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properties, inspired by the notion of morphological productivity in linguistics. This allows us to
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1. Introduction

One of the most striking differences between languages is the degree to which informa-
tion is condensed in both speech and writing. While some languages concatenate short,
repetitive chunks into long sequences, others form more condensed, shorter sequences.
Consider the parallel sentences below.

(1) They wanted to catch a walrus English

(2) aaffakkumasut Late Eastern Inuit1

Dahl (2017, p. 26) citing Fortescue (1992)

In the English sequence, we count 29 characters (including spaces), 7 morphemes,
and 6 orthographic words. In the Late Eastern Inuit sequence, the same content is
represented with 13 characters, 4 morphemes,2 and 1 orthographic word. Despite such
cross-linguistic differences, extensively studied in morphological typology, sequences in
all natural languages contain redundant sub-sequences, and can be further compressed.
This fact is exploited in modern Natural Language Processing (NLP) for improving
text segmentation and encoding by means of subword tokenization (Gallé 2019; Mielke
et al. 2021).

A popular method for uncovering subword units is Byte-Pair Encoding (BPE)
(Gage 1994). This is a compression algorithm which proved helpful in machine trans-
lation and other downstream tasks (Sennrich, Haddow, and Birch 2016). Despite its
usefulness in language processing, this method is commonly judged as not linguisti-
cally relevant, and pitched against other approaches which leverage explicit external
linguistic knowledge, for instance, about the morphology of the respective languages.

We find this common view puzzling: To compress language data, BPE needs to
merge sequences of co-occurring characters, namely, subwords, that reduce redun-
dancy. These patterns might not correspond to usual morphological analyses, but they
are structural elements. What we aim to find out in this study is what kinds of structural
elements are exploited by BPE for text compression across different languages and if
this allows for data-driven induction of typological knowledge. We focus mostly on the
first elements merged by BPE that have been identified as having the most substantial
impact on the compression of texts (Gutierrez-Vasques et al. 2021) and put forward the
following hypothesis:

Hypothesis: The properties of subwords found in BPE compression depend on the
morphological type of the language in question.

To test this hypothesis, we first need to quantify the subwords’ properties. We
achieve this with a novel method inspired by the notion of morphological productivity
in linguistics. For each subword found in the incremental process of BPE compression,
we quantify whether it has a tendency to be more productive (many different word
types contain it) or more idiosyncratic (few word types contain it, but those types
have high frequency). We obtain language vectors in a BPE subword productivity space
based on this operationalization.

1 The language here called “Late Eastern Inuit” is likely associated with what is called “Eastern Canadian
Inuktitut” (ISO 639-3: ike) in Glottolog (https://glottolog.org/).

2 These morphemes have become amalgamated over historical time such that morpheme boundaries are
rather blurred.
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The second step in testing our hypothesis is to assess to what degree these language
vectors, derived from the properties of BPE subwords, encode the known morpholog-
ical types of languages. If indeed there is a connection between BPE compression and
the structure of language, there should be a good agreement between language vectors
in the BPE subword space and independent language vectors derived from external
linguistic knowledge. We evaluate this agreement both in quantitative and qualitative
terms.

If our hypothesis is confirmed, properties of subwords can distinguish automati-
cally between different morphological types of languages using only raw text. By moni-
toring the outcome of compression steps, we can track the cross-linguistic differences in
what kinds of redundancy are gradually removed in different languages. For example,
are the most redundant patterns in English and Late Eastern Inuit of the same kind?

For some languages, the compression can be achieved via productive subwords,
those patterns resembling inflectional markers, affixes, and regular morphological
phenomena. For other languages, the compression can be achieved by harnessing id-
iosyncratic subwords, those that correspond to frequent irregular patterns or whole
orthographic words which are highly redundant due to their high frequency in the
corpus.

We carry out experiments with several highly diverse multilingual data sets. We
show that the BPE-based language vectors capture distinctions traditionally described
in morphological typology. Furthermore, we find a good alignment between these
vectors and those obtained from a typological database, showing that it is possible
to induce typological knowledge from raw data and a compression algorithm. While
compression is mainly applied in the context of data processing and storage, we here
use it as a research method.

The possibility of comparing languages using typological information has proven
beneficial in several current NLP domains, for example, multilingual NLP and cross-
lingual transfer of models. Our BPE-based vectors automatically induce typological
knowledge from text. This opens up a way of easily extending the current typological
language vectors used in NLP, which often rely on linguistic databases where features
are incomplete. In terms of linguistic research, our study provides a quantitative tool
for morphological typology, contributing to recent trends that go beyond predefined
morphological categories toward continuous representations.

The article consists of five sections in addition to the Introduction and Conclusion.
In Section 2, we introduce all the theoretical and technical notions that constitute the
background for our proposal together with the current state-of-the-art. In Section 3,
we describe in detail our approach to quantifying the properties of subwords and
how we test the relationship between text compression and language typology. In
Section 4, we present the results of the experiments showing the alignment between
our proposed method and typological databases. In Section 5, we further corroborate
the empirical results showing that they are in line with a wide body of literature in
language typology. In Section 6, we discuss the limitations of our proposal and possible
improvements in future work.

2. Background and Related Work

Compression is typically known as a standard tool in the context of data storage. In a
broader sense, it also emerges as a principle underlying efficient communication in ani-
mals (Ferrer-i Cancho et al. 2013), and humans (Kirby et al. 2015; Ferrer-i Cancho 2018;
Ferrer-i Cancho, Bentz, and Seguin 2022), as well as brain and cultural evolution more
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generally (Tamariz and Kirby 2015; Al Roumi et al. 2021; Johnston et al. 2022). There
have been some proposals to harness text compression as a strategy for approximating
linguistic complexity (Juola 1998; Ehret and Szmrecsanyi 2016; Ehret 2016). This line of
research can help to answer some fundamental linguistic questions, for instance, which
information encoding units (i.e., characters, morphemes, or orthographic words) are
most useful to uncover regular patterns in written texts (Geertzen, Blevins, and Milin
2016). In all of these studies, standard compression tools like gzip are used. A more
dynamic view of compression is currently used in NLP systems for preprocessing text
as input to neural models.

2.1 Subword Tokenization as Text Compression

Subword tokenization has become a standard preprocessing step in NLP. It consists of
splitting orthographic words into smaller units (subwords), leading to less varied types
with higher frequencies. This helps to counter the sparseness problem for rare words,
and, thus, optimizes the input for NLP systems, especially for morphologically rich
languages.

There are several ways to decompose orthographic words into subwords given a
text (Mielke et al. 2021). In particular, some unsupervised data-driven methods have
approached this as a data compression task. BPE, for instance, is a lossless compression
algorithm first applied to text processing by Sennrich, Haddow, and Birch (2016). Other
methods, such as Morfessor (Creutz and Lagus 2002; Grönroos et al. 2014) or the
SentencePiece Unigram model (Kudo 2018) are based on Minimum Description Length
(MDL), a principle more widely used in statistical learning and information theory.
According to MDL, the best model for learning about the data is the one that provides
the shortest description, that is, compresses the data the most (Rissanen 1978; Goldsmith
2001; Myung 2001; Grönroos et al. 2014).3

Data compression exploits redundant patterns or, in other words, regularities in
the data. If we think of natural languages, these underlying regularities are recurrent
patterns in the strings of characters, such as recurrent orthographic words (e.g., the or
and), morphological markers (e.g., the -ed or -ing suffixes), or writing conventions (e.g.,
using th to represent the dental fricative /T/ in English, or using sch to represent the
postalveolar fricative /S/ in German).

2.1.1 Byte-Pair Encoding (BPE). The term Byte-Pair Encoding refers to the initial idea of
iteratively replacing the most common pair of consecutive bytes with a new symbol
(Gage 1994). This technique belongs to the macro-based algorithms which achieve
compression by replacing redundant strings or patterns with common pointers to a
shorter reference (Storer and Szymanski 1978; Gallé 2019).

In its application to text, BPE creates subwords by means of iterative merges of
two adjacent symbols with the highest frequency (Sennrich, Haddow, and Birch 2016).
The algorithm starts by splitting words into a sequence of characters. We can think of
this as characters separated by white spaces. The algorithm merges the most frequent
pair of consecutive characters within the corpus in the first operation, for example,
(‘e’,‘d’)→ (‘ed’). The merged characters become a new symbol. In each of the following

3 According to MDL, the model that provides the shortest description of the data should be chosen since
this will be reflected in the generalization capability of the model: The more we can compress the data,
the more we have learned about it, and the better we can predict it.
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Figure 1
BPE compression example. Each (non-empty) box represents a single symbol.

operations, the algorithm calculates the co-occurrence frequency of pairs of all the
current consecutive symbols and it merges the most frequent pair again (see Figure 1).
When the algorithm merges a frequent pair of symbols, it shortens the text by replacing
many instances of the pair of symbols (plus the white space between them) with a single
symbol.

The merged characters are subwords. As more merges are applied, longer subwords
are obtained—we are getting closer to the orthographic word level. The algorithm stops
when a pre-specified number of merge operations has been reached, or when it cannot
find a pair of consecutive symbols with frequency greater than one. Typically, BPE does
not cross the orthographic word boundary. In other words, it relies on orthographic
word boundaries as “upper bounds” also for subwords.

Due to the conceptual simplicity of BPE, the lack of encoding of explicit lin-
guistic knowledge, as well as the lack of generalized stopping criteria to obtain the
most appropriate subword tokenization, the NLP literature usually regard this method
as not linguistically informed (Gallé 2019; Bostrom and Durrett 2020; Clark et al.
2022; Saleva and Lignos 2021; Mielke et al. 2021; Oncevay et al. 2022; Mager et al.
2022). An increasing amount of work has compared BPE versus approaches that use
explicit linguistic knowledge, for example, rule-based morphological analyzers, and
semi-supervised Morfessor. Interestingly, using more linguistically informed methods
does not necessarily lead to improvement in tasks like machine translation (Domingo
et al. 2023; Macháček, Vidra, and Bojar 2018; Saleva and Lignos 2021). Beyond machine
translation, BPE has shown to be a competitive strategy in language modeling (Mielke
and Eisner 2019). State-of-the-art pretrained language models like GPT use subword
tokenization based on BPE (Radford et al. 2019).

It has been hypothesized that BPE’s success in NLP is mainly due to its increased
compression capability compared with similar algorithms (Gallé 2019). In this context,
compression capability is understood as: Given two subword vocabularies of the same
size (obtained with two different algorithms), which one is able to cover a text sequence
with fewer symbols? BPE subwords outcompete other subword approaches in this
sense.

2.1.2 BPE Compression in the First Merges. Gutierrez-Vasques et al. (2021) investigate
the information-theoretic properties of varied BPE subword tokenizations. Particularly,
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Figure 2
Redundancy (R) across BPE merges for French (fra), Vietnamese (vie), and Quechua (Imbabura)
(qvi). Parallel bible data adopted from Gutierrez-Vasques et al. (2021).

they measure the entropy and redundancy of a text over several subword frequency
distributions obtained through incremental BPE merges.

Figure 2 gives an example of the redundancy curves for three typologically different
languages, using the Parallel Bible Corpus (PBC). Notice that the first BPE operations
cause the most drastic changes, that is, the redundancy of the texts drops sharply (and
the entropy grows).4 The patterns captured on these merges are the most useful for
compressing the text. After a relatively small number of operations (around 200 on
average for this particular corpus) the changes become less pronounced, and redun-
dancy reaches a minimum. After this minimum, redundancy starts to grow again slowly
through merges.

Languages seem to share the universal property of having the greatest compression
potential during the first couple hundred BPE merges. Since the most redundant pat-
terns are always found at the beginning of the compression process, one might ask if
this generalization is due to the frequency distribution of symbols in natural languages
or a consequence of the algorithm itself. The fact that some elements have much higher
probability than others makes the data compressible, for example, the Lempel-Ziv (LZ)
techniques (Ziv and Lempel 1977; Reynar et al. 1999) leverage the Zipf distribution
of data to compress it. An extreme opposite would be a uniform distribution where
everything has the same probability, and there are no redundancies to compress. BPE
certainly exploits the fact that linguistic symbols in text follow a power law (Zipfian)
distribution, which causes a rapid drop of redundancy (measured over the subword
tokenizations obtained at each operation). It is worth remembering at this point that the
Zipfian laws are formulated for stable units (characters, morphemes, words), while the

4 When highly recurrent patterns get merged, the redundancy of the texts is reduced. We can think of
this in terms of skewed frequency distributions. At merge 0, the frequency distribution of subwords is
more skewed since the subwords inventory is composed only of characters, some of them with high
frequencies. This implies higher redundancy and less uncertainty. When BPE starts merging the most
salient patterns, subwords’ frequency distribution gets closer to a uniform distribution (more symbols,
lower frequencies). The redundancy in this type of frequency distribution is low, while the entropy
is high.
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redundancy curves concern subword vocabularies, which evolve with the number of
merges.5

Inspecting the subwords merged up to the point of minimum redundancy more
closely reveals that the types of patterns allowing compression are not the same across
languages. Our work departs from this observation.

2.1.3 WordPiece Tokenization as an Alternative to BPE. Among alternative subword tok-
enization algorithms we here also consider WordPiece. It was originally designed for
dealing with Korean and Japanese voice search (Schuster and Nakajima 2012). More
recently, WordPiece subword tokenization can be found in popular pretrained models
like BERT (Devlin et al. 2019). WordPiece and BPE display some commonalities. For in-
stance, both have initial vocabularies comprising characters, and both iteratively merge
adjacent symbols, forming subwords. The difference is that, in the case of WordPiece,
the merging criterion is not the most frequent symbol pair. Instead, WordPiece chooses
the pair that maximizes the likelihood of the data upon merging (given an n-gram
language model trained on the data). Once a specific number of merge operations have
been applied, WordPiece takes the resulting subword vocabulary and follows a left-to-
right longest-match-first strategy for tokenizing each word in a text.

2.2 Productive vs. Idiosyncratic Patterns in Linguistics

To analyze subwords created by algorithms like BPE and WordPiece in more depth, we
turn to concepts from quantitative linguistics. The concept of productivity, for instance,
is most often discussed in relation to word formation processes, although it is some-
times also mentioned in the study of phonology and syntax. Regular morphological
patterns are productive by virtue of applying to many different lexemes. For example,
an inflectional pattern like -ed in English, marking the past tense, applies to many verbs.
We can also think of derivational suffixes like -ly, which combine with a wide variety of
lexemes. The more productive a morphological pattern, the more likely we will apply
it also to new lexemes, for example, the speaker will tend to choose -ed to construct the
past tense of an unseen verb or a borrowing (Bybee 2010), though particularly salient
irregular forms might also be used (Cuskley et al. 2015). In contrast, there are also
patterns of a more idiosyncratic nature, namely, those combining with few lexemes. An
example in Modern English is the -en pattern marking plural, which combines only with
a very limited number of nouns (e.g., ox-en). In combination with its stem, it behaves
like a fossilized unit: A speaker will hardly apply it to new stems. At the extreme
end of idiosyncrasy we find irregular forms like was, had, and so on, which occur as
orthographic words by themselves.

To study morphological productivity more systematically, previous accounts have
first laid out the difference between type frequency and token frequency. According to
this terminology, the former refers to the number of word types containing a particular
morphological pattern, while the latter is the cumulative frequency of occurrences of
those words (Berg 2014). Taking this into account, several authors have argued that
productivity should be measured as type frequency. If a pattern occurs in many words
(high type frequency), then its productivity is said to be high (Bybee 2010, 2003).

5 To what extent Zipfian laws hold for these subword vocabularies is potentially a research question in
itself, which remains outside of the scope of the current study.
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Productivity in this sense can be captured using quantitative methods. Baayen
(1992, 1993) proposes a measure based on counting the number of word types con-
taining a particular affix. This is done in an incremental fashion, that is, calculating
the counts in text chunks over a large corpus. Iterating through a corpus of 18 million
word tokens of English, it is shown that productive affixes will keep appearing in the
text samples, while less productive ones will reach an asymptote quickly, indicating the
probability of observing new formations with the respective affix is close to zero.

Another common concept that type frequency and productivity are strongly linked
with is regularity: “One regularizes to patterns used by many [different] lexemes, not
to patterns used by frequent lexemes” (Bonami and Beniamine 2016). High token fre-
quency, on the other hand, is related to irregularity (Greenberg 1966; Pinker 1991; Ullman
1999; Bybee 2010; Wu, Cotterell, and O’Donnell 2019). If a pattern occurs only in a few
words (low type frequency), its token frequency can still be very high (if a frequent
word contains that pattern). In fact, according to Bybee (2003), high token frequency
encourages the autonomy of linguistic units. Blevins, Milin, and Ramscar (2017) argue
that regular and irregular patterns coexist in languages since there is a trade-off between
opposing communicative pressures: Irregular patterns enhance discriminability. For
example, the relatively stark contrast between go and went facilitates the mapping to
the grammatical functions of present and past tense, respectively, while for go and goes
this is harder, since the contrast between the forms is rather minor. Regular patterns,
on the other hand, increase the predictability of unseen forms. If we have seen go/goes,
speak/speaks, see/sees, it will be easy to predict what the third person singular form of
play is.

To sum up, productive patterns are associated with regular forms (which do not
need to be frequent), and idiosyncratic patterns with irregular forms (which tend to be
frequent). Productive processes are present in inflectional (affixes that encode grammat-
ical or morphosyntactic distinctions) and derivational morphology (affixes that encode
lexicosemantic distinctions that can change the category of a word). However, there is
some evidence that inflection tends to be more productive than derivation in natural
languages (Stump 2017).

2.3 Typological Knowledge in NLP

Structural differences across diverse languages, such as in regular and irregular mor-
phological patterns, have long been studied in linguistic typology. In NLP, the relevance
of typology has arisen from the need to compare languages in multilingual applications.
One way to assess the similarity between languages is to leverage the features stored in
typological databases. A representative example is the library lang2vec (Littell et al.
2017), which provides language vectors derived from the typological database URIEL.
The integration of this type of typological information has proven to be useful in several
NLP domains, for example, selecting transfer languages for improving cross-lingual
tasks (Lin et al. 2019; Lauscher et al. 2020), measuring the language diversity of NLP
multilingual models (Ruder et al. 2021), adapting languages for Universal Dependency
parsing (Üstün et al. 2020), and for investigating the language properties that are
encoded in multilingual sentence encoders (Choenni and Shutova 2022).

One of the limitations of relying mainly on linguistic databases is that the informa-
tion is often incomplete: Some languages are fully described, while only a few feature
values are known for others. Ponti et al. (2019) note in their comprehensive survey
that the information extracted from typological databases has achieved consistent but
modest improvements in NLP systems. They advocate for newer approaches that can
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go beyond the broad and discrete nature of current typological categories and adapt to
the continuous nature of contemporary NLP algorithms.

There are several examples of these efforts to create unsupervised approaches
to linguistic typology. This includes the prediction of missing typological features
not available for many languages (Malaviya, Neubig, and Littell 2017; Bjerva and
Augenstein 2018; Bjerva et al. 2020), or the usage of raw data to infer similarities
between languages (Bjerva et al. 2019).

In terms of morphology, Bjerva and Augenstein (2018) retrieved continuous lan-
guage vector embeddings from training for a NLP morphological task and showed
that these embeddings are able to encode morphological features found in the World
Atlas of Language Structures (WALS). Oncevay et al. (2022) quantify the degree of
synthesis and fusion for English, German, Turkish, and Spanish based on different
methods of morphological segmentation. Along similar lines, Rathi, Hahn, and Futrell
(2021) propose an information-theoretic characterization of the degree of morphological
fusion applied to twenty-one languages.

Our work builds upon this strand of new approaches, anticipated by Ponti et al.
(2019), to data-driven induction of typological knowledge. We propose a computational
light approximation based on BPE, which does not require large training data, manual
annotation, or any external linguistic knowledge. Therefore it is easily applicable to a
wide range of languages for which some textual material exists.

2.3.1 Main Notions in Language Typology. Language typology aims to uncover patterns
of variation, and to identify the different language types that exist in the world, inde-
pendently of their genealogy (Haspelmath 2008). In fact, one of the first typological ap-
proaches to classify languages by Sapir (1921) is based on characterizing them through
the lens of morphology, namely, by using two dimensions relating to word formation:

1. Degree of fusion of morphemes:
isolating agglutinative fusional
Mandarin Chinese Turkish Classical Latin

(wǒ lái le) gel-di-m ven-i
1P come PF come-PF-1P come-1P.PF
“I came.”

2. Degree of synthesis of words:
analytic synthetic polysynthetic
English Turkish Chinook (Wishram)
I came to give it to her on-a vermey-e gel-di-m i-n-i-a-l-u-d-am

The degree of fusion according to Sapir’s typology6 indicates to what extent mor-
phemes with different grammatical functions are “fused” together. In the Mandarin
Chinese example, three separate morphemes give the information about person, the
type of action (i.e., the verb), and tense.7 In Turkish, these are “glued” together in
the sense that there is a stricter order in which certain suffixes occur. Also, markers
sometimes depend on one another in terms of phonological processes such as vowel

6 He actually defines a fourth category called symbolic, which is disregarded here.
7 1P: first person; PF: perfect tense.
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harmony. In Classical Latin, first person and perfect tense information is genuinely
“fused” together in one suffix -i. Note that the difference between the glossings for
Turkish and Classical Latin (i.e., PF-1P versus 1P.PF) reflects this difference in fusion: In
the former case, two separate morphemes are identifiable, while in the latter there is just
one morpheme mapped onto the different grammatical functions. As a consequence,
the morpheme to grammatical function ratio in Classical Latin would here be 2

3 , while
in Mandarin Chinese and Turkish it would be 3

3 .
Roughly speaking, fusion is relevant at the level of morphemes combining to words,

while synthesis is relevant at the level of words combining to sentences. Of course,
this presupposes the distinction between morphemes and words, which is a thorny
issue in itself (Haspelmath 2017). Having said this, Sapir’s original idea about analytic
languages is that “the sentence is of prime importance, the word is of minor interest,”
while for synthetic languages “the concepts cluster more thickly, the words are more
richly chambered,” and in polysynthetic languages “the elaboration of the word is
extreme [...] including the syntactic relations [...]” Sapir (1921, p. 110). Note that in the
English example, each morpheme is considered an orthographic word by itself, such
that the ratio of orthographic words to morphemes is 7

7 = 1. In the Chinook example,8

roughly the same content is literally compressed into a single orthographic word, that is, a
string of characters, such that each character carries grammatical information by itself.
The ratio of orthographic words to morphemes is 1

8 = 0.125. The Turkish translation9

ranges somewhere in between, with three orthographic words over seven morphemes
(i.e., 3

7 = 0.43).
The three-way distinctions between isolating → agglutinative → fusional, as well

as analytic → synthetic → polysynthetic, are still in use today. However, Sapir (1921)
himself already acknowledged that languages cannot be classified strictly into these
fixed categories. Following up on this, Greenberg (1960, p. 182) put forward a gradual,
quantitative account, rather assessing overall tendencies instead of assigning a language
to a single category: “A language may well and indeed usually does contain some
agglutinational as well as some nonagglutinational construction.” In his approach,
languages are characterized by several indices reflecting morphological features (see
Table 1), which can take a range of values. For instance, the spectrum for the feature
synthesis (measured as the ratio of morphemes per word in a random text sample
of the language) goes from 1.06 to 3.72—given Greenberg’s sample of languages. On
this spectrum, Vietnamese (Annamite) is located at the lower end, while “Eskimo”10 is
located at the higher end.

8 This is taken directly from Sapir (1921, p. 57–58). Sapir calls this version of the Chinook language
“Wishram dialect.” Glosses for individual morphemes can be derived from Sapir’s description. The full
glossing is:

(3) i-n-i-a-l-u-d-am
PAST-1P-3P.N-3P.F-IOBJ-ABL(?)-give-CAUS(?)

“I came to give it to her.”

9 The full glossing of this Turkish example using Göksel and Kerslake (2004) is:

(4) on-a
he/she/it-DAT

vermey-e
give-DAT

gel-di-m
come-PF-1P

“I came to give it to her.”

10 Greenberg uses this rather vague (and nowadays sometimes interpreted as derogatory) language name to
refer to one of the Inuit, Yupik, or Aleut languages.
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Table 1
Quantitative typological features proposed by Greenberg (1960, p. 193).

Typological index Sanskrit Anglo-Saxon Persian English Yakut Swahili Annamite Eskimo

Synthesis 2.59 2.12 1.52 1.68 2.17 2.55 1.06 3.72
Agglutination 0.09 0.11 0.34 0.30 0.51 0.67 . . . 0.03
Compounding 1.13 1.00 1.03 1.00 1.02 1.00 1.07 1.00
Derivation 0.62 0.20 0.10 0.15 0.35 0.07 0.00 1.25
Gross inflection 0.84 0.90 0.39 0.53 0.82 0.80 0.00 1.75
Prefixing 0.16 0.06 0.01 0.04 0.00 1.16 0.00 0.00
Suffixing 1.18 1.03 0.49 0.64 1.15 0.41 0.00 2.72
Isolation 0.16 0.15 0.52 0.75 0.29 0.40 1.00 0.02
Pure inflection 0.46 0.47 0.29 0.14 0.59 0.19 0.00 0.46
Concord 0.38 0.38 0.19 0.11 0.12 0.41 0.00 0.38

While the work by Sapir (1921) and Greenberg (1960) is still relevant today, mor-
phological typology has developed further into the 21st century. We want to briefly
sketch a more recent proposal by Bickel and Nichols (2007). They elaborate on the classic
“fusional” cline isolating→ agglutinative→ fusional by rather proposing a threefold dis-
tinction based on markers of inflectional information, which they term formatives. These
are typically bound affixes (e.g., -ed in walk-ed), though depending on the language,
these could also be realized as free particles or clitics (e.g., the English genitive clitic ’s
in the noun phrase [the guy I saw yesterday]’s dog). Given formatives as the basic elements
of inflection, there are three clines laid out by Bickel and Nichols (2007):11

1. Fusion. Degree of phonological merging of formatives with their hosts.
isolating concatenative nonlinear
Mandarin Chinese Turkish Standard Arabic

yazdı
tā xiě le yaz-dı katab-at
3P.F write PF write-PF write.PST-3P.F.SG
“She wrote.” (Göksel and Kerslake 2004, p. 285) (Ryding 2005, p. 438)

2. Flexivity. Degree of allomorphy of formatives.
nonflexive flexive
Quechua (Yauyos) German
warmi-kuna (woman-PL) Frau-en
wasi-kuna (house-PL) Häus-er
karru-kuna (car-PL) Auto-s
(Shimelman 2017, p. 70)

3. Exponence. Degree to which different categories are expressed by the
same formative.

cumulative separative
Classical Latin Turkish
(de) dom-ibus ev-ler-den
house-PL.ABL house-PL-ABL
“from the houses” (Göksel and Kerslake 2004, p. 68)

11 3P: third person; ABL: ablative case; F: feminine; PF: perfect tense; PL: plural; PST: past tense; SG:
singular.

953



Computational Linguistics Volume 49, Number 4

The reason Bickel and Nichols (2007) distinguish between these three clines instead
of the single classical cline isolating → agglutinative → fusional is that concepts such as
fusion, flexivity, and exponence are in principle orthogonal to one another. For instance,
while traditionally agglutinative (i.e., concatenative) patterns are associated with non-
flexive markers, they can just as well be flexive. The Quechua plural marker -kuna is
concatenative/nonflexive, that is, it does not change according to the noun it modifies,
while the German plural formatives are mostly concatenative/flexive, since they change
according to the declension class of the noun.

Resonating with the early work by Sapir (1921), Bickel and Nichols (2007), too,
point out that all of the notions discussed above do not strictly apply to languages as
a whole, but rather to inflectional domains (e.g., tense, number), or even just particular
formatives. Languages are rarely (if ever) entirely isolating, concatenative, or nonlinear.
Take the example of Standard Arabic above. Tense is here marked by vowel changes
inside the consonant template (k-t-b), such that the past tense stem is katab-, while the
present tense stem would be -ktub- (Ryding 2005, p. 439). Thus, tense is here marked in a
nonlinear, insegmentable way. However, note that the -at pattern at the end of the word
is a genuine suffix marking for person, gender, and number. Hence, in Standard Arabic,
even within the same word forms we find both nonlinear and concatenative formatives
of inflectional information. Likewise, nonlinear formatives are often seen as an un-
usual feature, typically associated with Semitic languages like Arabic or Hebrew, but
we find a considerable number of irregular verbs in English following similar patterns.
A case in point is the English verb write/wrote in the translation of the Standard Arabic
example.

Coming back to the principle of BPE compression and the productivity of subwords,
the typological categories above are not equally relevant. While synthesis and flexivity are
certainly relevant, fusion is only partly relevant, and exponence seems rather irrelevant.
Note that synthesis is per definition related to the productivity of subwords since it
captures the degree to which inflectional formatives are recurring in different word
types. For example, in Turkish, the subword -dim, marking first person and perfective
aspect/past tense, will repeat across many different verb types (gel-dim ‘I came’, ye-
dim ‘I ate’, ver-dim ‘I gave’, etc.), while the respective English pronoun ‘I’ stands by
itself as an orthographic word, and is not very productive as a subword (though
frequent). For similar reasons, flexivity is highly relevant for productivity too. Namely,
nonflexive formatives like the Quechua plural marker -kuna are very productive, while
flexive formatives like German -er, -en, and -s are less productive by virtue of their
restriction to particular declension classes. Similar arguments also apply to the isolating
versus concatenative distinction on the fusion cline, but for the third category, nonlinear
formatives, the picture is more complicated. If a language displays consonant patterns
like the ktb template in the case of Standard Arabic, then these are potentially very
productive across different word types. However, this also depends on whether the
respective vowels are explicitly coded in writing. If they are, then the nonlinear insertion
of vowel formatives (e.g., in katab- and -ktub-) will “break” the productivity of the
consonant template. Finally, exponence is not obviously linked to productivity, since the
question of whether formatives are cumulative or separative is related to paradigmatic
considerations, but subword patterns are “blind” to those. Note that the Classical Latin
cumulative formative -ibus (ABL.PL) might be just as productive as the concatenation
of separative formatives -ler-den (ABL-PL) in Turkish.

In summary, languages high on the synthesis scale, with concatenative and nonflex-
ive formatives, are expected to display high morphological productivity. On the other
hand, languages low on the synthesis scale, with isolating and flexive formatives, are
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expected to display low productivity. We set out to empirically test these expectations
in our analyses.

Importantly, all the typological approaches sketched above depend on access to
linguistically annotated data—grammars, morphological paradigms, dictionaries, and
so forth. However, such data is, firstly, not always readily available for many languages,
and, secondly, rely on various conventions that are not easily implementable and repro-
ducible. Given this state of affairs, unsupervised approaches like BPE can provide a
proxy to quantify and test typological hypotheses cross-linguistically with reproduc-
ible methods.

3. Data and Methods

We propose to analyze the subwords found by BPE with regard to how productive, or
inversely, how idiosyncratic, they are. In this work, subwords are the patterns that result
from the BPE merging criteria through incremental operations. We initially perform 200
BPE merge operations on text samples from 47 languages and estimate the degree of
productivity, idiosyncrasy, and cumulative frequency for each obtained subword. We
then aggregate the values per language to obtain a vector representation. This allows us
to cluster languages along these dimensions, and compare the resulting clustering with
traditional typological classifications that rely on grammars and general knowledge
about languages.

We focus on the first 200 BPE subwords since we conjecture these are enough for
discriminating languages in terms of their structural properties. However, our method-
ology includes experimenting with different BPE merge operations and an alternative
subword tokenization technique. In the remainder of this section, we describe each step
in more detail.

3.1 Corpora

We use parallel corpora to facilitate meaningful comparisons between languages. Par-
allel texts are typically used in cross-linguistic studies on morphological typology,
lexical typology, and word order typology (Greenberg 1960; Cysouw and Wälchli 2007;
Wälchli and Cysouw 2012; Östling 2015; Kelih 2010; Mayer et al. 2014).

Our main data set is a selection of 47 diverse languages from the PBC (Mayer and
Cysouw 2014). This selection is a subset of the WALS 100 language sample,12 specifically
designed to represent languages from diverse families and areas.13 Since our focus is
linguistic typology, our selection of languages is not based on simply selecting the ones
for which text data is readily available online. We put more weight on representing a
wide range of language families, areas, and structural features.

In particular, the corpus we use includes 1,150 verses that overlap over the 47
languages. The complete list of languages and their respective ISO-639-3 codes are
included in Appendix A. We want to mention that even though this corpus is verse
aligned, and hence fully parallel, there are of course differences in the exact wordings

12 https://wals.info/languoid/samples/100.
13 http://www.christianbentz.de/MLC2019_data.html.
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that translators have chosen across different languages. As an example, consider the
following verse in its Korean and English translation.14

Korean (kor)

(5)
jeo-hui=ga
1P-PL=SUBJ

yei-su=ui
Jesus=POSS

mal-sseum=eul
speak.HON=OBJ

gi-eog=ha-go
remember=COM

Literal translation: “And we remember Jesus’ speech.”
English verse: “And they remembered his words.”

While the Korean translation uses the first person plural pronoun (jeo-hui ‘we’),
the English verse uses the third person plural pronoun (they). Also, the lack of tense
specification in the Korean verse contrasts with explicit past tense marking (remember-
ed) in English. Finally, the Korean verse gives the proper noun with possessive marking
(ye-su=ui), while in English we encounter the anaphora his.

However, this is a rather extreme example of divergence, as other translations (e.g.,
Georgian15) are closer to the English one (see Example (6)), despite the fact that Geor-
gian is a language typologically very different from English. More generally, parallel
verses as in the PBC are certainly much closer in content than arbitrary text chunks of
different registers and styles. Hence, they are more stable testing ground for quantitative
language comparison.

Georgian (kat)

(6)
da
and

mo-e-qsenn-es
PREV-3P.PL-mention-3P.PL.AOR

sit’q’va-n-i
word-PL-NOM

misni
3P.POSS.NOM.SG

Literal translation: “And they mentioned his words.”
English verse: “And they remembered his words.”

To ensure that our observations are not heavily dependent on the peculiarities
of this specific Bible corpus, we repeat the measurements on two additional parallel
corpora that differ in register and style, and vary in size. This includes the JW300 corpus,
that is, a compilation of magazine articles (from the Jehovah’s Witnesses Web site) for
around 300 languages (Agić and Vulić 2019). In this case, we extracted a parallel corpus
for 25 languages, namely, the ones sharing at least 68 parallel magazine articles, and
which overlap with the PBC sample. Furthermore, we include the Universal Declaration
of Human Rights (UDHR),16 a parallel corpus with very short texts (only a couple

14 The verse ID is 42024008. See also Table 3. The transliteration and glossing are here based on the Korean
grammar by Yeon and Brown (2011). Note that here hyphens indicate syllable boundaries (corresponding
to the syllable blocks in Hangul writing), while the equal sign indicates morpheme boundaries. 1P: first
person; COM: comitative particle (here translated as “and”); HON: honorific marker; OBJ: syntactic
object marker; PL: plural; POSS: possessive marker; SUBJ: marker of syntactic subject. Misinterpretations
and errors remain our own.

15 This example is transliterated and glossed according to the Georgian grammar by Hewitt (1995).
Misinterpretations and errors remain our own. Note that some forms in this Georgian text, for instance,
the plural marker ‘-ni’, suggest that it is written in an archaic style inspired by Old Georgian (Hewitt
1995, p. 38). PREV: preverb; 3P: third person; PL: plural; AOR: aorist; NOM: nominative; POSS:
possessive; SG: singular.

16 www.unicode.org/udhr.
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Table 2
Parallel corpora information.

Corpus Languages Total Tokens Avg. tokens per language

PBC 47 1.1 M 25.1 K
JW300 25 4.7 M 188.9 K
UDHR 31 56.1 K 1.8 K

Table 3
Different scripts (with respective ISO identification code), writing systems (Writ. Sys.), and
number of languages using these (No.) in the PBC sample of 47 languages.

ISO 15924 Script Writ. Sys. No. Example*

Latn Latin Alphabet 38 And they remembered his words,
Arab Arabic Abjat 2
Grek Greek Alphabet 1 .

Deva Devanagari Abugida 1
Geor Georgian Alphabet 1 .
Hang Hangul Alphabet 1

Mymr Burmese Abugida 1
Cyrl Cyrillic Alphabet 1 .
Thai Thai Abugida 1

*Verse number 42024008 of the New Testament.

thousand word tokens per language), but a wide variety of languages. In this case, we
found 31 languages overlapping with the PBC sample.

Table 2 shows the parallel corpora size for the selection of languages included in the
current analyses.

3.2 Scripts and Writing Systems

In the PBC sample of 47 languages, overall 9 different scripts are represented (see
Table 3). While the majority of texts (42/47 or 89%) is written with alphabetic scripts,
we also encounter so-called abugidas and abjats (see, for instance, Daniels and Bright
[1996, p. 8] for a discussion of these terms). Given these different types of scripts,
there are two levels of segmentation that are relevant to BPE compression: the level of
UTF-8 characters, and the level of orthographic words.

BPE merges operate at the level of UTF-8 characters, and the particularities of script
encodings matter here. For instance, the word remembered in English consists of 10
UTF-8 character tokens and 5 types (‘r’,‘e’,‘m’,‘b’,‘d’). English texts typically contain 26
of such UTF-8 character types (bare punctuation). In comparison, Korean Hangul UTF-
8 characters work in a different way. The Korean word corresponding to remembered in
Example (5) is gi-eog-ha-go, which could be translated as ‘and remember’.17

17 The dictionary form is gi-eog-ha-da, but the - ending is here a particle indicating the
commitative, which is typically translated as ‘and’ in English (Yeon and Brown 2011, p. 118).
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The Korean orthographic word hence consists of four syllable blocks. It is these syl-
lable blocks—rather than individual consonant and vowel characters of the Korean
alphabet (called jamo)18—that are represented as UTF-8 characters in our texts,19 and
hence merged by BPE. For example, in the Korean PBC text, the most frequently co-
occurring—and hence first merged—syllable blocks are yei-su, while for English
this is th.

Due to the syllabified nature of Korean Hangul, the respective texts can display
hundreds and thousands of UTF-8 characters. A similar proliferation is found in texts
written with further abugidas (e.g., Hindi, Thai, Burmese). We here expect somewhat
lower productivity of subwords, since a wider range of UTF-8 characters (in the case
of abugidas representing syllables rather than individual phonemes) means more com-
binatorial possibilities which re-occur with lower probability. In Latinized scripts with
many special characters and diacritics (e.g., Vietnamese) a similar effect is expected.

Another structural property relevant at the level of UTF-8 characters is the presence
or absence of diacritics to indicate vowels. This is the case in abjats (and also to some
extent in abugidas). For example, in Modern Standard Arabic writing, short vowels
are left unwritten in some registers, and indicated by diacritics in others (Ryding 2005,
p. 25). Compare the word for peace in the Egyptian Arabic (arz) PBC and the UDHR of
Example (7).

Egyptian Arabic (arz)

(7) PBC

salam

UDHR

slm

‘peace’

In the PBC version, the short vowels are explicitly coded as so-called fatha diacritics
above the consonant, such that represents the syllable sa, while in the UDHR version,
only the consonantal template s-l-m is given. From the perspective of BPE this difference
is crucial, since the diacritic can be coded as a separate UTF-8 character, and hence
merged with the consonant when frequently co-occurring (e.g., sa), whereas in the texts
without diacritics, the merging would take place only between consonants (e.g., sl).

The second level of segmentation relevant to BPE is the orthographic word. Word
boundaries are adhered to by the algorithm in the sense that merges are not allowed
across them. For example, for the English character string the year, word boundaries
(white spaces in writing) would be explicitly coded as in: <w>the</w><w>year</w>.
Despite the fact that the+y is a very frequent co-occurrence pattern, it would not be
allowed to be merged across the word boundaries in this case.

The reliance on orthographic word boundaries is a problem for scripts where there
are (almost) no boundaries (i.e., white spaces) at all (e.g., Burmese (mya) and Thai
(tha)). We applied the Python library Polyglot (Al-Rfou 2015) for the texts that were not

18 See a list of these jamo here: https://unicode-table.com/en/blocks/hangul-jamo/.
19 See a complete list of these overall 11,184 syllable blocks in UTF-8 here:

https://unicode-table.com/en/blocks/hangul-syllables/.
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originally tokenized at the orthographic word level. An example with the original text
and the tokenized version is given in Example (8).20

Burmese (mya)

(8) [...]

[...]

[...]
[...]

mín-tO-mu-gé
speak-HON-perform-DISPL

TO
REL

sá.kà-myà-ko
word-PL-OBJ

pyan
return

Tá.ti.rá
remember

ywé
and

“[...] and (they) remember the words that (he) spoke.”

Note that the original Burmese text is “undersegmented,” namely, there is only one
white space between the conjunction ywé and the rest of the sentence. However,

the tokenized version is somewhat “oversegmented.” For instance, the verb
Tá.ti.rá ‘remember’ is now split into three separate syllable symbols. In the underseg-
mented version of the text, we would expect high productivity of subwords, while in
the tokenized version we use here, we rather expect lower productivity of subwords.

The problems and pitfalls of UTF-8 encodings (Moran and Cysouw 2018) and or-
thographic word boundaries should be kept in mind when using BPE, and compression
algorithms more generally. We will mention particular problems of our application in
more detail in the Discussion section.

3.3 Measuring Productivity and Idiosyncrasy

Given that we have a handle on the different scripts in a particular BPE implementation,
we can start to measure the productivity of subwords generated by it. As we have
discussed in Section 2.2, we think of a productive subword as one that is found in many
different orthographic word types. In contrast, some subwords appear in rather few
different word types. These subwords can still be very frequent, for example, when
they occur frequently by themselves. We will call these idiosyncratic.21 We propose a
straightforward operationalization of the degree of productivity and idiosyncrasy of a
BPE subword. For each merge operation, we calculate:

productivity(s) = |Ws| (1)

c.freq(s) =
∑

wεWs

freq(w) (2)

20 This example is transliterated, glossed, and translated with the help of the Burmese grammars by Jenny
and Hnin Tun (2016) and Lonsdale (1899). However, misinterpretations and errors remain our own. HON
is a honorific affix, which always coincides with the verb mu “do/perform” (Lonsdale 1899, p. 194).
DISPL is a displacement marker (Jenny and Hnin Tun 2016, p. 219), which might be translated as past
tense here. REL is a relative marker (Jenny and Hnin Tun 2016, p. 258), which marks the preceding verbal
clause as an attribute (of a noun), namely, “words that (he) spoke.”

21 Roughly speaking, the linguistic notions of productivity and idiosyncrasy could be thought of in terms of
the TF-IDF measure: Productivity is in some way similar to inverse document frequency, idiosyncrasy to
term frequency.
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Table 4
Example of subwords obtained through BPE merge operations based on the PBC corpus
(English), as well as their productivity (|W|), cumulative frequency (c.freq), and idiosyncrasy.

Subword |W| c.freq. idiosyncrasy

ed</w> 271 917 3.38
had</w> 1 104 104
and</w> 11 2,197 199.72

idiosyncrasy(s) =
c.freq(s)

productivity(s) (3)

Where s is a given subword, |Ws| is the number of orthographic word types that
contain the subword.22 freq(w) is the function that assigns the raw frequency to a word,
and

∑
wεWs

freq(w) is the cumulative frequency over all the word types a given subword
is part of. Thus, the productivity measure in Equation (1) is simply the number of word
types23 that contain the sequence BPE chose to merge at the current operation.

To capture idiosyncrasy, we need to incorporate the cumulative frequency of the
word types in which a subword appears. Therefore, the idiosyncrasy measure in Equa-
tion (3) takes the cumulative frequency of these word types and divides it by the
respective productivity |Ws|. Thus, subwords that appear in few word types, but have a
high cumulative frequency (number of tokens summed over the types), will have high
values of idiosyncrasy, whereas subwords that appear in many different word types
will tend to have lower idiosyncrasy values.

Regarding the range of values of these measures, the minimum value we can get
from productivity(s) is 1 (when the current subword s is contained in only one word
type), while the maximum is the size of the word vocabulary (when the current sub-
word s is contained in all the word types). Similarly, for c.freq(s) the minimum value is
1 (when only one word type contains the current subword s and its frequency is 1), and
the maximum value is the total number of word tokens in the corpus (the subword s is
contained in all word types, thus their cumulative frequency is the total number of word
tokens). For idiosyncrasy(s), the lowest value is 1, which happens when a subword
s is distributed in a given number of word types, and each of these word types oc-
curs only once in the corpus (same value of productivity(s) and c.freq(s)), while the
highest values are reached when the subword is contained only in one word type (the
productivity(s) is 1) but its frequency is very high (c.freq(s)).

We can see an example in Table 4 and Figure 3. A subword like ed</w>24 in English is
contained in many word types (high productivity |W|), with relatively high cumulative
frequency (c.freq) but low idiosyncrasy. In contrast, the subword had</w> is contained
in fewer word types (actually just one, the word itself), but the frequency of this word

22 The set of orthographic words that contain a given subword depends on the merge operation. For
instance, in English, the subword -re- is apparently contained in word types like: ordered, answered.
However, these types are not included in the counts since in BPE -ed gets merged first, i.e., the algorithm
does not consider that -re- occurs in those word types, since a new “symbol,” -ed, has been introduced
earlier: a-n-s-w-e-r-ed, o-r-d-e-r-ed.

23 In the rare cases where a subword appears more than once in the same word type, we do not increase the
counts.

24 </w> indicates that the subword is located at the end of a word.
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Figure 3
Examples of subword frequency distributions. The x-axes give word types that contain the
substring merged by BPE (PBC corpus).

type is high. Another example of a highly idiosyncratic subword is and</w>. We can
see that even though it is distributed in several word types, most of its occurrences are
concentrated in just one single type that is highly frequent (see Figure 3).

We represent each subword as a three-dimensional vector characterizing its pro-
ductivity, cumulative frequency, and idiosyncrasy, and we visualize these vectors in a
3D-space (see Figure 4). We decided to keep c.freq as one of these three dimensions,
since it provides important information for characterizing each subword (e.g., two
subwords might have similar idiosyncrasy values but different c.freq).

3.4 Obtaining Subwords
3.4.1 Subwords per Merge. We apply an existing BPE implementation to generate sub-
words.25 In the main analyses, we limit the number of merge operations to 200 (for all
languages and corpora). This decision is based on previous research (Gutierrez-Vasques
et al. 2021), which shows that early merges capture the subwords that achieve the most
significant compression (reduction of redundancy; see also Section 2.1).

For each incremental BPE merge, we then visualize the resulting subword using
the operationalizations of productivity, idiosyncrasy, and cumulative frequency de-
scribed in the previous section. We now have a vector representation that captures
these properties for each pattern merged by BPE. In this way, we can appreciate the
basic quantitative properties of subwords that aid BPE compression depending on the
respective language. This will allow us to characterize languages later.

25 https://github.com/rsennrich/subword-nmt.
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Figure 4
Example of subwords represented as points in a three-dimensional space.

We hypothesize that just a few hundred of BPE merges (around 200) are sufficient
for capturing the most salient patterns that differentiate languages in terms of their
morphological typology. However, as a sanity check, we explore different numbers
of merge operations, as well as WordPiece as an alternative subword tokenization
algorithm. We give further details in Section 3.6.

3.4.2 Averaging Across Subwords per Language. For cross-linguistic comparisons, we pro-
vide a single three-dimensional vector representation for each language by averaging
the values (productivity, idiosyncrasy, cumulative frequency) obtained during the first
200 merge operations. Each dimension captures the central tendency of the respective
measure through merges. We center these vectors around zero, and scale them with
respect to the standard deviation.26 Each of the features is standardized independently
by removing the mean (µ) and scaling to unit variance (σ):

xstandardized =
x− µ
σ (4)

These vector representations facilitate the comparison of languages in terms of
their subword properties, namely, how much more productive or idiosyncratic the BPE
subwords of one language are compared to others.

3.5 Comparison to WALS Features

The WALS (Dryer and Haspelmath 2013) serves as an external criterion to assess how
relevant the BPE-induced space is to the morphological typology of languages. In a
sense, WALS represents human expert judgments. The overall 144 chapters (written

26 This does not modify the distribution; it just centers and scales the data points.
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Table 5
Subset of WALS features that we use for characterizing the morphological typology of
languages. The column “Languages” gives the number of languages in the PBC sample for
which a given feature is available.

Feature Name Categories Languages

20A Fusion of Selected Inflectional Formatives 7 (non-ordinal) 47
22A Inflectional Synthesis 7 (ordinal) 47
26A Prefixing vs. Suffixing in Inflectional Morphology 6 (non-ordinal) 47
28A Case Syncretism 4 (ordinal) 47
29A Syncretism in Verbal Person/Number marking 3 (ordinal) 47
49A Number of Cases 9 (ordinal) 46
59A Possessive Classification 4 (ordinal) 47
65A Perfective/Imperfective Aspect binary 47
66A The Past Tense 4 (ordinal) 47
67A The Future Tense binary 47
69A Position of Tense/Aspect Affixes 5 (non-ordinal) 46
70A The Morphological Imperative 5 (partially ordinal) 46
78A Coding of Evidentiality 6 (non-ordinal) 47
102A Verbal Person Marking 5 (partially ordinal) 47
112A Negative Morphemes 6 (non-ordinal) 46

by 55 authors) condense information about structural features (phonology, lexicon,
morphology, syntax) for languages across the world. We harness this information to
characterize the morphological profile of languages in our sample. Our starting point
is the set of 28 WALS features that are relevant to describing morphological complexity
(Bentz et al. 2016). Unfortunately, the coverage of WALS is incomplete, such that certain
features are not equally available for all languages. We therefore include only a subset
of 15 WALS features: those with feature codings for at least 46 languages of our sample
(see Table 5).

Given these features, we represent each language as a vector of 15 dimensions27

by using the numeric values provided (see column “Categories” in Table 5). We apply
centering and scaling to these. Our text-induced BPE space is not directly comparable
with the WALS space since the dimensions are different. However, we assess whether
languages close in WALS space are also close in our BPE space. To this end, we firstly
perform a k-means clustering analysis28 in the WALS feature space, and then check if the
languages clustering together are also neighbors in our BPE space. The measure mean
silhouette coefficient is used for the second step. The silhouette coefficient is a common
intrinsic measure of cohesion and separation of clusters (Rousseeuw 1987). It returns a
coefficient s(i) in the range [−1, 1] for each data point i in the data set. This is calculated
using the mean intra-cluster Euclidean distance a(i), that is, the mean distance between
the data point i and all other data points in the same cluster; and the inter-cluster distance
b(i), measured as the mean distance between the data point and the data points of the
nearest cluster (excluding the cluster to which this data point belongs). We then have

s(i) = b(i)− a(i)
max{a(i), b(i)} (5)

27 In case a WALS feature coding is not available for a given language, we assign a zero in the
corresponding vector dimension.

28 We use kmeans++ for smarter centroid initialization and improved clustering quality. We use k = 4.
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with

a(i) = 1
|CI| − 1

∑
jεCI ,i 6=j

d(i, j) (6)

and

b(i) = min
J 6=I

1
|CJ|

∑
jεCJ

d(i, j) (7)

CI is the WALS-based cluster that a data point i belongs to. CJ is any other cluster.
Values of s(i) closer to−1 indicate that the data point was assigned to the wrong cluster,
that is, it is relatively far away—in BPE space—from the other data points of the WALS-
based cluster. A value close to 1, on the other hand, indicates that the data point is close
to points in the assigned cluster.

Finally, we take the mean s̃ over all data points—that is, the mean silhouette
coefficient of the entire data set—given a specific number of clusters. Although this
is an intrinsic evaluation measure, we do not use it in a strictly intrinsic way (i.e., we
measure s̃ of the clusters obtained with WALS but using the three-dimensional vector
representations of the BPE space).

3.6 Hyperparameter Setting

Our methodology as described so far is based on a fixed BPE hyperparameter, that is,
we use the first 200 subwords that emerge from the BPE compression (the number of
subwords is the same as the number of merge operations applied). A natural question
is if the language vector representations that we obtain are affected by the number of
subwords taken into account. To assess this, we vary the BPE hyperparameter (i.e., the
number of merge operations). Namely, we go from 1 to 1,000 merge operations for
all languages. For example, when the number of merge operations is 50, this implies
measuring productivity, idiosyncrasy, and cumulative frequency for the first 50 sub-
words. Then we average across these subwords to obtain a single vector representation
per language. We then analyze how the distribution of the data points changes with
different numbers of merges, and how this impacts our comparison to the WALS-based
arrangement of languages. In particular, we calculate the mean silhouette coefficient for
each configuration obtained at each merge.

3.7 Subword Tokenization by WordPiece

In our analyses, the main focus is on BPE subwords. However, there are alternative
subword tokenization algorithms. WordPiece, for instance, also relies on iterative merg-
ing. It is therefore also compatible with our approach, since we can explicitly extract
the merged subwords at each step and inspect them along the dimensions of our mea-
sures. Importantly, the merging criterion in WordPiece is different from BPE. Instead of
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merging the two adjacent subwords with the highest co-occurrence frequency, the
following criterion29 is applied:

score(s1, s2) =
freq(s1, s2)

freq(s1)× freq(s2) (8)

where s1, s2 is a pair of adjacent subwords in the corpus. WordPiece merges the pair of
subwords that maximize Equation (8). Note that this score includes the co-occurrence
frequency of two consecutive subwords, as in BPE (i.e., freq(s1, s2)), but it normalizes
this frequency by the product of individual frequencies. In other words, BPE uses an
absolute measure of co-occurrence frequencies as criterion, while WordPiece penalizes
co-occurences of symbols that are highly frequent by themselves. For example, the first
merged characters for English according to BPE are th, while for WordPiece this is ex.
Another difference is the boundary markers that are used in each algorithm. The BPE
implementation distinguishes between the subwords at the end of a word and the rest
of them, while WordPiece distinguishes between the subwords at the beginning of a
word and the rest of them.30 See Appendix C for an extended example of the English
subwords across BPE and WordPiece.

We compare the distributions obtained with these two subword tokenization meth-
ods, and assess which approach leads to vector representations more representative of
the morphological typology of languages, according to the WALS-based clustering.

4. Results

4.1 Productivity and Idiosyncrasy of BPE Subwords

Figure 5 shows the positions of subwords in a three-dimensional space for four lan-
guages (English, Sango, Turkish, and Kalaallisut). They belong to different linguistic
families, are typologically different, and they also represent opposing trends in terms
of the quantitative properties of their subwords. Visualizations for all languages in the
sample can be found on GitHub.31

All languages share the universal property of achieving the most significant com-
pression during the first BPE merge operations (green color in Figure 5). In other words,
the character combinations which get merged during the first operations reflect highly
recurrent subwords that cause the most drastic decrease in the redundancy of the texts
(remember also Figure 2). At later merges (red and finally blue color) the subwords
start accumulating near the origin. These subwords appear in fewer word types, and
those word types are not very frequent anymore. Thus, they have low values in all
three dimensions and are not among the top candidates for compression, so their
“compression potential” goes to zero.

In general, the redundant patterns that get merged first, and contribute most to
compression, stand out in one of two dimensions:

• High productivity (many word types contain them and they accumulate
relatively high frequency),

29 Based on https://huggingface.co/course/chapter6/6?fw=pt.
30 These distinctions may introduce a certain preference toward capturing more suffixal or prefixal patterns.
31 The code and other resources can be found at https://github.com/ximenina/bpe-morphology.
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Figure 5
BPE subwords for four languages (PBC corpus). Each data point represents a subword. The
colors are a visual cue for the merge operation (i.e., from 1 to 200) at which the respective
subword was created.

• High idiosyncrasy (few word types contain them, but those are highly
frequent).

Besides these generalizations that hold for all the languages in our sample, the
central insight here is that languages are systematically different with regard to how
their subwords distribute in the productivity/idiosyncrasy space. This distribution is
characteristic for each language. Namely, there are languages with more prominent
presence of subwords around the area with high values of productivity (and a low
degree of idiosyncrasy), for example, Turkish (tur) and Kalaallisut (kal). In this case,
highly productive subwords are precisely the ones that get merged early. In contrast,
in other languages, for example, Sango (sag) and English (eng), the subwords are less
productive but concentrate more in areas where the idiosyncrasy is high. Still, these
few types have a relatively high cumulative frequency, and are good candidates for
compression (i.e., they tend to get merged first).

Notice that the axes are not scaled here: For Sango, the idiosyncrasy index runs up
to more than 1,000. In contrast, for Kalaallisut the highest values are approximately ten
times smaller (i.e., around 120), and none of these idiosyncratic subwords are merged
early. English is closer to Sango with values running up to 600, while Turkish is closer to
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Figure 6
Languages represented by a single vector that averages the values obtained during the first 200
merges (PBC). The color reflects the variation of the x-axis (Productivity |w|).

Kalaallisut, with values of maximally 350. In terms of productivity, however, we have
the inverse pattern: Kalaallisut subwords can reach values of around 2,000, while in
Sango only a single subword reaches productivity of 200, with all others below 100.
Again, English is closer to Sango, with values running up to 250, while Turkish—with
values up to 800—gets (somewhat) closer to Kalaallisut.

Note that the fact that a subword has low productivity does not necessarily imply
that it will be high in idiosyncrasy. In fact, there can be subwords that are low in
productivity but also low in idiosyncrasy (e.g., data points that concentrate near the
origin).

4.2 Languages in the BPE Subword Productivity Space

Figure 6 shows points for individual languages plotted in 3D space.32 Remember that
these points represent mean values of productivity, idiosyncrasy, and cumulative fre-
quency for the subwords created in 200 merge operations. Following up on the example
shown in Figure 5, we notice that languages like English (eng) and Sango (sag) con-
centrate around the region where productivity values are low, but with Sango having

32 Appendix A contains information about all the languages and their vector representations. Additionally,
Appendix B shows the 2D planes.
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Figure 7
Geographical distribution (PBC). Color indicates the variation of Productivity |w|.

considerably higher idiosyncrasy. Turkish (tur) and Kalaallisut (kal), on the other hand,
are found in the region with low levels of idiosyncrasy and high levels of productivity.

More generally, languages like Fijian (fij), Yoruba (yor), Vietnamese (vie), and Thai
(tha) are among the ones with lowest productivity of subwords. Korean is also among
these, however, this is an artefact of the writing system (discussed above). Namely,
when the PBC text is transliterated into a Latin script, the subword productivity of
Korean is actually among the highest (see Appendix F). At the high end of productivity
we further find Imbabura Quechua (Imbabura) (qvi), Yagua (yad), and Barasano (bsn).
Interestingly, these are spoken in a relatively confined geographic space (on a global
scale) of northwestern South America. Figure 7 illustrates the geographical distribution
of all the languages. Egyptian Arabic (arz) is also among the languages with highly pro-
ductive subwords, even surpassing some Eurasian languages such as Russian, Finnish,
and Turkish in this dimension. This is certainly related to the productive consonant
templates in Arabic writing, though note that, in the PBC texts, vowels are also indicated
(see also Section 3.2 for discussion).

Some of the languages with highest idiosyncrasy indices include Burmese (mya),
Sanumá (xsu), Thai (tha), and Sango (sag). In the case of Burmese, high idiosyncrasy is
to some extent a reflection of the tokenization, which “oversplits” orthographic words
(see also Section 3.2). In Sango and Sanumá, on the other hand, the high idiosyncrasy of
subwords is more clearly driven by their morphological structure.

Finally, we repeat the same analyses for the JW300 and UDHR corpora to assess
the dependence of the results on a specific corpus. Appendix D gives the respective
plots, and a comparative analysis using the distribution of Euclidean distances across
the data points. As a general trend, languages maintain similar positions in the BPE
space despite the different corpora sizes and registers. We observe that in the UDHR
corpus, featuring small text sizes, there is greater variation in the Euclidean distances
between the data points that belong to the same language. However, even here we find
that a similar arrangement of languages is maintained with respect to PBC.
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Similarity patterns between languages that emerge from our analysis of the first 200
BPE merges correspond rather closely to the known properties of the languages and are
rather robust across different text samples.

4.3 Comparison Between BPE Subword Productivity Space and
WALS-based Clustering

To evaluate the degree to which the arrangement of languages in the BPE subword
productivity space agrees with their known typological features, we turn to the WALS
database. Figure 8 shows the BPE space again, with the data points for languages in
the same positions as before. This time, however, the points are colored according to
four clusters obtained by using morphological features from WALS. If the BPE charac-
terization of languages, on one hand, and the WALS features, on the other, had little in
common, then the colors of points should have a random distribution in Figure 8. In
the opposite scenario (i.e., if the BPE and WALS characterizations agree) we should see
clusters distinguished by colors. The visual impression in Figure 8 is that, indeed, there
is considerable clustering of colors.

Figure 8
BPE language space (PBC), the colors represent the clusters obtained with WALS-based vector
representations using k-means (k = 4).

969



Computational Linguistics Volume 49, Number 4

Table 6
Mean silhouette coefficient s̃ for WALS-based k-means clustering (k = 4) but measured over
different vector representations, or characterizations, of languages. The second column includes
additional BPE characterizations using different merge operations. Similarly, the third column
contains characterizations obtained from WordPiece subwords.

Version s̃ Version s̃ Version s̃
WALSoriginal 0.23 WALSBPE10 0.03 WALSWP10 −0.19

WALSBPErandom −0.17 WALSBPE50 0.09 WALSWP50 −0.02
WALSBPE200 0.12 WALSBPE100 0.10 WALSWP100 −0.01
WALSWP200 0.05 WALSBPE1000 0.13 WALSWP1000 0.11

We back up this finding by calculating the mean silhouette coefficient (see Sec-
tion 3.5). Table 6 gives s̃ calculated for three different scenarios. First, we define the
upper bound to be the score calculated using the WALS vector representations only
(WALSoriginal). This score shows how compact the WALS clusters are in their own
space. Second, we define the baseline score given randomly drawn values of the BPE
vector representations (WALSBPErandom). In this setting, each language is represented
in the BPE three-dimensional space, with the value of each dimension generated by ran-
domly drawing samples from a uniform distribution of the original intervals of values.
The BPE space is overlaid with the WALS clusters for which the silhouette coefficient is
calculated. Third, the score that quantifies the agreement between the features extracted
from WALS and the BPE productivity vectors (WALSBPE200) is calculated in the same
way as the baseline, but using the actual (observed) values of BPE vectors instead of
the random values.

The upper bound value of s̃ (over the WALS feature space itself) is 0.23. This score
is in the upper part of the range ([−1,1]), but still far from 1, meaning that the WALS
clusters are moderately compact and distinct in the most favorable scenario. In the case
of the BPE space overlaid with WALS feature clusters, s̃ decreases to 0.12. This is due
to some languages being in the same WALS cluster, but distant in our BPE space. For
example, Swahili (swh) is close to Turkish (tur), Finnish (fin), and Russian (rus) in the
BPE space, but clusters with other languages such as Lango (laj), Guaraní (gug), and
Mixtec (mig) in terms of WALS features. In the baseline case of random arrangement
of language vectors in the BPE space, s̃ further drops to −0.17. To put the outcome
of our comparison into perspective, the mean silhouette coefficient for the BPE space
overlaid with WALS clusters only drops by ca. 27%33 on the scale from the original
WALS space to the random baseline. In other words, the fit of WALS clusters to the
points in the BPE space is much closer to the upper bound than to the baseline. We thus
interpret the s̃ value of 0.12 as a solid quantitative evidence of the agreement between
language representations extracted from WALS and those that result from analyzing
BPE subwords.

4.3.1 Additional BPE Subword Productivity Spaces. The distribution of languages in the
productivity space changes depending on the number of BPE merge operations applied
to characterize them. This is because language vectors are based on the mean values of

33 Given the values in Table 6 we obtain 0.23−0.12
0.23−(−0.17) = 0.9

0.38 = 0.27.
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Figure 9
Mean silhouette coefficient s̃ for WALS-based k-means clustering (k = 4) measured over the
vector representation obtained at different merge operations for BPE and WordPiece.

productivity, idiosyncrasy, and cumulative frequency of the subwords created up to a
specific merge operation, for example, 200.

To understand this effect better, we obtain varied BPE productivity spaces derived
from incrementally applying 1 to 1,000 merge operations. The most visible changes in
language distributions happen during the first merges. By merge 200 the arrangement
of data points in the productivity space is stable. Language vectors obtained using
200 merges are almost identical to the ones obtained using more subwords, e.g., 1,000.
Detailed graphs can be found in Appendix H. This behavior is expected. We saw before
that subwords of later merges tend to accumulate near the origin, that is, they are
not very discriminative anymore (Figure 5). Therefore, even though we keep merging,
the mean values are mainly influenced by the salient data points captured on the first
merges.

We also assess the impact of changing the BPE hyperparameter in the agreement be-
tween the BPE subword productivity space and the clustering based on WALS typolog-
ical features. The second column of Table 6 contains the mean silhouette coefficient (s̃)
obtained with a selected number of BPE merge operations. The results for the complete
range of merges can be appreciated in Figure 9. As a general trend, the more subwords
we use to characterize languages, the stronger the agreement with WALS—until we
reach a certain point where there is no more improvement. Again, the most noticeable
changes occur in the first merge operations. By choosing around 200 merge operations,
we will obtain a productivity space similar to the ones of subsequent merges, but using
less computational resources. Just 200 BPE subwords are needed to characterize the
morphological typology of languages.

4.4 WordPiece Results

Although BPE and WordPiece both incrementally merge subwords, their quantitative
properties are different. This is reflected in the productivity spaces. The arrangements
of languages obtained using WordPiece subwords systematically diverge from the ones
obtained with BPE when few merges are applied. Moreover, the positioning of the
language vectors in the WordPiece space shows less agreement with the WALS space,
reflected in lower values of the mean silhouette coefficient s̃ (Table 6). In other words, the
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quantitative properties of the first subwords found by WordPiece are less representative
of the morphological typology of languages. In fact, using few merge operations we
obtain negative values of s̃ (WALSWP10 is even below the random baseline). But if
we keep merging, the arrangement of languages in the WordPiece productivity space
slowly becomes more similar to the WALS space (Figure 9). This means that WordPiece
can also be used to extract typological features, but not in the same way as BPE.

WordPiece merges adjacent subwords that are frequently encountered together, but
with their marginal frequencies being low. On the first merges, this causes a preference
toward patterns that contain rare characters in the respective language. Also, compared
to BPE, there is a greater predominance of longer subwords—similar to stems—from
the very first operations. It makes sense that stem-like patterns are less indicative of the
morphological typology of a language, that is, the subwords do not resemble regular
morphological phenomena like affixes.

A note is needed here to underline that we are not comparing the quality of sub-
word tokenizations. In fact, for tokenizing a text, WordPiece utilizes the merged patterns
in a different way compared to BPE.34 Our comparison concerns solely the subwords
that emerge iteratively, and what these patterns reveal about language structure.

5. Discussion

5.1 BPE Subwords as Typological Features

What emerges from our analyses is that the same subwords that are the most useful for
compressing texts are also useful for differentiating languages. For example, English
subwords formed in the first 200 BPE merges reach productivity scores of ca. 250, while
in Turkish these range up to ca. 800 (remember Figure 5). Also, these subword properties
match the classifications of WALS chapters on morphological typology.

But how exactly do these observations relate to the morphology of languages? At
first sight, it seems like the patterns harnessed for compression are not related to the
classic idea of morpheme structure at all. For instance, in English, the first five merges
create the following set of subwords: {th, an, and<\w>, the, the<\w>}. A pattern like th
is an orthographic convention of English writing, representing a phoneme, rather than a
morpheme. However, notice that in subsequent merges, the two-character subwords be-
come three-character subwords which indeed represent morphemes. The definite article
the as well as the conjunction and in English are morphemes—as well as orthographic
words.

To illustrate this point further, Table 7 gives the 10 most productive subwords in
English and Turkish of more than two characters. Notice that BPE compression uncovers
inflectional suffixes (e.g., -ing, -eth, -est),35 stems (e.g., com-), and prefixes (e.g., for-),
while other subwords (e.g., -oun-, -ent, -ght) are less straightforwardly analyzable as
morphemes—at least from the perspective of Modern Standard English.36 Interestingly,
in Turkish, the picture is even clearer. The most productive subwords are actually
inflectional morphemes of standard grammar. For instance, -lar and -ler are mostly used
as allomorphs for plural marking (e.g., adam-lar ‘man-PL’) (Göksel and Kerslake 2004,

34 It keeps only the vocabulary of the last iteration, and applies a longest-match-first strategy.
35 Arguably, -led is also an inflectional suffix. The -l of the stem is merged to -ed, which has already been

merged before.
36 In fact, in many cases, these patterns are probably related to inflectional and derivational marking, which

has changed and fossilized over time.
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Table 7
Most productive subwords (of more than two characters) for English and Turkish up to 200
merges. We color the merge numbers roughly as in Figure 3, namely, green (merge 0–50),
red (merge 50–100), violet (merge 100–150), and blue (merge 150–200).

English (eng) Turkish (tur)

prod. subword merge examples prod. subword merge examples

110 ing<\w> 29 beginning 355 lar 8 onlara
67 eth<\w> 103 nazareth, eateth 309 ler 13 günlerde
38 est<\w> 166 lest, carest 150 ler<\w> 32 gittiler
26 led<\w> 122 filled, called 145 lar<\w> 38 adamlar
26 com 137 coming, come 131 den<\w> 40 senden
23 oun 129 round, found 129 yor 69 öğretiyord
21 for 86 forsook 116 dan<\w> 60 tarafından
21 ent<\w> 91 went, garment 110 ini<\w> 64 indiğini
21 ght<\w> 102 taught, might 107 ların 96 ağlarını
19 ing 90 things, bringing 80 ine<\w> 50 üzerine

Table 8
Most idiosyncratic subwords (of more than two characters) for English and Turkish up to 200
merges. We color the merge numbers roughly as in Figure 3, namely, green (merge 0–50),
red (merge 50–100), violet (merge 100–150), blue (merge 150–200).

English (eng) Turkish (tur)

idiosyncrasy subword merge idiosyncrasy subword merge translation†

617 him</w> 18 352 isa</w> 34 “Jesus”
489 that</w> 23 258 dedi</w> 56 “said”
486 the</w> 5 152.5 bir</w> 43 “a, one”
442 they</w> 27 121 onlara</w> 127 “them”
376 them</w> 38 99 sonra</w> 160 “after”
298 said</w> 47 86 size</w> 184 “to/for you”
262 shall</w> 57 82 şöyle</w> 189 “such (a)”
237 his </w> 63 73.5 için</w> 106 “for”
233 for </w> 66 61.5 ama</w> 126 “but”
224 unto</w> 26 40 diye</w> 128 “that”
† According to the Turkish grammar by Göksel and Kerslake (2004).

p. 65); -den/-dan are ablative case suffixes (e.g., sen-den ‘you-ABL’, i.e., ‘from you’)
(Göksel and Kerslake 2004, p. 67); and -yor is an imperfective tense suffix (Göksel and
Kerslake 2004, p. 69).

The most idiosyncratic subwords uncovered by BPE compression up to 200 merges
(see Table 8) are full-blown orthographic words. In fact, the words occurring in this
list are often semantically related across the two languages, for example, Turkish dedi
corresponds to English said, onlara to them, and için to the preposition for.

To appreciate the structural differences in the two languages, note the general trend
in Turkish toward productive inflectional markers in the early merged subwords—
which contribute most to compression—while in English, the trend is toward idiosyn-
cractic words. This is visible when inspecting the merge numbers (color-coded for visual
reference) in Tables 7 and 8. In other words, the concatenative and (largely) nonflexive
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nature of Turkish morphology, on one hand, and the less productive nature of English
inflectional morphemes, on the other, are captured by the quantitative properties of their
BPE subwords.

Our conjecture is that the distributional differences in subwords are linked to the
morphological typology of the respective languages. Languages with rich inflectional
morphology exhibit a more prominent concentration of subwords in the area with
high productivity and low idiosyncrasy values. In contrast, languages with poorer
inflectional morphology show a more prominent subword concentration in areas where
idiosyncrasy is high.

In the example of English and Turkish, the most productive subwords in each case
largely correspond to patterns discussed as inflectional affixes in standard grammars.
While this might not be immediately apparent in early merges of pairs of characters, it
becomes clear when merges of more than two characters are formed. Further merges
(beyond 200) might blur this picture again, leading to the general impression of BPE
subwords not being linguistically relevant.

5.2 Text-based Morphological Typology

As already pointed out by Sapir (1921) and later implemented by Greenberg (1960) (see
also Section 2.3), language diversity should be measured on a continuum, rather than
broken down into discrete categories. However, traditional typology often works with
categorical features. With this in mind, our features can provide a quantitative yardstick
for the categorical features of traditional typology. As a first step in this direction, we
here interpret our compression-based productivity measure in terms of the notions of
synthesis and fusion as they are established in the typological literature (Table 9).

Table 9
Average productivity of BPE subwords alongside categorical information on synthesis and fusion
of languages from the typological literature. Productivity values are colored roughly according
to the scale in Figure 6. This is a subsample of the 47 languages of the PBC sample for which we
were able to find a reference giving a categorical synthesis value (references given in a separate
column). The reference for fusion is WALS feature 20A (Bickel and Nichols 2013).

ISO Name Prod. Synthesis Reference Fusion

vie Vietnamese −1.33 analytic Haspelmath and Sims (2010) isolating
tha Thai −1.33 analytic Moravcsik (2012) isolating/concat.
sag Sango −1.29 analytic Karan (2006) concatenative
yor Yoruba −1.21 analytic Haspelmath and Sims (2010) tonal/isolating
eng English −0.94 analytic Haspelmath and Sims (2010) concatenative
fij Fijian −0.89 analytic Dixon (1988) isolating
pes Persian/Farsi −0.78 synthetic Greenberg (1960) concatenative
fra French −0.19 synthetic Dixon and Aikhenvald (2003) concatenative
ell Greek (Modern) 0.02 synthetic Dixon and Aikhenvald (2003) concatenative
rus Russian 0.07 synthetic Aikhenvald (2007) concatenative
swh Swahili 0.20 synthetic Haspelmath and Sims (2010) concatenative
yaq Yaqui 0.46 synthetic Guerrero (2019) concatenative
tur Turkish 0.54 synthetic Bickel and Nichols (2007) concatenative
gug Paraguayan Guaraní −0.19 polysynthetic Aikhenvald (2017) concatenative
arn Mapudungun 0.73 polysynthetic Bickel and Zúñiga (2017) concatenative
amp Alamblak 1.02 polysynthetic Bruce et al. (1984) concatenative
apu Apurinã 1.30 polysynthetic Facundes (2014) concatenative
bsn Barasano 1.43 polysynthetic Gomez-Imbert (2004) concatenative
kal Kalaallisut 3.25 polysynthetic Haspelmath and Sims (2010) concatenative
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Low Productivity. We observe in Table 9 that languages with low subword productivity
(i.e., around one standard deviation lower than the mean or zero after standardization)
are generally categorized as analytic by typologists. An analytic language tends to
have a low ratio of morphemes per word, that is, each word can consist of a single,
independent morpheme. This type of language has a preference to encode relations
and meanings through syntactic structures instead of using word-internal structures.
Take the examples for Sango (9) and Sanumá (10). Grammatical categories like person
and tense are here not encoded by means of inflectional affixes (as it happens in more
synthetic languages), but by free morphemes. Interestingly, in the case of Sanumá, the
form töpö that appears glossed as 3PL, is actually the subword that obtains the highest
idiosyncrasy using our BPE operationalization.

Sango (sag)

(9) löndö
rise

mo
2S

gä
come

“get up and come (here)” (Karan 2006, p. 247)

Sanumá (xsu)

(10) Sama
1PL.EXCL

töpö
3PL

se
hit

kite
FUT

“We will hit them.” (Borgman 1990)

Further languages categorized as analytic in our sample are English (eng), Fijian
(fij), Vietnamese (vie), Thai (tha), Hindi (hin), and Yoruba (yor). These are the languages
with cooler colors (low productivity) also in Figure 6. Two borderline cases are French
(fra), and Persian/Western Farsi (pes). The subword productivity of the latter is some-
what closer to analytic languages, but it is categorized as synthetic.37

The terms “analytic” and “isolating” are often used interchangeably. But as pointed
out above with reference to Bickel and Nichols (2007), in a strict sense, these are
independent dimensions of morphological typology. Vietnamese (vie), Thai (tha), and
Yoruba (yor) are examples of languages with very little (or no) inflectional morphology.
According to WALS feature 20A on the fusion of inflectional formatives, Vietnamese
is exclusively isolating, while Thai is isolating/concatenative, since it features some
derivational formatives in the form of reduplication, affixing, compounding. Yoruba,
on the other hand, is classified as tonal/isolating, since tones are here also relevant
as grammatical information (not purely for lexical distinctions). Hence, most of the
analytic languages are said to be at least partly isolating. In contrast, English and Sango
are assigned the label “exclusively concatenative.” In the case of English, there are some
formatives of grammatical information, for example, for tense and person/number,
which are analyzed as concatenative.38 Quoting Haspelmath and Sims (2010, p. 4)
“Quite generally, we can say that English makes more use of morphology than Yoruba.
But there are many languages that make more use of morphology than English.”39 This
statement is nicely matched by the BPE productivity measure, yielding−1.21 for Yoruba
and −0.94 for English.

37 We should be aware that Persian (Farsi) is here written with an abjat script without indication of vowels.
This can have an impact on the productivity of subwords. See also discussion in Section 3.2.

38 The auxiliary will in periphrastic future tense constructions could be seen as an isolating formative in
English, though.

39 We have added the term bound here.
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Medium Productivity. In the medium range of subword productivity, we find languages
like Chamorro (cha), French (fra), German (deu), Spanish (spa), Russian (rus), and—
with somewhat higher values—Swahili (swh), Turkish (tur), and Yaqui (yaq). These
languages are fairly consistently categorized as synthetic with concatenative formatives
by typologists (see Table 9). For Chamorro, we were not able to find an explicit mention
of its synthesis. It is described as a largely concatenative language with some fusional
phenomena in a recent morphological overview article (Stolz 2015). There is some
disagreement on its exact morphological status, however. According to WALS feature
26A, it has little affixation (Dryer 2013), and WALS feature 20A classifies its morphology
as concatenative/isolating (Bickel and Nichols 2013). Its productivity value of −0.11
(see Appendix A) reflects this in-between-status, as it falls between languages typically
called “analytic” or “synthetic.”

French, German, Spanish, and Russian are Indo-European languages with produc-
tive inflectional morphology. Furthermore, they are often named as examples of cumu-
lative exponence, that is, one single morpheme encodes several grammatical functions,
rather than each morpheme having a separate function (separative exponence). Tradi-
tionally, this was referred to as fusional language, contrasting with agglutinative lan-
guage (see also Section 2.3). Cumulative and separative languages represent two sides
of synthetic morphology. In both cases, words can contain several morphemes; how-
ever, in separative (agglutinative) languages, the morphemes remain almost unchanged
after concatenation, while in cumulative (fusional) languages, they are “fused” into
a single morpheme, including phonological alternations that obscure the boundaries.
The difference between cumulative and separative exponence seems to play into the
BPE space as well. Languages of the former type (English, Spanish, German, French)
are located in the lower productivity, and higher idiosyncrasy regions than typical
languages of the latter type (Swahili, Turkish, Finnish, Basque). Unfortunately, there is
no WALS chapter that would code the exponence of languages across different word
categories,40 and that could hence be used to investigate the link of exponence to
higher/lower subword productivity more systematically.

High Productivity. At the high end of productivity (i.e., more than one standard de-
viation above the mean) we find languages such as Alamblak (amp), Apurinã (apu),
Barasano (bsn), Quechua (Imbabura) (qvi), and Kalaallisut (West Greenlandic, kal).
These have warmer colors in Figure 6. For better appreciation, Appendix E contains
the zoomed-in regions of the space.

Languages in this area are generally considered morphologically rich, concat-
enative, and polysynthetic by typologists (see Table 9). Kalaallisut stands out with
a subword productivity more than three standard deviations higher than the mean.
Furthermore, its idiosyncrasy is very low. It encodes many morphosyntactic distinctions
at the word level by concatenating morphemes, see Example (11), which is given as a
paradigm example of polysynthesis (Haspelmath and Sims 2010, p. 5). Note that the
entire main clause of the English translation (I didn’t understand at all (that) [...]) is here
“synthesized” into a single orthographic word (Paasinngilluinnarpara).

Kalaallisut/West Greenlandic (kal)

(11) Paasi-nngil-luinnar-para
understand-not-completely-1SG.SBJ.3SG.OBJ.IND

ilaa-juma-sutit.
come-want-2SG.PTCP

40 WALS feature 21A codes exponence only for “selected inflectional formatives,” i.e., case markers.
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“I didn’t understand at all that you wanted to come along.” (Fortescue 1984,
p. 36)

Some of the other highly productive languages, for instance, Yagua (yad) and
Quechua (Imbabura) (qvi), are located in a somewhat different area of the space, since
they have higher degrees of cumulative frequency. This might reflect further particu-
larities of their morphology. For instance, a phenomenon frequently found in Quechua
varieties is root reduplication applying to both nouns and verbs, as in the example kaša
kaša meaning “place full of thorny plants,” where kaša by itself means “thorny plant”
(Adelaar 2004, p. 1455). Note that this morphological strategy increases the cumulative
frequency of subwords.

Within the spectrum of high productivity, we additionally find Apurinã (apu),
Alamblak (amp), and Barasana-Eduria (bsn). These are also named among polysyn-
thetic languages (see Table 9). The former two are described as predominantly suffixal
and with some fusional elements (Facundes 2014; Palmer 2017; Bruce et al. 1984), while
the morphology of Barasana-Eduria (bsn) is peculiar for having tonal phenomena and
also allomorphy (Gomez-Imbert 2004).

Mapudungun (arn) is an interesting case. It is categorized as a polysynthetic
language with remarkably rich verbal morphology—including noun-incorporation
(i.e., the subject of a sentence might be represented morphologically inside the verb).
This contrasts with its almost non-existent inflectional morphology of nouns (Zúñiga
2017), as illustrated in the following example:

Mapudungun (arn)

(12) anü-m-ka-i
sit.down-CAUS-CONT-IND

pinu
cane

yengu.
3DU

“Both of them planted cane.” (Bickel and Zúñiga 2017, p. 12)

While the verb consists of four morphemes, the noun consists of one. In a sense,
Mapudungun is a polysynthetic language in its verbal domain, but analytic in the
nominal domain. This might explain why it has an overall subword productivity (0.73)
somewhat lower than other languages categorized as “polysynthetic,” and rather ap-
proaching the score of synthetic languages like Turkish (0.54).

Paraguayan Guaraní (gug) is an extreme example of discrepancy between the
typological categorization and our quantitative measure. In Aikhenvald (2017), it is
discussed under the rubric of polysynthetic language.41 Counter expectation, it has
a subword productivity even lower than the global mean, that is, −0.19 (the same as
French in our estimation). This is likely related to a “clash” between the definition
of polysynthesis based on a feature like noun-incorporation, on one hand, and a
quantitatively oriented criterion like the subword productivity, on the other. For
instance, in Paraguayan Guaraní, the word mba’e ‘thing’ can be incorporated into a
complex verb form:

Paraguayan Guaraní (gug)

(13) A-mba’e-jogua-ta
1ACTIVE-thing-buy-FUTURE

ko-ka’aru
this-afternoon

“I’ll go shopping this afternoon.” (Aikhenvald 2017, p. 297)

41 She also uses the term “highly synthetic” in some instances.
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Thus, the language fulfills the noun-incorporation criterion of polysynthesis. How-
ever, while mba’e as a subword has a relatively high cumulative frequency in our PBC
text—occurring 387 times42—it only occurs in 38 different word types. This is rather
low productivity compared with an inflectional suffix like -lar in Turkish, which occurs
overall in 500 different word types (remember Table 7). Thus, at least in this particular
case, noun-incorporation yields subwords that have a different quantitative profile
compared to inflectional morphemes.

Finally, we also want to mention Egyptian Arabic (arz) as another particular case. It
is located in the area with very high productivity (1.21, see Appendix A), and relatively
low idiosyncrasy. However, it is normally not named among polysynthetic languages.
Its morphology is also not considered exclusively concatenative, but rather “non-linear”
(Bickel and Nichols 2007), or “Ablaut/concatenative” (Bickel and Nichols 2013). In this
language, BPE captures many patterns on the first merges with high productivity. These
also involve consonant/vowel combinations, not just consonant templates, since in the
Egyptian Arabic texts used in our analyses, vowels are indicated by diacritics.

In the map (Figure 7), we overlaid our productivity |W| measure, since we have
discussed that it relates easily to the concepts of synthesis and fusion. Without making
any general claims for the moment, we note that languages with the highest degree
of productivity seem to be found in the Americas (polysynthetic and concatenative
tendency). In contrast, languages with the lowest degree are found in some regions of
Asia and Africa (analytic and isolating tendency). This is expected from the typological
literature on morphology. We leave a more systematic study of geographic patterns
based on subword productivity for future work.

In summary, there is generally a good fit between categorical distinctions along
the clines of analytic → synthetic → polysynthetic, as well as isolating → concatenative,
on one hand, and quantitative text-based measures like subword productivity, on the
other. Languages with low subword productivity are fairly consistently categorized as
“analytic” and “isolating” by typologists, while medium subword productivity rather
maps onto the categories of “synthetic” and “concatenative,” and high productivity
onto “polysynthetic” and “concatenative.” There are some counter-examples to these
mappings, which reveal interesting discrepancies between the traditional typological
ideas about morphological categories, and our quantitative measures. Representing
the notion of cumulative frequency as a separate dimension in the space allows us
to identify some subtypes of languages along the productivity/idiosyncrasy scale in
accordance with the facts cited in the typological literature.

5.3 Comparison to WALS Feature Clustering

In the previous subsections, we have zoomed in to quantitative subword properties
of individual languages (English and Turkish), as well as compared average subword
productivities to certain typological categories (synthesis, fusion). To get a more general
view on the link between morphological properties as defined by typologists, and our
compression-based account, we now turn to the results of the WALS-based feature
clustering projected into the BPE space (Figure 8).

As a general trend, languages that get clustered according to WALS criteria are also
found in contiguous regions in the BPE space. For example, cluster 0 (violet data points)

42 This includes both mba’e as part of a larger word, as well as mba’e</w> at the end of a word (and as an
orthographic word itself).

978



Gutierrez-Vasques et al. Languages Through the Looking Glass of BPE Compression

is located roughly around average productivity and idiosyncrasy values. It is the most
populated cluster, containing languages like Finnish (fin), Basque (eus), Georgian (kat),
Halh Mongolian (khk), Russian (rus), Turkish (tur), Modern Greek (ell), Chamorro (cha),
German (deu), French (fra), Korean (kor), Western Farsi (pes), and Spanish (spa). In fact,
this corresponds mostly to languages falling under the umbrella terms “synthetic” and
“concatenative.”

English (eng), Fijian (fij), Hausa (hau), Indonesian (ind), Burmese (mya), Nama
(Namibia) (naq), Sango (sag), Thai (tha), Vietnamese (vie), Sanumá (xsu), and Yoruba
(yor) get assigned to cluster 1 (cyan data points). In our BPE space, this corresponds
mostly to the region with low values of productivity paired with high values of
idiosyncrasy—in some cases. The respective languages are squarely associated with the
term “analytic” in the discussion above.

Cluster 2 (yellow data points) contains languages that tend to have relatively high
values of idiosyncrasy and also cumulative frequency in the BPE space. This cluster
includes Amele (aey), Bukiyip (ape), Barasana-Eduria (bsn), Popti’ (jac), and Wichí
Lhamtés Güisnay (mzh), but also several cases of languages whose position in the BPE
space does not correspond to their WALS clusters, mainly Swahili (swh), Paraguayan
Guaraní (gug), and Lango (Uganda) (laj).

Finally, cluster 3 (green data points) contains languages that are mostly distributed
in the area of the BPE space characterized by high cumulative frequency, irrespective
of their average productivity. Quechua (Imbabura) (qvi), Yagua (yad), Alamblak (amp),
and Apurinã (apu) have both high productivity and cumulative frequency, while Daga
(dgz) and West Kewa (kew) are considerably less productive than the other cluster
members. The highly productive language Kalaallisut (kal) belongs to this group as
well, though having somewhat lower cumulative frequency.

Appendix G shows the silhouette coefficient of each data point s(i) in the BPE space
(WALSBPE200). Languages with low values (between −0.7 and −0.6) can be considered
to be misplaced in the BPE space, that is, they are far from other languages that belong
to the same WALS cluster and closer to languages that belong to other clusters. Here we
see languages like Swahili (swh), Nama (Namibia) (naq), Paraguayan Guaraní (gug),
Hausa (hau), Daga (dgz), Lango (Uganda) (laj). In fact, Swahili gets the lowest silhouette
coefficient. We notice in Figure 8 that Swahili is similar to the Eurasian languages in
terms of quantitative subword properties, but it contrasts with them, for instance, when
it comes to the number of nominal case markers (WALS chapter 49). In the nominal
domain, it rather clusters with the Subsaharan, Mesoamerican, and South American
languages in our sample, which lack nominal case marking altogether.

On the other hand, there are languages with high s(i) (greater than 0.7), meaning
these BPE productivity data points are well matched to their respective WALS clusters,
that is, languages that end up close to the other languages in their WALS cluster and
far from languages that belong to other WALS clusters. They remain in a relatively
well delimited and compact area in the BPE space. Here we see cases like Basque (eus),
French (fra), Russian (rus), Halh Mongolian (khk), and Georgian (kat).

5.4 Subwords Beyond 200 Merge Operations

Our primary analysis is based on the first 200 redundant patterns uncovered by BPE
compression. This hyperparameter can be tuned (i.e., the analysis can be conducted
using a different number of merge operations). However, we find that taking very few
subwords (e.g., 10) is not enough to characterize the languages typologically, while
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taking more than 200 does not lead to considerable changes in the language vector
representations anymore.

5.5 BPE vs. WordPiece

Interestingly, the first 200 subwords obtained from the WordPiece merging criteria are
less indicative of morphological structure. Our analyses suggest that BPE subwords
tend to have a more grammatical or functional nature, allowing identification of the
type of morphology. As we discussed throughout this work, these can be productive
patterns that resemble inflectional markers, affixes, very frequent irregular morpholog-
ical patterns, or function words.

6. Limitations and Future Work

The method of subword tokenization we have chosen here is relatively straightforward,
text-based, reproducible, and it works without strong theoretical assumptions about
language structure. Still, our approach is susceptible to the intrinsic shortcomings of
the BPE method (and WordPiece) applied to diverse textual material. For instance,
an assumption that is hard-coded into this implementation is that orthographic word
boundaries work as strict delimiters not to be transitioned in subword generation. In
future research, it would be interesting to remove even this restriction, and generate
subwords over strings of characters without word delimiters. However, this would also
require the reconceptualization of our productivity measure, which currently hinges
upon counts of orthographic word types. We also showed that some types of scripts, like
in the case of Korean, due to its syllabified nature, would require additional adjustment
of our approach.

Non-standard languages represent another known challenge for subword tokeniza-
tion techniques in general, including BPE. Also, previous articles have highlighted that
BPE encoding may not be suitable for non-linear morphology, arguing that linguistically
supervised strategies may achieve better subword tokenizations in this case (Shapiro
and Duh 2018; Amrhein and Sennrich 2021; Nzeyimana and Niyongabo Rubungo 2022).
We do see some impact in the case of Arabic in our findings, but this impact depends
on whether vowels are indicated in the respective script, and whether the respective
UTF-8 characters are handled correctly by the respective BPE implementation. Cur-
rently, our analysis covers several different writing systems in a rather robust way, but
some specific cases (e.g., Korean Hangul and Burmese) require special attention.

It has recently been discussed that multilingual corpora in NLP tend to have “lan-
guage contamination” (Blevins and Zettlemoyer 2022). In our case, this type of noise is
more controlled due to the nature of the corpora (relatively small, relatively well curated
sources). However, even in the presence of mixed material, this will likely not have
much impact on the BPE patterns captured in the first merges. The patterns of other
languages are unlikely as frequent as an inflection marker or a highly frequent word
captured on the first operations.

With regard to our comparison between WALS-based k-means clustering and the
BPE space, there are two main limitations: Firstly, we choose k = 4 since it offers a
compromise between decent mean silhouette coefficients, on one hand, and keeping
feasible the interpretability of the resulting clusters (not too many), on the other. A
more systematic assessment of this trade-off for different values of k would be useful
also for other studies using this method. In the future, more sophisticated methods for
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estimating the number of clusters can be incorporated, for example, x-means (Pelleg,
Moore et al. 2000), and for measuring the agreement between different vector spaces
(Kriegeskorte, Mur, and Bandettini 2008).

Second, one challenging aspect of the quantitative evaluation is the lack of a tra-
ditional gold standard. WALS represents a valuable source of linguistic knowledge
for cross-linguistic comparison, but it has limitations. It is just one option of using
a reduced subset of (available) features to characterize languages in terms of their
morphology. Using other typological databases such as AUTOTYP (Bickel et al. 2022)
can provide another yardstick. In any case, the feature values tend to be discrete (e.g.,
binary features), which conceal the gradient nature of language.

More generally, clustering or categorization techniques induce rigid boundaries
over a continuum. In our analyses, these boundaries can be affected when new lan-
guages are added. This emphasizes the importance of working with a diverse sample of
languages to ensure that we obtain a representative snapshot of how natural languages
tend to distribute according to their BPE compression properties, namely, making it less
likely to find a new language that will be very far away from the populated regions we
have worked with.

6.1 NLP Applications

On a practical note, aside from providing a quantitative tool for morphological typol-
ogy, our approach has the potential to benefit NLP tasks. Several NLP applications
use typological language vectors (e.g., lang2vec) for various purposes. Our approach
also results in language vectors. This opens the possibility of extending the current
typological vectors used in NLP into the morphological domain (in a resource-cheap
way).

This seems especially promising in the context of transfer learning in highly multi-
lingual settings, where the success of the transfer depends on language similarity, the
amount of annotated resources, and other factors (Pires, Schlinger, and Garrette 2019;
Lauscher et al. 2020). In fact, the criteria for determining the languages more appro-
priate to transfer from constitutes a current research problem (Lin et al. 2019; Malkin,
Limisiewicz, and Stanovsky 2022). Our operationalization could provide an informed
criterion to facilitate cross-linguistic transfer, especially in challenging scenarios like
zero-shot cross-lingual model transfer between under-resourced and distant languages.

It is noteworthy that for both subword tokenization algorithms (BPE and Word-
Piece), we used a number of merge operations considered small for practical use in
NLP downstream applications (Mielke et al. 2021). However, our aim was not to im-
prove subword tokenization or the performance of a downstream task; here we use
the patterns that emerge from text compression as a tool for comparing languages. An
interesting research direction is to leverage these subword properties to achieve more
efficient subword tokenization (Pelloni et al. 2022).

Along a similar line, Rust et al. (2021) propose measures like fertility (the average
number of subwords produced for every tokenized word) for inspecting the properties
of subword vocabularies. This is performed in the context of pretrained multilingual
language models and the impact of tokenization on downstream tasks. Future research
is needed to explore how our characterization of subwords relates to these types of
measures, for example, languages with a tendency to more idiosyncratic subwords on
the first merges might have low fertility. In contrast, productive languages could score
higher in fertility.
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7. Conclusions

In this work, we started from the concept of data compression as a way to reduce
redundancy. When BPE encoding is applied to natural languages, a universal property
emerges: The most significant compression is achieved with the patterns captured on
the first merge operations (this is likely related to the Zipfian nature of languages).
We inspected these subwords more closely and discovered that the types of patterns
allowing effective compression are not the same across languages. As a matter of fact,
they are representative of language structure and an indicator of the morphological
typology of languages. Our findings show that, in some languages, text compression is
achieved via productive subwords, those resembling inflectional markers, affixes, and
other regular morphological phenomena. In other languages, the best candidates for
compression tend to be idiosyncratic subwords, namely, frequent irregular patterns or
whole orthographic words.

We propose a novel way to characterize the BPE subwords inspired by the notion of
morphological productivity in linguistics. We show that as few as 200 merge operations
are already suitable for capturing the most relevant patterns that allow us to character-
ize languages. Interestingly, the same amount of incremental patterns obtained from the
WordPiece merging criteria are less indicative of morphological structure.

The language vector representations that result from this method are a reflection of
phenomena discussed in traditional typology, even though our approach does not use
annotated data or any external linguistic knowledge. It relies merely on a common text
compression technique (subword tokenization) applied to the written representation
of languages, that is, raw text. No further preconceptions or assumptions about the
structure of languages are necessary. Despite the simplicity of this approach, the impli-
cations are far-reaching: Through the looking glass of compression we see more clearly
the commonalities and differences in languages down to the atoms of information
encoding.

Our research lies at the nexus of computational linguistics and linguistic typology,
and enables improvements in both directions. It advances text-based morphological
typology, complementing traditional analyses, which are not always straightforwardly
reproducible and scalable to diverse languages. In turn, the possibility of comparing
languages with automatically induced typological knowledge is especially interesting
for various downstream applications developed in the face of linguistic diversity.
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8. Appendices

A. Complete List of Languages (PBC)

iso639_3 Language Family |W| c.freq idiosyncrasy

cha Chamorro Austronesian −0.106 −0.337 −0.602
gug Paraguayan Guaraní Afro-Asiatic −0.186 −0.494 −0.318
fra French Indo-European −0.190 −0.529 −0.861
deu German Indo-European −0.258 −0.299 −0.045
spa Spanish Indo-European −0.390 −0.680 −0.466
naq Nama (Namibia) Khoe-Kwadi −0.523 −0.968 −0.312
hau Hausa Afro-Asiatic −0.781 −0.752 −0.460
pes Western Farsi Indo-European −0.781 −1.179 −0.430
fij Fijian Austronesian −0.887 −0.091 −0.065
laj Lango (Uganda) Eastern Sudanic −0.908 −0.961 −0.210
kor Korean Korean −1.213 −2.410 −0.961
eng English Indo-European −0.937 −0.454 0.479
hin Hindi Indo-European −1.115 −1.243 0.644
yor Yoruba Niger-Congo −1.206 −1.021 0.025
vie Vietnamese Austro-Asiatic −1.329 −1.093 1.629
tha Thai Tai-Kadai −1.333 −0.485 2.176
mig San Miguel El Grande Mixtec Oto-Manguean −0.046 0.334 −0.090
tgl Tagalog Austronesian −0.192 0.039 −0.103
jac Popti’ Mayan −0.078 0.909 1.273
aey Amele Trans-New Guinea −0.121 0.383 0.542
kew West Kewa Trans-New Guinea −0.152 0.750 0.089
ind Indonesian Austronesian −0.179 0.798 0.063
mzh Wichí Lhamtés Güisnay Matacoan −0.252 0.198 0.519
xsu Sanumá Yanomam −0.495 1.613 2.542
dgz Daga Dagan −0.542 0.524 0.538
sag Sango Niger-Congo −1.288 0.225 1.951
mya Burmese Sino-Tibetan −1.293 0.525 3.171
bsn Barasana-Eduria Tucanoan 1.429 2.311 0.489
arn Mapudungun Araucanian 0.728 0.674 0.258
yaq Yaqui Uto-Aztecan 0.457 1.252 0.450
ape Bukiyip Torricelli 0.293 2.305 0.845
yad Yagua Peba-Yaguan 2.528 1.784 −0.581
qvi Quechua (Imbabura) Quechuan 2.499 1.891 −0.825
apu Apurinã Arawakan 1.304 1.416 −0.286
amp Alamblak Sepik 1.017 0.715 −0.083
hae Eastern Oromo Pama-Nyungan 0.298 0.167 −0.612
plt Plateau Malagasy Austronesian 0.104 0.217 −0.578
kal Kalaallisut Eskimo-Aleut 3.246 −0.119 −1.415
arz Egyptian Arabic Afro-Asiatic 1.214 −0.305 −1.211
tur Turkish Altaic 0.540 −0.835 −1.106
fin Finnish Uralic 0.472 −0.546 −0.945
swh Swahili Niger-Congo 0.204 −0.755 −0.982
kat Georgian Kartvelian 0.141 −0.757 −0.968
eus Basque Basque 0.137 −0.564 −0.955
khk Halh Mongolian Altaic 0.081 −0.649 −0.845
rus Russian Indo-European 0.071 −1.127 −0.969
ell Modern Greek Indo-European 0.018 −0.374 −0.399
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B. Two-dimensional XZ, YZ, and XY Planes (PBC)
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C. BPE vs. WordPiece, English Example

Table 10
The first 30 merge operations in BPE and Wordpiece (English). The </w> symbol indicates the
end of a word (BPE). The ## symbol indicates any position that is not the beginning of a word
(WordPiece).

BPE WP
Subword |W| c. freq idiosyncrasy Subword |W| c. freq idiosyncrasy
th 116 4,188 36.10 ex 14 23 1.64
an 102 2,630 25.78 of 12 736 61.33
and</w> 11 2,197 199.73 exc 5 10 2.00
the 46 1,536 33.39 qu 7 13 1.86
the</w> 3 1,459 486.33 ##qu 4 7 1.75
hi 42 1,206 28.71 ev 9 66 7.33
to</w> 5 1,088 217.60 ##bb 3 27 9.00
in 212 996 4.70 up 5 125 25.00
ed</w> 270 912 3.38 exp 2 2 1.00
ha 49 781 15.94 ##bj 1 1 1.00
sa 48 777 16.19 ##ubj 1 1 1.00
he</w> 5 2,211 442.20 subj 1 1 1.00
ou 119 743 6.24 ##’s 22 40 1.82
of</w> 3 712 237.33 ##s’ 3 4 1.33
er 149 709 4.76 ##ws’ 1 2 2.00
ea 133 679 5.11 ##gs’ 1 1 1.00
th</w> 107 651 6.08 ##us’ 1 1 1.00
him</w> 1 617 617.00 ##sus’ 1 1 1.00
ll</w> 23 592 25.74 ##abb 2 26 13.00
at</w> 4 550 137.50 ##ubb 1 1 1.00
un 38 536 14.11 rubb 1 1 1.00
en</w> 50 508 10.16 sabb 1 25 25.00
that</w> 1 489 489.00 ##rabb 1 1 1.00
or 91 467 5.13 rubbi 1 1 1.00
es 125 458 3.66 sabba 1 25 25.00
unto</w> 2 448 224.00 sabbat 1 25 25.00
they</w> 1 442 442.00 ##arabb 1 1 1.00
in</w> 21 442 21.05 barabb 1 1 1.00
ing</w> 110 438 3.98 barabba 1 1 1.00
er</w> 79 437 5.53 barabbas 1 1 1.00
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D. Other Corpora

Results for the JW300 and UDHR corpora. We only focus on the subsets of languages
that intersect with the PBC languages. We overlay the data points corresponding to the
PBC corpus as a reference. Languages maintain similar positions in the space despite
the different corpora sizes and registers.

D.1 JW300

Figure 10
Languages corresponding to the intersection between JW300 (orange dots) and PBC (blue dots).
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Figure 11
The upper figure shows the distribution of the Euclidean distances across all data points
between JW300 and PBC. The lower figure, in contrast, shows the distribution taking into
account only the distances between the data points belonging to the same language. If the BPE
vector representations for the same languages are similar in the two corpora, then it is expected
that the latter distance distribution has generally lower values, that is, a lower mean compared
to the overall distance distribution. This is what we find indeed. Note that the scales on the
x-axes are not the same.
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D.2 UDHR

Figure 12
Languages corresponding to the intersection between UDHR (orange dots) and PBC (blue dots).
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Figure 13
The upper figure shows the distribution of the Euclidean distance across all data points between
UDHR and PBC. The lower figure shows the distribution taking into account the distances only
between the data points belonging to the same language in the different corpora. If the BPE
vector representations for the same languages are similar in the two corpora, then it is expected
that this distance distribution has lower values, that is, a lower mean compared to the overall
distance distribution. This is what we find indeed. Note that the scales on the x-axes are not the
same.
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E. Zoomed-in Regions of the Space

Figure 14
Zoom in to the languages with productivity higher than the mean (PBC).

Figure 15
Zoom in to the languages with productivity lower than the mean (PBC).
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F. BPE Space with Transliterated Korean

Figure 16
BPE space using a transliterated version of Korean texts (PBC). The transliteration was
performed using the Google Cloud translation API.
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G. Silhouette Coefficients for WALSBPE200

iso639_3 Language s(i)

khk Halh Mongolian 0.72670988
rus Russian 0.72581551
kat Georgian 0.72460184
fra French 0.72283858
eus Basque 0.70944521
spa Spanish 0.70728078
cha Chamorro 0.67089151
tur Turkish 0.66468223
fin Finnish 0.65591473
pes Western Farsi 0.64035977
ell Modern Greek 0.63801056
yad Yagua 0.49543719
tha Thai 0.49362442
qvi Quechua (Imbabura) 0.49228889
deu German 0.49199166
kor Korean 0.45584722
vie Vietnamese 0.44809369
sag Sango 0.43579276
hae Eastern Oromo 0.38523573
plt Plateau Malagasy 0.37097495
apu Apurinã 0.36937643
mya Burmese 0.33072413
kal Kalaallisut 0.32082120
tgl Tagalog 0.31217467
aey Amele 0.19794441
jac Popti’ 0.12265152
amp Alamblak 0.10459679
ape Bukiyip 0.07443282
mzh Wichí Lhamtés Güisnay 0.05204360
xsu Sanumá 0.02065723
eng English −0.08609748
hin Hindi −0.10442254
mig San Miguel El Grande Mixtec −0.18355666
arn Mapudungun −0.26703156
arz Egyptian Arabic −0.31923804
bsn Barasana-Eduria −0.36080850
yor Yoruba −0.39711486
fij Fijian −0.47197221
yaq Yaqui −0.50979933
ind Indonesian −0.57322525
kew West Kewa −0.58901974
laj Lango (Uganda) −0.66789000
dgz Daga −0.67224107
gug Paraguayan Guaraní −0.71348287
hau Hausa −0.72020938
naq Nama (Namibia) −0.74049713
swh Swahili −0.76276699
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H. Varying the BPE Hyperparameter and Merging Criteria

H.1 BPE Space at Different Merges

(a) BPE10 (b) BPE50

(c) BPE200 (d) BPE1000

Figure 17
BPE spaces using different numbers of merge operations. While the first merge operations have
a stronger impact on the arrangement of languages, later merges (around 200) no longer cause
drastic changes.
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H.2 WordPiece Space at Different Merges

(a) WordPiece10 (b) WordPiece50

(c) WordPiece200 (d) WordPiece1000

Figure 18
WordPiece spaces using different numbers of merge operations. Unlike BPE, WordPiece exhibits
more substantial changes through merge operations.
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