enough meaningfully
different checkpoints are available for choosing. It
is important to mention that all three of the cate-
gories feature models which performed worse than
a random baseline. Models based on ChatGPT also
display peculiar behaviour, with the additional in-
formation through examples of a source language
seemingly weakening its predictive power. As ex-
pected, a comparison of Table 3 and Table 4 shows
that transfer-learning across languages leads to a
strong drop in performance for this task.

5.3 k-shot for fasttext Models

Figure 1 displays heatmaps of the change in ac-
curacy for all language pairs for rising k. Iden-
tically to the findings of Lauscher et al., we can
observe a static incline of accuracy with rising k.
Combinations that performed poorly in zero-shot
rapidly improve, even for small values of k. On av-
erage, fasttext outperforms MBERT and XLM-R at
k = 25 and even our best ChatGPT+MIT model for
k = 100. Comparisons of k = 200 and k = 1173
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Figure 1: Heatmaps of accuracy across language pairs
and the average across all pairs for rising values of k for
vanilla fasttext models

Figure 2: Learning curve of all language pairs for in-
creasing source language training set size and additional
k-shot data. The vertical line signifies the initiation
of adding k-shot points to the complete training data
set. Ten models area averaged for the reported accuracy
score.

show that by only using 17% of the target language
data, we can already obtain more than half of its
potential increase in accuracy.

Another visual representation of the effective-
ness of softening of the zero-shot limitation can
be seen in Figure 2. The plot shows every avail-
able language pair’s learning curve. By starting at
an empty set and continuously adding data points
of the source language to the training data set, it
can be measured how much a model profits from
more training data from that source. After adding
the whole training data set, we then shift to further
adding k-shot points. The vertical line indicates the
point of this shift. It is evident that every model’s
learning curve slope gets steeper when switching

Figure 3: Comparison of accuracy across language pairs
for rising values of k. Using the monolingual BERT
models listed in Table 3 and additional translated train-
ing data (dashed line) or authentic data from the target
corpus (solid line).

to the k-shot paradigm. This applies to pairs where
the accuracy appears to plateau (EN → PL, PL →
EN), to DE → EN, which seems to not improve
at all and is outperformed by a random baseline,
and to models which were past their stronger initial
incline, but were still slightly improving.

5.4 k-shot for Translated Train Models

The zero-shot models of this experiment, while be-
ing not as light-weight due to the compute of BERT
and the NMT, are roughly comparable to fasttext’s
k = 100 and k = 200 models in accuracy. The
overall best models presented in this paper were
obtained by this method for k = 50 for authentic
k-shot, reaching an average accuracy of 73.47%.
When comparing both methods in Figure 3, we can
note that the models do not noticeably improve by
additional translated training data. The same does
not apply to the k-shot set of authentic data, where
we observe a similar improvement to the k-shot
experiments with fasttext - stronger improvements
for models with worse performance in zero-shot.

6 Discussion

Impact of Machine Translation By looking at
our translated data, we try to explain why the trans-
lation based zero-shot BERT experiments benefited
more from the translations than the fasttext base-
lines. By our choice of method, we end up with
translations of individual data points where the two
word adjective-noun pair structure is lost (warmer
Milchschokoladenton to warm milk chocolate tone,
crushed stone to Schotter). By automatically POS-
tagging the translated test data with spaCy (Honni-
bal and Montani (2017)), we measure these devia-
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Figure 4: Distribution of abstractness/concreteness from
the ratings provided by (Köper and Schulte im Walde,
2017) for the different corpora, separated into adjectives
(top row) and nouns (bottom row). Words are rated on
a scale of 0 to 10. Lower scores are given to abstract
words (irresponsibly), higher to concrete words (razor
blade).

tions in syntactic structure. Depending on language
pair and direction, they make up between 7.5% and
38.4% of the translations. In general, length dif-
ference of the translations is less of a problem for
the scalable transformer models, than for our 600
dimensional, fixed length neural network. This
can be circumvented by using recurrent neural net-
works. Analogue to our findings of preferring sim-
ple models to large ones for this task, the same
could possibly apply to the translation methods,
since statistical or dictionary based methods could
lead to less deviation in syntax and therefore to
better results. This deviation can also explain how
our models profit more from the authentic k-shot
data, since it better represents the test data. We also
observed the NMT already implicitly performing
metaphor detection to better lexicalize concepts in
the target language (schwieriger Spagat to difficult
balancing act instead of a less conventional diffi-
cult split for the conceptual mapping LIFE IS A
SEQUENCE OF MOTION).

Performance Difference Between Languages
In order to try and explain the differences in per-
formance for the individual language pairs, we
investigated the semantic composition of the cor-
pora. Using abstractness/concreteness ratings from
Schulte im Walde (2022), we display the distribu-
tion of abstractness for the adjectives and nouns
of our datasets in Figure 4. The DE corpus differs
heavily, by having similar distributions of abstract-
ness for metaphoric and literal words. In compari-

son, EN and PL contain more concrete nouns in lit-
eral and abstract nouns in metaphoric phrases. This
is more in line with work by Turney et al. (2011),
Tsvetkov et al. (2013) and Schulte im Walde (2022),
where abstractness served as a classification fea-
ture and can serve as an indicator for the lower
performance on the German test set.

Impact of k-shot Selection To gain insight into
the effect of the selection of the k datapoints, we
look at the performance of individual ensemble
seeds with different k-shot sets. We investigate
the intuitive connection between the seed’s perfor-
mance and the coverage of the test set adjectives
by the k-shot data and show an exemplary scatter
plot for our fasttext model and EN → PL in Figure
5. While larger values of k lead to a better perfor-
mance and also naturally to a higher coverage of
adjectives, when looking the distribution inside a
cluster of k, there seems to be no strong connec-
tion. This makes the k-shot paradigm robust, since
no knowledge about the word content of the test
dataset is therefore needed. The plot also shows
the k-shot data to improve both the detection of
metaphors and the detection of literals. It is worth
noting that the variance in performance appears
to be higher for smaller values of k, with some
poor performing outliers, while higher values of k
produce more stable results.

Multiple efforts have been made to enhance the
selection of k-shot data, similar to Lauschers se-
lection based on length. Experiments based on
attributes such as class label, frequency, distance
of the data points in the vector space or other small
handcrafted feature vectors were all unreliable and
too dependent on the language pair and k. However,
based on the variance in performance for smaller
k, we can not rule out the potential benefit of a
more sophisticated selection process and leave it
for future work.

7 Conclusion and Future Work

The findings of this paper serve to reinforce the
idea that larger language models are not always in-
herently superior at every task and should therefore
not automatically be considered the default choice.
We have shown how primitive fasttext models can
be competitive with large transformer based lan-
guage models for syntactically trivial but semanti-
cally complex tasks such as cross-lingual metaphor
detection of adjective-noun phrases. Furthermore,
these small models can easily be enhanced to out-
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Figure 5: Scatter plot of the different fasttext seeds for
rising k and exemplary for EN to PL. We distinguish be-
tween the F1 score of literals, metaphors and accuracy.
The points are coloured for k and scattered by their per-
centage of seen adjectives of the test data through the
k-shot data (OL%). Line plots are provided for the aver-
age performance and adjective overlap when including
the whole training data and the average performance for
zero-shot.

perform their substantially larger competitors by
softening the zero-shot limitation and including
small amounts of data from the target language.
Based on our experiments, we recommend using
k-shot data as a quick and cost-effective measure,
over upscaling to a substantially bigger language
model. This has the benefit of a computationally
less demanding training environment, almost imme-
diate results and a more environmentally friendly
model.10 The claim about static word embeddings
being ill-suited for metaphor detection (Maudslay
and Teufel (2022)) can not be validated by our find-
ings, since they performed similarly to the contex-
tualized representations. Additionally, we showed
that the k-shot paradigm can also benefit archi-
tectures utilizing automatically translated training
data.

Investigation of the peculiar behaviour of Chat-
GPT’s dependence on the prompts, as seen in Table
4, would be interesting but was beyond the scope
of this paper. Finally, we leave expanding the k-
shot experiments to sequence labeling for metaphor
detection open for future work.

10Finetuning the BERT models took more than 3 hours,
while our training of our fasttext models concluded after just
30 seconds.
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Appendix

A ChatGPT Prompts

role content

system

You are a multilingual metaphor detection system.
You classify incoming adjective-noun phrases acording
to their metaphoricity. Returning 1 if a phrase is a
metaphor and returning 0 if a phrase is literal.
You return your answers in JSON format,
with the prediction at attribute ’label’.

user

[{"id": 1,"phrase": "grünes Landschaftsparadies"},
{"id": 2,"phrase": "knapper Fragenbogen"},
{"id": 3,"phrase": "jährlicher Fleischverzehr"},
{"id": 4,"phrase": "feine Grilladen"},
{"id": 5,"phrase": "amerikanische Erforscher"}. . . ]

Table 5: Example prompt for the ChatGPT model

role content

system

You are a multilingual metaphor detection system.
You classify incoming adjective-noun phrases acording
to their metaphoricity. Returning 1 if a phrase is a
metaphor and returning 0 if a phrase is literal.
You return your answers in JSON format,
with the prediction at attribute ’label’.

user

[{"id": 1,"phrase": "unreadable face"},
{"id": 2,"phrase": "drowsy heat"},
{"id": 3,"phrase": "turbulent water"},
{"id": 4,"phrase": "smokey eyes"},
{"id": 5,"phrase": "metallic surface"}. . . ]

assistant

[{"id": 1,"phrase": "unreadable face", "label": 1 },
{"id": 2,"phrase": "drowsy heat", "label": 1 },
{"id": 3,"phrase": "turbulent water", "label": 0 },
{"id": 4,"phrase": "smokey eyes", "label": 1},
{"id": 5,"phrase": "metallic surface", "label": 1 }. . . ]

user

[{"id": 1,"phrase": "grünes Landschaftsparadies"},
{"id": 2,"phrase": "knapper Fragenbogen"},
{"id": 3,"phrase": "jährlicher Fleischverzehr"},
{"id": 4,"phrase": "feine Grilladen"},
{"id": 5,"phrase": "amerikanische Erforscher"}. . . ]

Table 6: Example prompt for the ChatGPT+ex model

role content

system

You are a multilingual metaphor detection system.
You classify incoming adjective-noun phrases according
to their metaphoricity based on the Metaphor Identification
Procedure. Returning 1 if a phrase is a
metaphor and returning 0 if a phrase is literal.
You return your answers in JSON format,
with the prediction at attribute ’label’.
This is the Metaphor Identification Procedure:
1. Read the text to get a general understanding of the
meaning
2. Determine the lexical units
3a. Establish the contextual meaning of the unit
3b. Determine if it has a more basic meaning. Basic
meaning ’more concrete, body-related, more precise,
historically older; not necessarily the most
frequent meaning!
Does the contextual meaning contrast
with the basic meaning but can it be understood in
comparison with it?
4. If yes, mark the unit as metaphorical.

user

[{"id": 1,"phrase": "grünes Landschaftsparadies"},
{"id": 2,"phrase": "knapper Fragenbogen"},
{"id": 3,"phrase": "jährlicher Fleischverzehr"},
{"id": 4,"phrase": "feine Grilladen"},
{"id": 5,"phrase": "amerikanische Erforscher"} . . . ]

Table 7: Example prompt for the ChatGPT+MIP
model
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