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Linguistic variation across a region of interest can be captured by partitioning the region into
areas and using social media data to train embeddings that represent language use in those
areas. Recent work has focused on larger areas, such as cities or counties, to ensure that enough
social media data is available in each area, but larger areas have a limited ability to find fine-
grained distinctions, such as intracity differences in language use. We demonstrate that it
is possible to embed smaller areas, which can provide higher resolution analyses of language
variation. We embed voting precincts, which are tiny, evenly sized political divisions for the
administration of elections. The issue with modeling language use in small areas is that the
data becomes incredibly sparse, with many areas having scant social media data. We propose
a novel embedding approach that alternates training with smoothing, which mitigates these
sparsity issues. We focus on linguistic variation across Texas as it is relatively understudied.
We develop two novel quantitative evaluations that measure how well the embeddings can
be used to capture linguistic variation. The first evaluation measures how well a model can
map a dialect given terms specific to that dialect. The second evaluation measures how well a
model can map preference of lexical variants. These evaluations show how embedding models
could be used directly by sociolinguists and measure how much sociolinguistic information is
contained within the embeddings. We complement this second evaluation with a methodology
for using embeddings as a kind of genetic code where we identify “genes” that correspond to a
sociological variable and connect those “genes” to a linguistic phenomenon thereby connecting
sociological phenomena to linguistic ones. Finally, we explore approaches for inferring isoglosses
using embeddings.
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1. Introduction

Similar to embeddings that capture word usage, recent work in NLP has developed
methods that generate embeddings for areas that represent language in those areas. For
example, Huang et al. (2016) developed an embedding method for capturing language
use in counties and Hovy and Purschke (2018) developed an embedding method for
capturing language use in cities. These embeddings can be used for a wide variety of
sociolinguistic analyses as well as downstream tasks.

Given the sheer volume available, social media data is often used to provide the
text data needed to train the embeddings. However, one inherent problem that arises
is the imbalance of population distribution across a region of interest, which leads
to an imbalance of social media data across that region. For example, rural areas use
Twitter less than urban areas (Duggan 2015). This could make it more difficult to capture
language use in rural areas.

One solution to this issue is to use larger areas. For example, one could focus on
cities and not explore the countryside, as done in Hovy and Purschke (2018). Or one
could divide a region of interest into large squares, as done in Hovy et al. (2020).
Or one could divide a region of interest into counties, as done in Huang et al. (2016).
While these solutions produce areas with more data, the areas themselves could be less
useful for analysis as (1) there could be important areas that are not covered (e.g., only
studying cities and missing the rest of the region), (2) the areas could have awkward
boundaries (e.g., dividing regions into squares that ignore geopolitical boundaries), or
(3) the resolution would be too low to be useful for certain analyses (e.g., using cities as
areas prevents analyses of intracity language use).

We propose a novel solution to the data problem. We use smaller areas, voting
precincts, that provide finer resolution analyses and propose a novel embedding ap-
proach to mitigate the specific data issues related to using smaller areas. Voting precincts
are small, equally sized areas that are used in the administration of elections (in Texas,
each voting precinct has about 1,100 voters). As they are well regulated (voting precincts
are required to fit within county, congressional boundaries), monitored (voting precincts
are a fundamental unit in censuses), compact (voting precincts need to be compact to
make elections, polling, and governance more efficient), and cover an entire region, they
form a perfect mesh to represent language use across a region. Unlike with using cities,
voting precincts can also capture rural areas. Unlike with using squares, voting precincts
follow geopolitical boundaries. Unlike with counties, voting precincts can better capture
intracity differences in language use. Thus, by developing embedding representations
of these precincts, we can find fine-grained differences in language use across a large
region of interest.

While voting precincts are a great mesh to model language use across a region,
the smaller sizes lead to significant data issues. For example, less populated areas
use social media less, which can lead to voting precincts that have extremely limited
data or no data at all. To counteract this, we propose a novel embedding technique
where training and smoothing alternate to mitigate the weaknesses of both. Training
has limited potential in voting precincts with little data, so smoothing will provide
extra information to create a more accurate embedding. Smoothing can spread noise,
so training afterwards can refine the embeddings.

We propose novel evaluations that explore how well embeddings can be used to
predict information useful to sociolinguists. The first evaluation explores how well
embeddings can be used to predict where a dialect is spoken using some specific
features of the dialect. We use the Dictionary of American Regional English dataset
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(DAREDS) (Rahimi, Cohn, and Baldwin 2017), which provides key terms for various
American dialects. We evaluate how well embeddings can be used to predict dialect
areas from those key terms.

The second evaluation explores how well embeddings can be used to predict lexical
variation. Lexical variation is the choice between two semantically similar lexical items,
for example, fam versus family, and is a good determiner of linguistic variation (Cassidy,
Hall, and Von Schneidemesser 1985; Carver 1987). We evaluate how well embeddings
can be used to predict choices among lexical variants across a region of interest.

As part of these evaluations, we perform a hyperparameter analysis that demon-
strates that post-training retrofitting can have numerical issues when applied to smaller
areas, so alternating is a necessary step with smaller areas. As mentioned, many smaller
areas lack sufficient data, so retrofitting with these areas can cause the spreading of
noise, which in turn can result in unreliable embeddings.

We then provide a novel methodology to extract novel sociolinguistic insights from
social media data. Area embeddings capture language use in an area, and language
use is connected to a wide swath of sociological factors. If we treat embeddings as the
“genetic code” of an area, we can identify sections of the embeddings that act as genes
for sociological phenomena. For example, we can find the “gene” that encodes how
race and the urban–rural divide affect language use. Then by exploring the predictions
of these “genes” we can then connect the sociological phenomenon with a linguistic
one, for example, identify novel African American slang via analyzing the expressions
of the “gene” corresponding to Black Percentage.

Finally, we use our embeddings to predict geographic boundaries of linguistic
variation, or “isoglosses.” Prior work has used principal component analysis to infer
isoglosses, but with smaller areas, we find that PCA will focus on the urban–rural divide
and ignore regional divides. Instead, we find that t-distributed stochastic neighbor em-
bedding (Van der Maaten and Hinton 2008) is better able to identify larger geographic
distinctions.

2. Prior Work

While there has been a wealth of work that has used Twitter data to explore lexical
variation (e.g., Eisenstein et al. 2012, 2014; Cook, Han, and Baldwin 2014; Doyle 2014;
Jones 2015; Huang et al. 2016; Kulkarni, Perozzi, and Skiena 2016; Grieve, Nini, and Guo
2018), the incorporation of distributional methods is a more recent trend.

Huang et al. (2016) apply a count-based method to Twitter data to represent lan-
guage use in counties across the United States. They use a manually created list of
sociolinguistically relevant variant pairs, such as couch and sofa, from Grieve, Asnaghi,
and Ruette (2013) and embedded a county based on the proportion of each variant.
They then used adaptive kernel smoothing to smooth the counts and used PCA for
dimensionality reduction. They do not perform a quantitative evaluation and instead
perform PCA of the embeddings. One limitation of their approach is that it requires a
list of sociolinguistically relevant variant pairs. Producing such pairs is labor-intensive
and such pairs are specific to certain language varieties (variant pairs that make sense
for American English may not make sense for British English) and may lose relevance
as language use changes over time.

Hovy and Purschke (2018) use document embedding techniques to represent lan-
guage use in cities in Germany, Austria, and Switzerland. In this work, they collected
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social media data from Jodel,1 a social media platform, and used Doc2Vec (Le and
Mikolov 2014) to produce an embedding for each city. As their goal was to explore
regional variation, they used retrofitting (Faruqui et al. 2015; Hovy and Fornaciari
2018) to have the embeddings better match the NUTS2 regional breakdown of those
countries. We discuss these methods further in Section 4. For quantitative evaluation,
they compare clusterings of their embeddings to a German dialect map (Lameli 2013).
While this an excellent evaluation if you have such a map, the constantly evolving
nature of language and the sheer difficulty of hand-creating such a dialect map make
this approach difficult to generalize to analyses of new regions, especially a region as
evolving and large as the state of Texas, which is our focus. The authors also evaluated
their embeddings by measuring how well they could predict the geolocation of the
tweet. While geolocation is a laudable goal in and of itself, our focus is on linguistic
variation specifically and geolocation is not necessarily a measure of how well the
embeddings capture linguistic variation. For example, a list of business names in each
area would be fantastic for geolocation, but of less use for analyzing variation.

Hovy et al. (2020) followed up this work by extending their method to cover entire
continents/countries and not just the cities. They did this by dividing their region
of interest into a coordinate grid of 11 km (6.8 mi.) by 11 km squares and training
embeddings for each square. They then retrofitted the square embeddings. They did
not perform a quantitative evaluation of their work.

An alternative approach to generating regional embeddings is through using lin-
guistic features as the embedding coordinates. For example, Bohmann (2020) embedded
Twitter linguistic registers into a space based on 236 linguistic features. They then use
factor analysis on these embeddings to generate 10 dimensions of linguistic variation.
While these kinds of embeddings are more interpretable, they require more a priori
knowledge about relevant linguistic features and the capability to calculate them. While
we do not explore linguistic feature–based embeddings in our work, we do perform a
similar task in extracting smaller dimensional representations when analyzing theoretic
linguistic hypotheses.

Clustering is a well-explored topic in computational dialectology (e.g., Grieve,
Speelman, and Geeraerts 2011; Pröll 2013; Lameli 2013; Huang et al. 2016). To this effect,
we largely follow the clustering approach in Hovy and Purschke (2018). We also explore
this topic while incorporating newer clustering techniques, such as t-SNE (Van der
Maaten and Hinton 2008). Like Hovy et al. (2020), we do not do hard clustering (like
k-means) and only do soft clustering.

There has been work that has analyzed non-conventional spellings (Liu et al. 2011
and Han and Baldwin 2011, for example), but recent work has explored the use of word
embeddings to study lexical variation through non-conventional spelling (Nguyen and
Grieve 2020). In that work, the authors explored the connection between conventional
and non-conventional forms and found that word embeddings do capture spelling
variation (despite being ignorant of orthography in general) and discovered a link
between the intent of the different spelling and the distance between the embeddings.
While we do not directly interact with this work, their exploration of the connection
between non-conventional spelling and lexical variation may be useful for future work.

There is a wealth of work that uses computational linguistic methods to connect
sociological factors with word use (see Nguyen et al. [2016] for a review of work in
this area as well as computational sociolinguistics in general). One such approach is

1 https://jodel.com/.
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that from Eisenstein, Smith, and Xing (2011), which uses a regression model to connect
word use with demographic features. By using a regularization method to focus on
key words, they show which words are connected to specific sociological factors. While
we don’t connect word A with demographic B, we use a similar technique to extract
sections of embeddings that are related to specific demographic differences.

3. Texas Twitter and Precinct Data Collection

Our focus is on language use across the state of Texas. It is large, populous, and has been
researched only lightly in sociolinguistics and dialect geography, compared with other
large American states. Both Thomas and Bailey have contributed quantitative studies of
variation in Mainstream (not ethnically specific) Texas English: Thomas (1997) describes
a rural/urban split in Texas dialects, driven by the much-accelerated migration of non-
southerners into Texas and other southern U.S. states since the latter decades of the
twentieth century, a trend that effectively creates “dialect islands in Texas where the
large metropolitan centers lie” (Thomas 1997, page 309) and relegates canonical features
of southern U.S. speech (Thomas’s focus is on the monophthongization of PRICE and
the lowering of the nucleus in FACE vowels) to rural areas and small towns. Bailey
et al. (1991), by tracking nine different features of phonetic innovation/conservative-
ness in Texas English and resolving findings at the level of the county, identify the
most linguistically innovative areas driving change in Texas English as a cluster of five
counties in the Dallas/Fort Worth area (Figure 1).

In addition to these geographic approaches to variation in Texas, there have been a
number of studies focusing on selected features (Bailey and Dyer 1992; Atwood 1962;
Bailey et al. 1991; Bernstein 1993; Di Paolo 1989; Hinrichs, Bohmann, and Gorman
2013; Koops 2010; Koops, Gentry, and Pantos 2008; Walsh and Mote 1974; Tarpley
1970; Wheatley and Stanley 1959) and/or variation and change in minority varieties
(Bailey and Maynor 1989, 1987, 1985; Bayley 1994; Galindo 1988; Garcia 1976; Bailey
and Thomas 2021; McDowell and McRae 1972).

Outside of computational sociolinguistics, attempts to geographically model lin-
guistic variation in Texas English have been made as part of the established, large
initiatives in American dialect mapping. These include:

• Kurath’s linguistic atlas project (LAP; see Petyt [1980] for an overview)
that produced the Linguistic Atlas of the Gulf States (Pederson 1986),
based on survey data;

• Carver’s (1987) “word geography” atlas of American English dialects,
which visualizes data from the Dictionary of American Regional English
(Cassidy, Hall, and Von Schneidemesser 1985) on the geographic
distribution of lexical items; and

• the Atlas of North American English (Labov et al. 2006), which maps
phonetic variation in phone interview data from speakers of American
English.

3.1 Data Collection

In this section, we will describe how we collected Texas Twitter data for our analy-
sis. Twitter data has allowed sociolinguists new ways to explore how society affects
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Figure 1
Weighted index for innovative forms, aggregated at the county level. (Reprinted from Bailey,
Wikle, and Sand 1991, with permission of Johns Benjamin Publishing Co.).

language (Mencarini 2018). This data is composed of a large selection of natural uses
of language that cut across many social boundaries. Additionally, tweets are often
geotagged, which allows researchers to connect examples of language use with location.

We draw our Twitter data from two sources. The first is from archive.org’s collection
of billions of tweets (Archive Team 2017) that were retrieved between 2011 and 2017.
This collection represents tweets from all over the world and not Texas specifically. The
second source is a collection of 13.6 million tweets that were retrieved using the Twitter
API between February 16, 2017, and May 3, 2017. We only retrieved tweets that originate
in a rectangular bounding box that contains Texas.

Our preprocessing steps are as follows. First, we remove all tweets that do not
have coordinate information nor a city name in its metadata. For any tweet that does
not have coordinate information, but a city name, we use the simplemaps.org United
States city database2 to give these tweets coordinates based upon its city’s coordinates.
We then remove tweets that were not sent from Texas. We then remove all tweets
that have a hashtag (#) to help remove automatically generated tweets, like highway
accident reports. We then use the ekphrasis Python module to normalize the tweets
(Baziotis, Pelekis, and Doulkeridis 2017). We do not remove mentions or replace them
with a named entity label. Together, this results in 2.3 million tweets (1.7 million from
archive.org and 563,000 from the Twitter API).

2 https://simplemaps.com/data/us-cities.
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Figure 2
The left image visualizes the number of tweets per voting precinct. The right image shows which
voting precincts have 10 or fewer tweets (red) or no tweets (black).

Figure 3
Distribution of tweets among voting precincts.

In Figure 2, we visualize the number of tweets in each voting precinct (left) and
the voting precincts that have 10 or fewer tweets (right). We see that quite a few voting
precincts have 10 or fewer tweets, especially rural and West Texas. This indicates that
many precincts do not have enough tweets to generate accurate representations on their
own and thus require some form of smoothing. In Figure 3, we show how the tweets
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Table 1
Population demographics of the 8,148 voting precincts in Texas.

Variable Pop/Area Per VP Demo % of VP
Land Area 76.08km2 (± 18.55km2)
Population 3,083.0 (± 2601.2) 100.0% (± 0.0%)

Asian 116.2 (± 309.1) 2.60% (± 5.48%)
Black 354.1 (± 681.6) 10.6% (± 16.8%)
Hispanic 1,160.5 (± 1677.5) 33.7% (± 27.6%)
Multiple 39.1 (± 50.9) 1.15% (± 0.90%)
Native American 9.8 (± 12.9) 0.36% (± 1.09%)
Other 4.1 (± 7.6) 0.11% (± 0.22%)
Pacific Islander 2.1 (± 10.7) 0.06% (± 0.66%)
White 1,396.8 (± 1384.4) 51.3% (± 29.4%)

are distributed across voting precincts. The voting precincts are ranked by number of
tweets. We see that there are a few that have a vast amount of tweets, but most voting
precincts have a number of tweets in the hundreds.

3.2 Voting Precincts

Our goal is to represent language use across the entirety of Texas (including rural Texas)
as well as capture fine-grained differences in language use (including within a city). In
prior work, researchers either only used cities (e.g., Hovy and Purschke 2018), or used
a coordinate grid (e.g., Hovy et al. 2020). The former does not explore rural areas at all
and does not explore within-city divisions. The latter uses boundaries that do not reflect
the geography of the area and are difficult to use for fine-grained analyses.

To achieve our goals, we operate at the voting precinct level. Voting precincts
are relatively tiny political divisions that are used for the efficient administration of
elections. Each voting precinct usually has one polling place and, in the 2016 election,
each voting precinct contained on average 1,547 registered voters nationwide (U.S.
Election Assistance Commission 2017). These voting precincts are generally relatively
small (on average containing 3,083 people), cohesive (each voting precinct must reside
entirely within an electoral district/county), and balanced (generally, voting precincts
are designed to contain similar population sizes). Additionally, states record meticulous
detail on the demographics of each voting precinct (see Table 1 for descriptive statistics).
Thus, these voting precincts act as perfect building blocks.3

We note that gerrymandering has very little influence on voting precinct bound-
aries. It is true that congressional districts (and similar) can be heavily gerrymandered
and voting precincts are bound by congressional district boundaries. However, the
practical pressures of administration and the relatively small size of the voting precincts
minimize these effects. Voting precincts are used to administer elections, which means
that significant effort is needed to coordinate people to run polling stations and iden-
tify locations where people can vote. Additionally, voting precincts are often used to

3 While voting precincts were a better fit for our needs, similar analyses could be done with Census tracts,
Census block groups, or any fine-grained sectioning of a region.
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organize polling and signature collection. Due to these factors, there is a strong need
for all parties involved to make voting precincts as compact and efficient as possible. In
contrast, voting precinct boundaries only decide where you vote and not who you vote
for, so there is not the pressure to gerrymander in the first place. Voting precincts are
also generally small enough to fit into the nooks and crannies of congressional districts.
Congressional districts have dozens of voting precincts, so voting precincts are small
enough to be compact despite any boundary issues of the larger congressional district.
It is for these reasons that voting precincts are often used as atomic units in redistricting
efforts (e.g., Baas n.d.).

The voting precinct information comes from the United States Census and is com-
piled by the Auto-Redistrict project (Baas n.d.). Each precinct in this data comes with
the coordinate bounds of the precinct along with the census demographic data. Further
processing of the demographic data was done by Murray and Tengelsen (2018).

In order to map tweets to voting precincts, we first extract a representative point
for each voting precinct using the Shapely Python module (Gillies et al. 2007). Repre-
sentative points are computationally efficient approximations to the center of a voting
precinct. We then associate a tweet to the closest voting precinct by distance from the
tweet’s coordinates to the representative points.

4. Voting Precinct Embedding Methods

In this section, we describe the area embedding methods we will analyze. Area em-
bedding methods generally have two parts: a training part and a smoothing part. The
training part takes text and uses a machine learning or counting based model to produce
embeddings. The smoothing part averages area embeddings with their neighbors to add
extra information.

4.1 Count-Based Methods

The first approach we explore is a count-based approach from Huang et al. (2016). The
training part counts the relative frequencies of a manually curated list of sociolinguis-
tically relevant lexical variations. The smoothing part takes a weighted average of the
area embedding and enough nearest neighbors to meet some data threshold.

4.1.1 Training: Mean-Variant-Preference. Grieve, Asnaghi, and Ruette (2013) and Grieve
and Asnaghi (2013) have manually collected sets of lexical variants where the choice
of variant is indicative of local language use. For example, soda, pop, and Coke are a set
of lexical variants for “soft drink” and regions have a variant preference. Huang et al.
(2016) count the relative frequency of variants and use these counts as the embedding.

More specifically, they begin with a manually curated list of sociolinguically
relevant sets of lexical variants. They designate the most frequent variant as the “main”
variant. In the soft drink example, soda would be the main variant as it is the most
frequent variant among all variants.

Given an area and a set of lexical variants, Huang et al. (2016) take the relative
frequency of the “main” variant across Twitter users in the area:

MVP(area, variants) = 1
U(area)

∑
users u in the area

times user u used main variant
times user u used any variant
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where U(area) is the number of Twitter users in that area. The embedding for an area
would be each MVP value for each set of variants in the list of sets of variants.

As the baseline in our analysis, we just use the relative frequency over all tweets:

MVP(area, variants) = total times main variant was used in the area
times times any variant was used

Huang et al. (2016) derived their list of sets of variants from those in Grieve,
Asnaghi, and Ruette (2013). They then filter this list by removing any sets that appear
in less than 1,000 areas or that have a p-value less than 0.001 according to Moran’s I test
(Moran 1950).

For our count-based model, we use the publicly available list of 152 sets in Grieve
and Asnaghi (2013). We similarly use Moran’s I to filter by p-value and remove any sets
that appear in less than 1,000 voting precincts. The original list of pairs and our final list
can be found in Table A1.

4.1.2 Smoothing: Adaptive Kernel Smoothing. One issue with working with area embed-
dings is that there is an uneven distribution of tweets and many areas can lack tweet
data. Huang et al. (2016) do smoothing by creating neighborhoods that have enough
data then taking a weighted average of the embeddings in the neighborhood.

For an area A, a neighborhood is the smallest set of geographically closest areas to
A that have data above a certain threshold. For a set of lexical variants, this is some
multiple B times the average frequency of those variants across all areas. For soda, pop,
and Coke, this would be B times the average number of times someone used any of those
variants. Huang et al. (2016) explore B values of 1, 10, and 100.

Huang et al. (2016) then use adaptive kernel smoothing (AKS) with a Gaussian
kernel to get a weighted average of all embeddings in a neighborhood. The weight of
a neighbor embedding is e to the negative distance between the area and the neighbor.
The new area embedding is calculated as follows:

−−→area←
∑

N(area, B, altpair) e−dist(area, neighbor)−−−−−→neighbor∑
N(area, B) e−dist(area, neighbor)

where N(area, B, variants) = the neighborhood around area such that the total usage of
the pair is at least B times the average. Huang et al. (2016) after this smoothing process
use PCA to reduce the dimension of the embeddings to 15.

As we will also explore more traditional embedding models, such as Doc2Vec, we
adapt this smoothing approach for unsupervised machine learning models. Instead
of average counts of variants, we use average number of tweets. In that way, each
neighborhood will have a sufficient number of tweets to mitigate the data sparsity
issue.

4.2 Post-training Retrofitting

The approach Hovy and Purschke (2018) and Hovy et al. (2020) took in their analysis is
one where embeddings are first trained on social media data then altered such that
adjacent areas have more similar embeddings. The first step uses Doc2Vec (Le and
Mikolov 2014), while the second step uses retrofitting (Faruqui et al. 2015).
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4.2.1 Training: Doc2Vec. The first part in their approach is to train a Doc2Vec model
(Le and Mikolov 2014) for 10 epochs to obtain an embedding for each German-
speaking city (Hovy and Purschke 2018) or coordinate square (Hovy et al. 2020).
Doc2Vec is an extension of word2vec (Mikolov et al. 2013) that also trains embeddings
for document labels (or in this case, the city/square/voting precinct where the post was
written).

In Doc2Vec, words, contexts, and document labels are represented by embeddings
and these embeddings are modeled through the following distribution:

P(word|context, document label) = softmax(word · (context + document label))

By maximizing the likelihood of this probability relative to a dataset, the model will fit
the word, context, and document label embeddings so that the above distribution best
reflects the statistics of the data.

Doc2vec provides a vector
−→
doc for each document label doc (similarly with voting

precincts and cities). The loss function is similar to word2vec as follows:

loss =
∑

(w,c,d)∈D

log(σ((~w + ~d) ·~c)) +
∑

c′∼PD

log(1− σ((~w + ~d) · ~c′))

where D is the collection of target word–context word–document label triples extracted
from a corpus and PD is the unigram distribution. We use the gensim implementation
of Doc2Vec (Řehůřek and Sojka 2010).

The result of this process is that we have an embedding for each voting precinct (in
our case) or coordinate square/German-speaking city (in Hovy and Purschke’s case).

4.2.2 Smoothing: Retrofitting. One key insight from Hovy and Purschke (2018) is that
Doc2Vec alone can produce embeddings that capture language use in an area, but
not in a way that captures regional variation as opposed to city specific artifacts. For
example, an embedding for the city of Austin, Texas, might capture all of the language
use surrounding specific bus lines in the Austin Public Transportation system, but that
information is less useful for understanding differences in language use across Texas.

The solution, proposed by Hovy and Purschke, is to use retrofitting to modify the
embeddings so that that they better reflect regional information. Retrofitting (Faruqui
et al. 2015) is an approach where embeddings are modified so that they better fit a lexi-
cal ontology. In Hovy and Purschke’s case, their “ontology” is a regional categorization
of German cities or, for their later paper, the adjacency relationship between coordinate
squares. An embedding is averaged with the mean of its adjacent neighbors to smooth
out any data-deficiency issues. This averaging is repeated 50 times to enhance the
smoothing. This process is reflected in the following formula:

−−→area← ½ −−→area + ½ 1
number of adjacent neighbors

∑
neighbor of area

−−−−−→
neighbor
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4.3 Proposed Models

Given that our divisions are much smaller than those in previous work, we propose
several area embedding methods that may perform better under our circumstances.

4.3.1 Geography Only Embedding. In this section, we describe a novel baseline that re-
flects embeddings that effectively only contain geographic information and no Twitter
data, which we call Geography Only Embedding. In this approach, embeddings are
randomly generated (we use a Doc2Vec model that is initialized, but not trained) and
then retrofit the embeddings using the same process above.

Despite its simple description, this approach can be seen as one where embeddings
capture solely geographic information. To see this, note that the randomization process
provides each precinct its own completely random embedding. In effect, the embedding
acts as a kind of unique identifier for the precinct as it is incredibly unlikely for two
300 dimensional random vectors to be similar. By retrofitting (i.e., averaging these
unique identifiers precincts), you form unique identifiers for larger subregions. Thus,
each precinct and each area has an embedding that directly reflects where it is located
on the map. In this way, these embeddings capture the geographic properties, while
simultaneously containing no Twitter information.

4.4 Smoothing: Alternating

One issue with the Post-training Retrofitting approach in our setting is that it relies on
a large body of tweets per area. In our case, the voting precincts are too small. Despite
having 2.3 million tweets, each voting district only contains about 400 tweets on average
and hundreds of precincts have fewer than 10 tweets. Thus, the initial Doc2Vec step
would lack sufficient data to create quality embeddings. The retrofitting step would
then just be propagating noise.

In order to alleviate this issue, we propose to alternate the Doc2Vec and retrofitting
steps to mitigate the weaknesses of both. In our setting, training injects tweet infor-
mation into the embeddings, but voting precincts often lack enough data to be used
on its own. In contrast, retrofitting can send information from adjacent neighbors to
improve an embedding, but can also overwhelm the embedding with noise or irrelevant
information, for example, the Austin embedding (a major metropolis) could overwhelm
the Round Rock embedding (a suburb of Austin) even though language use is different
between those areas. If we train after retrofitting, we can correct any wrong information
from the adjacent neighbors. If we retrofit after training, we can provide information
where it is lacking. Thus, alternating these steps can mitigate each step’s weakness.

4.5 Training: BERT with Label Embedding Fusion

Since the prior work, there have been advances in document embedding approaches,
such as those that use contextual embeddings. We explore BERT with Label Embedding
Fusion (BERTLEF) (Xiong et al. 2021), which is a recent paper in this area. BERTLEF
combines the label and the document as a sentence pair and trains BERT for up to 5
epochs to predict the label and the document. This is similar to the Paragraph Vectors
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Figure 4
Diagram demonstrating the BERT with Label Embedding Fusion architecture (adapted from
Xiong et al., 2021).

flavor of Doc2Vec as it is using the label and document to predict the context. A diagram
showing how this approach works is shown in Figure 4.

4.6 Approach Summary

We summarize the different approaches we will explore in Table 2. “Model” is the
training part and “Smoothing” is the smoothing part. “Data” indicates if the underlying
data is a manually crafted set of features (“Grieve List”), raw text, or some other data.
“Train epochs” is the number of epochs the models were trained in total. “Smooth Iter”
is the number of smoothing iterations in total. “Dim” is the final dimension size of the
embeddings.

We have six baselines. The first is “Static” which is just a single constant value
and emulates the use of static embeddings. The second is “Coordinates,” which uses a
representative point4 of the voting precinct as the embedding. “Lat–Long” refer to lati-
tude and longitude. “Random 300 None” and “Random 768 None” are random embed-
dings with no smoothing. “Random 300 Retrofitting” and “Random 768 Retrofitting”
are random vectors where retrofitting is applied. As discussed in Section 4.3.1, these
correspond to embeddings that capture geographic information and do not contain any
linguistic information.

We then have the count-based approach by Huang et al. (2016). “MVP” is Mean-
Variant-Preference (Section 4.1.1). “AKS” is adaptive kernel smoothing, “B” is the mul-
tiplier, and “PCA” is applying PCA after AKS (Section 4.1.2). “Grieve list” is a list of sets
of sociologically-relevant lexical variants described in Section 4.1.1.

4 The representative point is produced by Shapely’s (Gillies et al. 2007) representative point method.
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Table 2
Different embedding methods we explore in our analysis. “Model” is the training approach.
“Smoothing” is the smoothing approach. “Data” is the data used in this approach, specifically
raw text or otherwise. “Train Epochs” is the number of train epochs. Doc2vec approaches have
10 epochs and BERTLEF approaches have 5 epochs to follow previous work. “Smooth Iter” is the
number of smoothing iterations. “Dim” is the dimension of the embeddings.

Model Smoothing Data Train Epochs Smooth Iter Dim
Static None Ones None None 1
Coordinates None Lat–Long None None 2
MVP AKS B = 1 Grieve list None 1 45
MVP + PCA AKS B = 1 Grieve list None 1 15
MVP AKS B = 10 Grieve list None 1 45
MVP + PCA AKS B = 10 Grieve list None 1 15
MVP AKS B = 100 Grieve list None 1 45
MVP + PCA AKS B = 100 Grieve list None 1 15
Random 300 None None None None 300
Random 300 Retrofitting None None 50 300
Doc2Vec None Raw text 10 None 300
Doc2Vec AKS B = 1 Raw text 10 1 300
Doc2Vec + PCA AKS B = 1 Raw text 10 1 15
Doc2Vec AKS B = 10 Raw text 10 1 300
Doc2Vec + PCA AKS B = 10 Raw text 10 1 15
Doc2Vec AKS B = 100 Raw text 10 1 300
Doc2Vec + PCA AKS B = 100 Raw text 10 1 15
Doc2Vec Retrofitting Raw text 10 50 300
Doc2Vec Alternating Raw text 10 50 300
Random 768 None None None None 768
Random 768 Retrofitting None None 50 768
BERTLEF None Raw text 5 None 768
BERTLEF AKS B = 1 Raw text 5 1 768
BERTLEF + PCA AKS B = 1 Raw text 5 1 15
BERTLEF AKS B = 10 Raw text 5 1 768
BERTLEF + PCA AKS B = 10 Raw text 5 1 15
BERTLEF AKS B = 100 Raw text 5 1 768
BERTLEF + PCA AKS B = 100 Raw text 5 1 15
BERTLEF Retrofitting Raw text 5 50 768
BERTLEF Alternating Raw text 5 50 768

Finally, we have the machine learning and iterated smoothing methods. “Doc2Vec”
is Doc2Vec (Section 4.2.1). “BERTLEF” is BERT with Label Embedding Fusion (Sec-
tion 4.5). “Retrofitting” applies smoothing after training (Section 4.2.2) and “Alternat-
ing” alternates smoothing with training (Section 4.4). “Raw text” means that the model
is trained on text instead of manually crafted features.
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5. Quantitative Evaluation

5.1 Prediction of Dialect Area from Dialect-specific Terms

Our first evaluation measures how well embeddings can be used to map a dialect
when provided some words specific to that dialect. We use the dialect divisions in
DAREDS (Rahimi, Cohn, and Baldwin 2017), which divides the United States into 99
dialect regions, each with their own set of unique terms. These regions and terms were
compiled from the Dictionary of American Regional English (Cassidy, Hall, and Von
Schneidemesser 1985). As our focus is on the state of Texas, we only use the “Gulf
States”, “Southwest”, “Texas”, and “West” dialects, each of which include cities in Texas.
The list of terms that are specific to those regions can be found in Section Appendix B.

We measure the efficacy of an embedding by how well it can be used to predict
how often dialect specific terms are used in a given voting precinct. Given that we have
a set number of tweets in each voting precinct and are trying to predict the amount of
times dialect specific terms are used, we assume that the underlying process is a Poisson
distribution as we are counting the number of times an event is seen (dialect term) in a
specific exposure period (number of tweets). A Poisson distribution with rate parameter
λ is a probability distribution on {0, . . . ,∞with the following probability mass function:

Pois(Y = k) = λke−λ
k!

If an embedding method captures variational language use, then a Poisson re-
gression fit on those embeddings should accurately emulate this Poisson distribution.
Poisson regression is like regular linear regression except it assumes that errors follow
a Poisson distribution around the mean instead of a Normal distribution.

One particular issue that is faced with performing Poisson regression with large
embeddings is that models may not converge due to data separation (Mansournia
et al. 2018). To correct this, we use bias-reduction methods (Firth 1993; Kosmidis and
Firth 2009), which are proven to always produce finite parameter estimates (Heinze
and Schemper 2002). We use R’s brglm2 package (Kosmidis 2020) to do this.

To evaluate the fit, we use two metrics: Akaike information criterion (AIC) and
McFadden’s pseudo-R2. AIC is an information theoretic measure of goodness of fit. We
choose AIC as it is robust to number of parameters and, assuming we are correct about
the underlying distribution being Poisson, it is asymptotically equivalent to Leave One
Out Cross Validation (Stone 1977). AIC is given by the following formula:

AIC = 2 ∗ number of model parameters− 2 ∗maximum likelihood of model

We show the AIC scores for the various precinct embedding approaches in Table 3.
See Section 4.6 for a reference for the method names. In the Gulf States region, we
see that methods that use manually crafted lists of lexical variants (MVP models) are
competitive with machine learning–based models applied to raw text with the largest
neighborhood size outperforming these methods. However, in the other regions, the
Doc2Vec approaches that use Retrofitting and Alternating smoothing greatly outper-
form those approaches. What this indicates is that if we have a priori knowledge of
sociolinguistically relevant lexical variants then we can accurately predict dialect areas.
However, machine learning methods can achieve similar or greater results with just
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Table 3
Results of dialect area prediction evaluation for relevant DAREDS regions. The values are AIC
for each region (lower is better).

DAREDS AIC by Region
Method Alternation Gulf States Southwest Texas West
Static None 4,890.32 8,793.00 7,885.50 6,236.38
Coordinates None 4,859.89 8,159.15 7,681.31 6,090.05
MVP AKS B = 1 4,713.70 8,251.73 7,214.86 6,078.22
MVP + PCA AKS B = 1 4,713.31 8,492.32 7,523.04 6,110.55
MVP AKS B = 10 4,696.95 7,697.70 7,011.86 5,933.71
MVP + PCA AKS B = 10 4,725.05 8,324.49 7,483.78 6,060.23
MVP AKS B = 100 4,581.97 7,421.84 7,123.18 5,861.19
MVP + PCA AKS B = 100 4,584.86 7,710.95 7,382.14 5,950.82
Random 300 None 4,878.53 7,441.02 6,780.70 6,065.14
Random 300 Retrofitting 4,778.34 7,196.95 6,372.70 5,797.75
Doc2Vec None 4,599.22 6,746.71 6,145.31 5,511.69
Doc2Vec AKS B = 1 4,945.14 7,940.38 7,498.78 6,088.75
Doc2Vec + PCA AKS B = 1 4,859.17 8,706.27 7,819.10 6,187.54
Doc2Vec AKS B = 10 4,907.23 7,589.73 7,211.45 6,058.02
Doc2Vec + PCA AKS B = 10 4,874.47 8,662.70 7,827.59 6,153.67
Doc2Vec AKS B = 100 5,017.93 7,916.88 7,038.32 6,093.19
Doc2Vec + PCA AKS B = 100 4,880.77 8,689.66 7,869.85 6,182.27
Doc2Vec Retrofitting 4,814.15 7,164.03 6,433.94 5,802.43
Doc2Vec Alternating 4,689.96 6,919.24 6,192.12 5,659.31
Random 768 None 5,345.06 7,211.48 6,609.13 6,029.10
Random 768 Retrofitting 5,366.13 7,349.66 6,534.66 6,221.10
BERTLEF None 5,299.95 7,211.09 6,521.57 6,260.76
BERTLEF AKS B = 1 5,292.91 7,217.49 6,828.36 6,212.75
BERTLEF + PCA AKS B = 1 4,870.77 8,601.52 7,860.10 6,208.87
BERTLEF AKS B = 10 5,286.53 7,390.63 6,793.89 6,172.18
BERTLEF + PCA AKS B = 10 4,870.26 8,647.27 7,847.80 6,215.73
BERTLEF AKS B = 100 5,382.80 7,538.72 6,630.50 6,176.40
BERTLEF + PCA AKS B = 100 4,894.13 8,639.23 7,858.67 6,230.27
BERTLEF Retrofitting 5,450.53 7,619.40 6,875.99 6,355.34
BERTLEF Alternating 5,308.68 7,377.52 6,511.52 6,124.20

raw text. Thus, even when lexical variant information is unavailable, we can still make
accurate predictions.

Among the Doc2Vec approaches, we see that Alternating smoothing does better
than all other forms of smoothing. More than that, Alternating smoothing is the only
one that consistently beats the geography only baseline (Random 300 Retrofitting). In
other words, the other smoothing approaches may not be leveraging as much linguistic
information as they could and may be overpowered by the geography signal. In con-
trast, alternating smoothing and training produces embeddings that provide more than
what can be provided by geography alone.
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In the table, we see that Doc2Vec without smoothing outperforms Doc2Vec with
smoothing. We see a similar phenomenon with the BERTLEF models. The nature of the
task may benefit Doc2Vec without smoothing as counts in an area are going to be higher
in places with more data. However, we see that Doc2Vec Alternating smoothing does
better than every other smoothing variant across the board. In particular, Alternating
smoothing outperforms the AKS approaches. What that indicates is that the effective-
ness of MVP models is due to the manually crafted list of lexical variants and less due
to the smoothing approach.

In Figures 5–8, we visualize the predictions of a select set of methods for the
relevant DAREDS regions.5 In each one, we see that Doc2Vec None produces a noisy,
largely indiscernible pattern, indicating that the high score may be related to the model
learning the artifacts of the dataset. In contrast, the Doc2Vec Alternating (panel e)
and MVP AKS B = 100 (panel b) produce patterns that make sense; for example, the
prediction of the “Gulf States” region is near the Gulf of Mexico (southeast of Texas) for
which the region is named. Similarly, these models predict what the “Southwest” and
“West” regions are to the southwest and west, respectively. Of particular note, these
predictions match the locations of where the words were used, as shown in subfigure a.
In contrast, the Doc2Vec Retrofitting (panel d) and BERTLEF Alternating (panel f) show
some appropriate regional patterns, but are much messier than Doc2Vec Alternating,
which corroborates their score.

BERT based models generally do worse than their Doc2Vec counterparts. One
possibility is that the added value of using a BERT model doesn’t outgain the increase in
parameters (768 parameters in BERT to 300 parameters in Doc2Vec). What this indicates
is that the added pretraining done with BERT may not provide the obvious boost in
analyzing lexical variation as is seen in other kinds of tasks. Additionally, while we
see that Alternating smoothing does better than Retrofitting, both are worse than the
AKS smoothing methods and Retrofitting smoothing is worse than the random vector
baseline. In Figure 9, we show a possible explanation and explore this phenomenon
in more detail in the next evaluation. The figure shows the tradeoff between number
of smoothing iterations and AIC. Generally, Retrofitting increases in AIC with more
iterations, which is bad. Thus, for our data, retrofitting may actually be detrimental
and therefore fewer iterations would be less harmful. In contrast, with Alternating
smoothing, we do not see an increase in AIC, which indicates that alternating training
and smoothing may mitigate any harm that could be brought from smoothing the data.

The other metric we explore is McFadden’s pseudo-R2 (McFadden et al. 1973).
McFadden’s pseudo-R2 is a generalization of the coefficient of determination (R2) that
is more appropriate for generalized linear models, such as Poisson regression. Whereas
the coefficient of determination is 1 minus the residual sum of squares divided by the
total sum of squares, McFadden’s pseudo-R2 is 1 minus the residual deviance over the
null deviance. The deviance of a model is the log-likelihood of the predicted values
of the model minus the log-likelihood of the actual values of the model. The residual
deviance is the deviance of the model in question and the null deviance is the deviance
of a model where the probability is the same for every voting precinct (only has an
intercept and no embedding information).

McFadden’s pseudo-R2 = 1− residual deviance
null deviance

5 As Poisson regressions can go to infinity, we cap the values to a standard deviation above the mean to
prevent particularly large predictions hiding other predictions.
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(a) Frequency of terms for “Gulf States” dialect (b) MVP AKS B = 100

(c) Doc2Vec None (d) Doc2Vec Retrofitting

(e) Doc2Vec Alternating (f) BERTLEF Alternating

Figure 5
Predicted location of “Gulf States” dialect using various embedding approaches.

We chose this metric as well as it produces easier to understand values (1 is the best,
0 means the model is just as good as a constant model, negative numbers indicate that
the model is worse than just using a constant model). However, it does not have many
of the nice properties that AIC has.
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(a) Frequency of terms for “Southwest” dialect (b) MVP AKS B = 100

(c) Doc2Vec None (d) Doc2Vec Retrofitting

(e) Doc2Vec Alternating (f) BERTLEF Alternating

Figure 6
Predicted location of “Southwest” dialect using various embedding approaches.

We provide the corresponding evaluation scores in Table 4 and hyperparameter
analysis graphs in Figure 10. R2 values are largely connected to the number of pa-
rameters (MVP scores are lower than Doc2Vec scores, which are lower than BERTLEF
scores), so comparing models with different parameter sizes is of limited help. What the
pseudo-R2 does tell us is that the embeddings are useful for capturing dialect areas as
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(a) Frequency of terms for “Texas” dialect (b) MVP AKS B = 100

(c) Doc2Vec None (d) Doc2Vec Retrofitting

(e) Doc2Vec Alternating (f) BERTLEF Alternating

Figure 7
Predicted location of “Texas” dialect using various embedding approaches.

they are positive (as in, more useful than a constant model). More than this, as values
between 0.2 and 0.4 are seen as indicators of excellent fit (McFadden 1977), we see that
the Doc2Vec and BERTLEF approaches with Retrofitting and Alternating smoothing
provide excellent fits for the data.
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(a) Frequency of terms for “West” dialect (b) MVP AKS B = 100

(c) Doc2Vec None (d) Doc2Vec Retrofitting

(e) Doc2Vec Alternating (f) BERTLEF Alternating

Figure 8
Predicted location of “West” dialect using various embedding approaches.

5.2 Prediction of Lexical Variant Preference

In this section, we evaluate embeddings based on their ability to predict lexical variant
preference. Lexical variation is the choice between two semantically similar lexical
items, such as pop versus soda. Lexical variation is a good determiner of linguistic
variation (Cassidy, Hall, and Von Schneidemesser 1985; Carver 1987). Thus, if a voting
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(a) Gulf States dialect (b) Southwest dialect

(c) Texas dialect (d) West dialect

Figure 9
Hyperparameter analysis that compares number of smoothing iterations with AIC.

precinct embedding approach can be used to predict lexical variation, the embeddings
should be reflective of linguistic variation.

We model lexical variation as a binomial distribution. We suppose a population
can choose between two variants lex1 and lex2, for example, pop and soda. Each voting
precinct acts like a weighted coin where heads is one variant and tails is the other.
Given n mentions of soft drinks, this corresponds to n flips of the weighted coin. Thus,
the number of times a voting precinct uses one form over the other is a binomial
distribution.

If the voting precinct embedding approach captures linguistic variation, then it
should be able to predict the probability of a voting precinct choosing lex1 over lex2.
In other words, we use binomial regression to predict the probability of a lexical choice
from the embeddings. The benefit of this approach is that it naturally handles differ-
ences in data size (less data in a precinct just means smaller n) and reliability of the
probability (a probability of 50% is more reliable when n = 500 than when n = 2).

We derive our lexical variation pairs from two Twitter lexical normalization datasets
from Han and Baldwin (2011) and Liu et al. (2011). The Han and Baldwin (2011) dataset
was formed from three annotators normalizing 1,184 out of vocabulary tokens from
549 English tweets. The Liu et al. (2011) dataset was formed from Amazon Turkers
normalizing 3,802 nonstandard tokens (tokens that are rare and diverge from a standard
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Table 4
Results of dialect area prediction evaluation for relevant DAREDS regions.
The value is McFadden’s pseudo-R2 for each region (higher is better).

DAREDS R2 by Region
Method Alternation Gulf States Southwest Texas West
Static None 0.00 0.00 0.00 0.00
Coordinates None 0.01 0.09 0.03 0.03
MVP AKS B = 1 0.07 0.09 0.12 0.05
MVP + PCA AKS B = 1 0.06 0.05 0.06 0.03
MVP AKS B = 10 0.08 0.17 0.16 0.09
MVP + PCA AKS B = 10 0.05 0.07 0.07 0.05
MVP AKS B = 100 0.11 0.21 0.14 0.10
MVP + PCA AKS B = 100 0.09 0.16 0.09 0.07
Random 300 None 0.17 0.29 0.28 0.17
Random 300 Retrofitting 0.20 0.32 0.34 0.23
Doc2Vec None 0.25 0.39 0.38 0.29
Doc2Vec AKS B = 1 0.15 0.21 0.16 0.16
Doc2Vec + PCA AKS B = 1 0.02 0.02 0.02 0.02
Doc2Vec AKS B = 10 0.16 0.26 0.21 0.17
Doc2Vec + PCA AKS B = 10 0.01 0.02 0.01 0.02
Doc2Vec AKS B = 100 0.13 0.22 0.23 0.16
Doc2Vec + PCA AKS B = 100 0.01 0.02 0.01 0.02
Doc2Vec Retrofitting 0.19 0.33 0.33 0.23
Doc2Vec Alternating 0.22 0.36 0.37 0.26
Random 768 None 0.30 0.46 0.46 0.38
Random 768 Retrofitting 0.30 0.44 0.47 0.34
BERTLEF None 0.32 0.46 0.47 0.33
BERTLEF AKS B = 1 0.32 0.46 0.42 0.34
BERTLEF + PCA AKS B = 1 0.01 0.03 0.01 0.01
BERTLEF AKS B = 10 0.32 0.43 0.43 0.35
BERTLEF + PCA AKS B = 10 0.01 0.03 0.01 0.01
BERTLEF AKS B = 100 0.29 0.41 0.45 0.35
BERTLEF + PCA AKS B = 100 0.01 0.03 0.01 0.01
BERTLEF Retrofitting 0.27 0.40 0.41 0.31
BERTLEF Alternating 0.31 0.43 0.47 0.36

form) from 6,150 tweets. In both cases, humans manually annotated what appears to
be “non standard” uses of tokens with their “standard” variants. These pairs therefore
reflect lexical variation.6 We filter out pairs that have data in less than 500 voting
precincts. This leads to a list of 66 pairs from Han and Baldwin (2011) and 110 pairs

6 We note that these pairs contain pairs that do not necessarily reflect lexical variation, such as typos.
However, drawing the line between typo and variation is a difficult question of its own and beyond the
scope of our analysis.
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(a) Gulf States dialect (b) Southwest dialect

(c) Texas dialect (d) West dialect

Figure 10
Hyperparameter analysis that compares number of smoothing iterations with McFadden’s
pseudo-R2.

from Liu et al. (2011). See Sections Appendix C and Appendix D in the Appendix for
the list of pairs and statistics. For each voting precinct, we derive the frequency of each
variant in a pair directly from our Twitter data.

With the frequency data, we fit binomial regression models for each pair of words
with each voting precinct as a datapoint. Models that have a stronger fit indicate that the
corresponding embeddings better capture the choice of variant in the voting precincts.

We present the results of this evaluation in Table 5. See Section 4.6 for a reference for
the method names. We see many of the same insights as in the dialect area prediction
analysis. We see that MVP approaches are competitive with Doc2Vec Alternating on
the Han and Baldwin (2011) and underperform Doc2Vec Alternating on the Liu et al.
(2011) dataset. We see that Doc2Vec does better with Alternating smoothing than other
approaches and BERTLEF approaches can do worse than baseline.

In Figure 11, we present the difference in AIC and McFadden’s pseudo-R2 across
pairs. As different pairs may naturally be easier or harder to predict, we compare the
Doc2Vec Alternating to provide a more neutral comparison of methods. We see that the
MVP approaches tend to have more rightward AIC boxes. Together with the averages
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being close, this indicates that MVP approaches do better than Doc2Vec Alternating
more often, but perform much worse when they do perform worse. For the approaches
that are applied to raw text (and use smoothing), we see that the boxes are to the left
of the blue line, which indicates that they do worse than Doc2Vec Alternating. What

Table 5
Results of lexical variation evaluation for the Han and Baldwin (2011) and Liu et al. (2011) pairs.
“AIC” and “R2” are average AIC and McFadden’s pseudo-R2 across pairs. Lower AIC is better
and higher pseudo-R2 is better. “Pairs” are the number of lexical pairs where the binomial
regression was fit successfully. “Shared number of pairs” are the number of pairs that succeeded
on all models. As BERTLEF with Retrofitting succeeded very few times, we remove it from our
analysis.

Han and Baldwin Liu et al.
Method Alternation AIC R2 Pairs AIC R2 Pairs
Static None 5,037.90 −0.00 66 7,332.17 −0.00 109
Coordinates None 4,820.86 0.02 66 7,242.46 0.01 110
MVP AKS B = 1 3,968.56 0.37 66 5,855.48 0.38 110
MVP + PCA AKS B = 1 4,100.76 0.34 66 6,248.76 0.34 110
MVP AKS B = 10 3,946.91 0.34 66 5,810.90 0.35 110
MVP + PCA AKS B = 10 4,108.08 0.30 66 6,199.99 0.32 110
MVP AKS B = 100 4,160.22 0.25 66 5,948.60 0.28 110
MVP + PCA AKS B = 100 4,263.89 0.21 66 6,495.72 0.22 110
Random 300 None 4,469.52 0.34 66 5,614.97 0.26 110
Random 300 Retrofitting 4,173.60 0.42 66 6,033.76 0.40 110
Doc2Vec None 3,720.66 0.57 66 4,274.39 0.53 110
Doc2Vec AKS B = 1 4,601.33 0.33 66 5,785.18 0.35 110
Doc2Vec + PCA AKS B = 1 4,953.07 0.03 66 7,038.40 0.05 110
Doc2Vec AKS B = 10 4,460.91 0.34 66 5,905.68 −0.35 110
Doc2Vec + PCA AKS B = 10 4,914.14 0.04 66 7,102.57 −0.10 110
Doc2Vec AKS B = 100 6,322.71 −0.86 66 13,100.68 −1.34 110
Doc2Vec + PCA AKS B = 100 5,247.45 −1.00 66 7,139.56 0.05 110
Doc2Vec Retrofitting 10,318.41 −3.26 66 12,927.14 −2.94 110
Doc2Vec Alternating 3,991.38 0.48 66 5,064.28 0.46 110
Random 768 None 4,652.19 0.56 66 5,570.99 0.45 110
Random 768 Retrofitting 4,501.30 0.59 66 8,982.39 0.00 110
BERTLEF None 4,446.72 0.63 66 5,360.23 0.51 110
BERTLEF AKS B = 1 4,675.30 0.56 62 5,576.14 0.46 103
BERTLEF + PCA AKS B = 1 4,896.52 0.05 66 6,860.40 0.07 110
BERTLEF AKS B = 10 4,639.71 0.56 64 5,579.60 0.46 107
BERTLEF + PCA AKS B = 10 4,922.05 0.04 66 7,055.13 0.06 110
BERTLEF AKS B = 100 4,698.94 0.56 64 5,679.19 0.46 103
BERTLEF + PCA AKS B = 100 4,942.70 0.03 66 7,269.16 −0.13 110
BERTLEF Retrofitting N/A N/A 22 N/A N/A 35
BERTLEF Alternating 4,488.41 0.59 66 5,880.80 0.49 110
Shared Number of pairs 60 96
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this indicates is that among approaches that do not require manually crafted features,
Doc2Vec Alternating performs the best.

Table 5 does also highlight some very different conclusions than the previous
evaluation. In the previous evaluation, all methods had a positive McFadden’s pseudo-
R2, whereas here we see that many approaches have a negative R2, which is a sign
that predictions are extremely off the mark. We also see that some models, especially
Doc2Vec Retrofitting, have AICs that are nearly double the others, which is also a sign
of poor prediction. Additionally, we see issues in fitting the binomial regression models
in the first place. The “Pairs” column indicates how many of the 66 Han and Baldwin
(2011) pairs and 110 Liu et al. (2011) pairs were fit successfully and did not throw
collinearity errors. For example, BERTLEF AKS B = 1 only had 62 pairs with complete
fitting, which means 4 pairs failed to fit. The BERTLEF Retrofitting model succeeded on
only about a third of the pairs, so was thrown out. In other words, we see that several
models have severe issues in this evaluation.

(a) AIC metric with Han and Baldwin (2011)
pairs. (b) AIC metric with Liu et al. (2011) pairs.

(c) McFadden’s psuedo-R2 metric with
Han and Baldwin (2011) pairs.

(d) McFadden’s psuedo-R2 metric with
Liu et al. (2011) pairs.

Figure 11
Box and whisker plots that show the difference in AIC and pseudo-R2 between the various
methods and Doc2Vec Alternating across lexical variant pairs. The blue line is where the method
has an equal AIC/R2 to Doc2Vec Alternating. Points right of the blue line are pairs where the
model outperformed Doc2Vec Alternating.
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In Figure 12, we compare the number of smoothing iterations to the average AIC
(top graphs), average McFadden’s pseudo-R2 (middle graphs), and number of pairs
that were successfully fit. We see that Retrofitting approaches get substantially worse
with more iterations. BERTLEF approaches are particularly susceptible to this issue.7 In
contrast, the Alternating smoothing approaches do not have these issues. The Doc2Vec
Alternating approach is stable from start to finish and the BERTLEF Alternating ap-
proach has more minor deviations.

We believe the cause of these problems is that retrofitting, with voting precinct
level data, causes the embeddings to become collinear and thus susceptible to modeling
issues. In Figure 13, we compare the number of smoothing iterations to the column
rank of the embedding matrix (as calculated by NumPy’s matrix rank method). The
gray lines are the desired rank. Doc2Vec approaches have a dimension of 300 so should
have a column rank of 300. BERTLEF has a dimension of 768 so should have a column
rank of 768. In the figure, we see that, for Retrofitting approaches, the rank sharply
declines, which indicates that smoothing after training causes the embedding dimen-
sions to rapidly become collinear and thus have limited predictive value. In contrast,
the Doc2Vec Alternating approach does not suffer any decrease in column rank and the
BERTLEF Alternating approach only suffers minor loss in column rank.

The lesson to draw from this is that, for working with fine-grained areas like voting
precincts, alternating training and smoothing is not just a model improvement, but a
necessary part to prevent severe numerical issues. With large areas like cities, retrofitting
has enough data to prevent the kinds of issues seen here. However, to gain insight at a
much smaller resolution, alternating is not just nice to have, but a necessity.

5.3 Finer Resolution Analyses Through Variant Maps

As with dialect area prediction, we can generate maps that predict where one variant
of a word is chosen over another. This may allow sociolinguists to better explore
sociolinguistic phenomena. We show an example of this with bro vs. brother in
Figure 14.

In panel (a), we have the percentage of times bro was used. In panel (b), we have
the Black percentage throughout Texas. We include this as bro has been recognized as
African American slang (Widawski 2015). The bottom four panels are the predicted
percentages from various models. We see that both the gold values and Black Percentage
have an East–West divide. We also see that the models predict a similar divide with the
Retrofitting/Alternating models having a clearer distinction.

A more interesting facet appears when we focus on the divide in bro vs. brother
around Houston, Texas (Figure 15). In panel (a), we show the Black Percentage de-
mographics around Houston and see that Black people are not uniformly distributed
throughout the city and that there are sections of the city where Black people are more
concentrated (highlighted with a red ellipse is one such section). In panel (b), we show
our predictions for bro vs. brother from the Doc2Vec Alternating model and see that
the predictions are also not uniformly distributed throughout the city and instead are
concentrated in the same areas that the Black population are (also highlighted with an
ellipse). What this indicates is that using voting precincts as our subregions, we are able
to narrow down our analyses to specific, relatively tiny areas.

7 While BERTLEF Retrofitting results do appear to climb back up, the number of pairs that are being
averaged over are decreasing, so may indicate survivor bias and not improvement.
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(a) Number of smoothing iterations vs. AIC for
Han and Baldwin (2011) pairs. Lower is better.

(b) Number of smoothing iterations vs.
AIC for Liu et al. (2011) pairs. Lower is better.

(c) Number of smoothing iterations vs.
McFadden’s pseudo-R2 for Han and
Baldwin (2011) pairs. Higher is better.

(d) Number of smoothing iterations vs.
McFadden’s pseudo-R2 for Liu et al.
(2011) pairs. Higher is better.

(e) Number of smoothing iterations vs.
number of successfully fit pairs for Han
and Baldwin (2011) pairs. Higher is better.

(f) Number of smoothing iterations vs.
number of successfully fit pairs for Liu et al.
(2011) pairs. Higher is better.

Figure 12
Hyperparameter analysis of lexical variation evaluation.
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Figure 13
Number of smoothing iterations vs. embedding matrix rank. The top gray bar is 768 (full rank
for BERT-based methods) and the bottom gray bar is 300 (full rank for Doc2Vec-based methods).
Higher is better.

In contrast, larger areas, such as cities and counties, cannot capture these insights. If
we use counties instead of voting precincts, as in Huang et al. (2016), we see in panel (c)8

that the bro–brother distinction we identified would be enveloped by a single area. If we
use cities instead of voting precincts, as in Hovy and Purschke (2018), we see in panel (d)
that we would also envelop that area and similarly be completely unable to make any
finer-grained analyses. Thus, we have shown that finer-grained subregions can produce
finer-grained insights. However, as discussed in previous sections, one needs to use a
different modeling approach in order to be able to gain these insights and not run into
data issues.

5.4 Embeddings as Linguistic Gene to Connect Language Use with Sociology

The previous sections describe various embedding methods for representing language
use in a voting precinct. Language use in any area is connected to race, socioeconomic
status, population density, among many, many other factors and these factors are all

8 Images come from US News & World Report and Wikipedia.
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(a) Relative frequency of bro vs. brother (b) Black percentage across Texas.

(c) Doc2Vec None (d) Doc2Vec Retrofitting

(e) Doc2Vec Alternating (f) BERTLEF Alternating

Figure 14
Predicted location of bro vs. brother using various embedding approaches. Values are min–max
scaled. Black shaded precincts are where neither bro nor brother are used.

represented within the embedding. In this section, we explore how we can use extrac-
tions of these embeddings that correlate to sociological factors and use these extractions
to make sociolinguistic analyses.

Our proposed methodology is similar to how genes are used as a nexus to con-
nect two different biological phenomena. For example, consider the HOX genes. HOX
genes are common throughout animal genetic sequences and are responsible for limb
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(a) Black population percentage around
Houston, Texas. Red indicates high per-
centage, blue mid, purple low.

(b) Predicted percentage of bro over
brother within Houston Texas. Red indi-
cates high percentage, blue mid, purple
low.

(c) Section of Harris County that is at
the same scale and location as the maps
above. The red circle is the same indi-
cated area.

(d) Section of City of Houston Map that is
at the same scale as the maps above. The
black ellipse indicates the same area.

(e) Larger image of above for context.

(f) Larger image of above for context.

Figure 15
Section of Houston to highlight need for more fine grained areas.
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formation (such as determining whether a human should grow an arm or a leg out of
their shoulder) (Grier et al. 2005). By looking at expressions of HOX genes, researchers
have found a connection between HOX genes and genetic disorders related to finger
development—for example, synpolydactyly and brachydactyly. From this, researchers
identified a possible connection between limb formation and finger development via
the HOX gene link.

We use a similar strategy to link sociological phenomena with linguistic phenom-
ena. We have embeddings for each voting precinct (genetic sequences for each species).
We can identify what portion of these embeddings correspond to a sociological variable
of interest (find the genes for limb formation). We can use these portions to predict
a linguistic phenomenon (use gene expressions to predict a separate physiological
phenomenon). Then, if successful, we can then link the sociological phenomenon with
the linguistic phenomenon (connect limb formation and finger disorders through the
HOX genes).

To extract the section of the embedding that corresponds to a sociological variable,
we use Orthogonal Matching Pursuit (OMP), which is a linear regression that zeros out
all but a fixed number of weights. We can train an OMP model to predict the sociological
variable from the voting precinct embeddings. The coordinates with non-zero weights
are the section of the embedding that correspond to how the sociological phenomenon
interacts with language use in an area. For example, if we use the embeddings to predict
Black Percentage in a voting precinct, the extracted section should correlate with how
race intersects with language use.

More formally, OMP is a linear regression model where all but a fixed upper bound
of weights is zero. For input matrix X, for example, where each row is a voting precinct
embedding, output vector y, for example, the corresponding variable, and number of
non-zero weights n, OMP minimizes the following loss:
||y− Xw||where w are the regression weights, ||w||0 ≤ n and n > 0.

We use OMP to extract the 10 coordinates in the precinct embeddings that most
correspond to a sociological variable of interest. For example, if our sociological variable
was Black Percentage, OMP would give us the 10 coordinates that correlate more with
Black Percentage. We can connect Black Percentage to other linguistic phenomenon by
how well those 10 coordinates predict a linguistic phenomenon of interest as well as
identify new linguistic phenomena that could be related to the sociological variable.

First, we explore what insights we can derive from the Black Percentage “gene”
in voting precincts’ language “genetic code.” We use OMP to identify 10 coordinates
that highly correlate with Black Percentage. We can connect this “gene” to linguistic
phenomena by using it to predict lexical variation. We can then look at how to increase
accuracy by using the gene instead of the entire genetic code. If we find a lexical variant
pair that is better modeled with the gene than the entire embedding, that is an indication
that the pair is connected to the sociological variable, here Black Percentage.

We measure increase in accuracy by percent decrease in AIC or percent increase in
McFadden’s pseudo-R2. We use percentage increase/decrease to account for different
pairs having natural ease of modeling. If a pair has a high percentage increase/decrease,
then they are likely to be connected to the underlying sociological variable. We also
compare to using the sociological variable directly and the percentage improvement.

In Tables 6 and 7 we show the top 30 lexical variant pairs from Han and Baldwin
(2011) and Liu et al. (2011). The Gene columns are the rankings as derived from using
the extracted embedding section and the SV columns are using the sociological variables
alone. From these, a sociolinguist can look at the rankings and possibly identify insights
that were previously missed.
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Table 6
Ranking of lexical variation pairs when using extractions from embeddings (Gene) versus using
the sociological variable directly (SV). The ranking is done by percentage increase in
R2/percentage decrease in AIC from the original embedding to the extraction/sociological
variable. AP is the average precision. Bold pairs are pairs that previous research has identified as
being relevant to the sociological variable.

Dataset: Han and Baldwin (2011)
Sociological Variable: Black Percentage
Rank Gene AIC SV AIC Gene R2 SV R2
1 umm-um umm-um til-until lil-little
2 convo-conversation convo-conversation lil-little bro-brother
3 freakin-freaking freakin-freaking bro-brother umm-um
4 gf-girlfriend gf-girlfriend convo-conversation tha-the
5 sayin-saying sayin-saying tha-the gon-gonna
6 chillin-chilling chillin-chilling fb-facebook da-the
7 yess-yes bf-boyfriend hrs-hours yu-you
8 playin-playing txt-text comin-coming fb-facebook
9 lawd-lord yess-yes playin-playing cuz-because
10 bf-boyfriend lawd-lord fam-family bs-bullshit
11 txt-text bs-bullshit btw-between ppl-people
12 cus-because ohh-oh lookin-looking dat-that
13 ahh-ah cus-because de-the dawg-dog
14 prolly-probably pics-pictures dawg-dog kno-know
15 ohh-oh ahh-ah yu-you chillin-chilling
16 bs-bullshit prolly-probably thx-thanks til-until
17 nothin-nothing hahah-haha cuz-because jus-just
18 hahah-haha hahahaha-haha def-definitely bday-birthday
19 naw-no talkin-talking da-the wat-what
20 tht-that til-till jus-just goin-going
21 pics-pictures naw-no bday-birthday de-the
22 talkin-talking nothin-nothing ahh-ah prolly-probably
23 hahahaha-haha playin-playing mis-miss gettin-getting
24 doin-doing hahaha-haha mins-minutes nd-and
25 bb-baby tht-that gettin-getting fuckin-fucking
26 til-till gon-gonna kno-know lookin-looking
27 fb-facebook doin-doing doin-doing naw-no
28 comin-coming fuckin-fucking gon-gonna fam-family
29 thx-thanks bb-baby soo-so cus-because
30 kno-know goin-going yr-year mis-miss
AP 0.055 0.057 0.252 0.237

To produce an estimate of the accuracy of these lists, we use the African American
slang dictionary in Widawski (2015) as our gold labels and use them to calculate the
average precision (AP). We see that using McFadden’s pseudo-R2 provides the best
results, with use of the “gene” performing slightly better than use of the sociological
variable on its own. We also see that the “gene” approach provides different predictions

915



Computational Linguistics Volume 49, Number 4

Table 7
Ranking of lexical variation pairs when using extractions from embeddings (Gene) versus using
the sociological variable directly (SV). The ranking is done by percentage increase in
R2/percentage decrease in AIC from the original embedding to the extraction/sociological
variable. AP is the average precision. Bold pairs are pairs that previous research has identified as
being relevant to the sociological variable.

Dataset: Liu et al. (2011)
Sociological Variable: Black Percentage
Rank Gene AIC SV AIC Gene R2 SV R2
1 wheres-whereas wheres-whereas homies-homes trippin-tripping
2 quiero-query quiero-query cali-california lil-little
3 max-maximum max-maximum re-regarding bro-brother
4 tv-television tv-television mo-more tha-the
5 homies-homes bbq-barbeque trippin-tripping wit-with
6 re-regarding homies-homes lil-little yo-you
7 bbq-barbeque cali-california bro-brother bout-about
8 cali-california trippin-tripping convo-conversation tho-though
9 convo-conversation convo-conversation fa-for da-the
10 trippin-tripping freakin-freaking wit-with yea-yeah
11 freakin-freaking gf-girlfriend tha-the cause-because
12 mines-mine mines-mine th-the yu-you
13 gf-girlfriend sayin-saying fb-facebook fb-facebook
14 sayin-saying chillin-chilling bout-about dis-this
15 chillin-chilling txt-text hrs-hours gon-going
16 yess-yes cutie-cute tho-though cuz-because
17 playin-playing yess-yes comin-coming bs-bullshit
18 lawd-lord nun-nothing fr-for ppl-people
19 txt-text lawd-lord playin-playing dat-that
20 cus-because bs-bullshit dis-this sum-some
21 cutie-cute ohh-oh fam-family fr-for
22 nun-nothing cus-because fml-family kno-know
23 wen-when wen-when fav-favorite quiero-query
24 wut-what pics-pictures yo-you chillin-chilling
25 prolly-probably wut-what hwy-highway tv-television
26 ohh-oh prolly-probably app-application jus-just
27 thot-thought sis-sister thru-through thang-thing
28 nada-nothing thot-thought sum-some mo-more
29 turnt-turn feelin-feeling lookin-looking bday-birthday
30 sis-sister talkin-talking yu-you wat-what
AP 0.080 0.077 0.264 0.110

from solely using the sociological variable, such as the prediction that the til versus until
distinction was possibly connected to Black Percentage.

This indicates that our approach can provide lexical variants that are connected
to sociological variables and thus can be used by sociologists to find new variants that
could be useful in research. Our approach is completely unsupervised, so novel changes
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and spread in different communities can be monitored and continually updated with
new data, which is not feasible for traditional methods.

We perform a similar experiment with the Population Density variable. We show
the top ranked pairs in Tables 8 and 9. As g-dropping is a well explored phenomenon
for the rural vs. urban divide (Campbell-Kibler 2005), we use this as our gold data. Here,
we see that AIC performs best overall with the “gene” approach slightly outperforming
the sociological variable. From these lists, it appears that there is a connection between
shortening words and population density, for example, convo vs. conversation, gf vs.
girlfriend, bf vs. boyfriend, txt vs. text, and prolly vs. probably. By using genes, we
might be able to identify new connections that we may not have found otherwise.

6. Dialect Map Prediction via Visualization

In this section, we use dimensionality reduction techniques applied to the precinct
embeddings to geographic boundaries of linguistic variation, or “isoglosses.” The
precinct embeddings are reduced to RGB color values and hard transition in colors
indicate a boundary. To project embeddings into RGB color coordinates, we explore
two approaches. The first is principal component analysis (PCA), which is previously
used in prior work (Hovy et al. 2020). The second is t-distributed stochastic neighbor
embedding (t-SNE) (Van der Maaten and Hinton 2008), which is a probabilistic ap-
proach often used for visualizing word embedding clusters.

6.1 Principal Component Analysis

PCA is widely used in the humanities for descriptive analyses of data. If we have a
collection of continuous variables, PCA essentially creates a new set of axes that cap-
tures the greatest variance in the original variables. In particular, the first axis captures
the greatest variance in the data, the second axis captures the second greatest vari-
ance, and so on. By quantifying the connection between the original variables and
the axes, researchers can explore what variables have the most impact in the data. For
example, Huang et al. (2016) use this approach to explore the geographic information
contained inside area embeddings.

Hovy et al. (2020) use PCA to produce variation maps by reducing area embeddings
to three dimensions and then standardizing these dimensions to between 0 and 1 to be
used as RGB values. We perform a similar analysis for a select set of methods in the
left images in Figures 16 and 17. We see that the geography only approach (Random
300 Retrofitting) produces a mostly random pattern of areas while the Doc2Vec None
approach produces some regionalization, but is rather noisy.

The smoothing approaches generally highlight the cities (possibly with coloring the
cities differently) and leave the countryside a uniform color. In other words, using PCA
to produce an isogloss map, we only see the urban–rural divide and do not see larger
region divides. The reason that is that the urban–rural divide appears to be the biggest
source of variation in the data and PCA is designed to extract the biggest sources of
variation. However, by attaching itself to the strongest signal, PCA is unable to find
key regional differences in language use. Thus, while PCA approaches are useful for
analyzing the information contained in embeddings, it has limited ability to produce
isogloss boundaries.
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Table 8
Ranking of lexical variation pairs when using extractions from embeddings (Gene) versus using
the sociological variable directly (SV). The ranking is done by percentage increase in
R2/percentage decrease in AIC from the original embedding to the extraction/sociological
variable. AP is the average precision. Bold pairs are pairs that previous research has identified as
being relevant to the sociological variable.

Dataset: Han and Baldwin (2011)
Sociological Variable: Population Density (log scaled)
Rank Gene AIC SV AIC Gene R2 SV R2
1 umm-um umm-um de-the til-until
2 convo-conversation convo-conversation til-until fuckin-fucking
3 freakin-freaking freakin-freaking convo-conversation hahaha-haha
4 gf-girlfriend gf-girlfriend dawg-dog lookin-looking
5 sayin-saying sayin-saying mis-miss hahah-haha
6 yess-yes txt-text hrs-hours btw-between
7 chillin-chilling chillin-chilling mins-minutes hahahaha-haha
8 bf-boyfriend bf-boyfriend yu-you yess-yes
9 txt-text yess-yes fb-facebook talkin-talking
10 cus-because lawd-lord comin-coming naw-no
11 lawd-lord cus-because tha-the cus-because
12 ahh-ah ohh-oh playin-playing de-the
13 playin-playing bs-bullshit lookin-looking prolly-probably
14 ohh-oh hahah-haha bro-brother mis-miss
15 prolly-probably ahh-ah ahh-ah fam-family
16 bs-bullshit prolly-probably cus-because freakin-freaking
17 hahah-haha pics-pictures gon-gonna til-till
18 pics-pictures hahahaha-haha fam-family goin-going
19 nothin-nothing talkin-talking congrats-congratulations lil-little
20 naw-no naw-no pic-picture hrs-hours
21 hahahaha-haha til-till nd-and bs-bullshit
22 talkin-talking nothin-nothing thx-thanks pls-please
23 tht-that hahaha-haha lil-little nah-no
24 mis-miss playin-playing cuz-because congrats-congratulations
25 til-till tht-that prolly-probably def-definitely
26 doin-doing fuckin-fucking fuckin-fucking da-the
27 hahaha-haha bb-baby yess-yes sayin-saying
28 bb-baby doin-doing da-the tht-that
29 fuckin-fucking goin-going yr-year dawg-dog
30 gon-gonna pic-picture wat-what txt-text
AP 0.293 0.278 0.164 0.264

6.2 t-Distributed Stochastic Neighbor Embedding

To fix the above issue, we explore a different dimensionality reduction approach, t-SNE
(Van der Maaten and Hinton 2008). Unlike PCA, which tries to find the strongest signals
overall, t-SNE instead tries to make sure that points that are similar in the original space
are similar in the reduced space. As retrofitting enforces places that are geographically
close to have similar embeddings, t-SNE may be much more capable of capturing
regions.
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Table 9
Ranking of lexical variation pairs when using extractions from embeddings (Gene) versus using
the sociological variable directly (SV). The ranking is done by percentage increase in
R2/percentage decrease in AIC from the original embedding to the extraction/sociological
variable. AP is the average precision. Bold pairs are pairs that previous research has identified as
being relevant to the sociological variable.

Dataset: Liu et al. (2011)
Sociological Variable: Population Density (log scaled)
Rank Gene AIC SV AIC Gene R2 SV R2
1 wheres-whereas wheres-whereas homies-homes mo-more
2 quiero-query quiero-query cali-california th-the
3 max-maximum max-maximum mo-more hr-hour
4 tv-television tv-television re-regarding ft-feet
5 homies-homes bbq-barbeque fa-for wut-what
6 bbq-barbeque homies-homes dis-this fuckin-fucking
7 re-regarding cali-california trippin-tripping lookin-looking
8 cali-california trippin-tripping th-the bby-baby
9 convo-conversation convo-conversation convo-conversation dis-this
10 trippin-tripping freakin-freaking mi-my fa-for
11 freakin-freaking gf-girlfriend ft-feet yess-yes
12 mines-mine mines-mine hrs-hours mi-my
13 gf-girlfriend sayin-saying hr-hour nun-nothing
14 sayin-saying txt-text mins-minutes em-them
15 yess-yes chillin-chilling yu-you talkin-talking
16 chillin-chilling yess-yes fav-favorite naw-no
17 txt-text cutie-cute hwy-highway bout-about
18 cutie-cute nun-nothing fb-facebook cus-because
19 cus-because lawd-lord comin-coming prolly-probably
20 nun-nothing wut-what fml-family yo-you
21 lawd-lord cus-because tha-the fml-family
22 playin-playing ohh-oh tho-though fam-family
23 ohh-oh bs-bullshit wit-with freakin-freaking
24 wut-what prolly-probably playin-playing fr-for
25 prolly-probably pics-pictures fr-for quiero-query
26 bs-bullshit talkin-talking lookin-looking til-till
27 nada-nothing sis-sister nada-nothing goin-going
28 wen-when bby-baby bro-brother lil-little
29 feelin-feeling wen-when cus-because hrs-hours
30 sis-sister feelin-feeling yea-yeah bs-bullshit
AP 0.197 0.196 0.119 0.151

The right images in Figures 16 and 17 use t-SNE to visualize embeddings. We see
that there are largely three blocks: one block to the East, one block to the Southwest,
and one block to the Northwest. This indicates that t-SNE may be better at identifying
isoglosses than PCA.
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(a) PCA Visualization of MVP AKS B = 100
Embeddings

(b) t-SNE Visualization of MVP AKS B = 100
Embeddings

(c) PCA Visualization of Random
300 Retrofitting Embeddings

(d) t-SNE Visualization of Random 300
Retrofitting Embeddings

(e) PCA Visualization of Doc2Vec None
embeddings

(f) t-SNE Visualization of Doc2Vec None
embeddings

Figure 16
Visualization of voting precinct embeddings using PCA (left) and t-SNE (right).

By comparing to the dialect areas in our DAREDS analysis (Section 5.1), we see that
the block to the East overlaps nicely with the predicted “Gulf States” dialect region.
Similarly, we see that the Southwest block overlaps nicely with the West and South-
west blocks. Finally, the Northwest region seems distinct from the other regions. This
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(a) PCA Visualization of Doc2Vec
Retrofitting embeddings

(b) t-SNE Visualization of Doc2Vec
Retrofitting embeddings

(c) PCA Visualization of Doc2Vec Alternating
embeddings

(d) t-SNE Visualization of Doc2Vec
Alternating embeddings

(e) PCA Visualization of BERTLEF
Alternating embeddings

(f) t-SNE Visualization of BERTLEF
Alternating embeddings

Figure 17
Visualization of voting precinct embeddings using PCA (left) and t-SNE (right).

indicates that we may have a region that is not accounted for by the Dictionary of
American Regional English (Cassidy, Hall, and Von Schneidemesser 1985). It may be
because in the nearly 40 years since publication, Texas may have experienced a great
linguistic shift. Alternatively, the region may be understudied and thus may reflect
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a dialect we know little about. In either case, the t-SNE graphs may have shown a
particular region of Texas that warrants further investigation.

7. Summary

We demonstrated that it is possible to embed areas as small as voting precincts and
that doing so can lead to higher resolution analyses of sociolinguistic phenomena. To
make this feasible, we proposed a novel embedding approach that alternates training
with smoothing. We showed that both training and smoothing have negative effects
when it comes to embedding voting precincts and that smoothing in particular can
cause numerical issues. In contrast, we found that alternating training and smoothing
mitigates these issues.

We also proposed new evaluations that reflect how voting precinct embeddings
can be used directly by sociolinguists. The first explores how well different models are
able to predict the location of a dialect given terms specific to that dialect. The second
explores how well different models are able to capture preferences in lexical variants,
such as the preference between pop and soda. We then propose a methodology where we
identify portions of the embeddings that correspond to sociological variables and use
these portions to find novel linguistic insights, thereby connecting sociological variables
with linguistic expression. Finally, we explored approaches for using the embeddings
to identify isoglosses and showed that PCA overly focuses on the urban–rural divide
while t-SNE produces distinct regions.

7.1 Future Work

Finally, we present some directions for future work:

• Although we can produce embeddings that reflect language use in an
area, further research is needed to produce more interpretable
representations (while retaining accuracy and ease of construction) and
more informative uses of regional embeddings. We do propose a method
of connecting linguistic phenomena to lexical variation using regional
embeddings, but much more work is needed to devise methods that
directly address linguists’ needs.

• Currently, there is a divide between traditional linguistic approaches to
analyzing variation and computational linguistic approaches to
analyzing variation. Given access to a wide variety of social media data,
one goal may be to close the gap between these approaches and develop
definitions of variation that can represent linguistic insights as well as are
rigorous and scalable. There is work that uses linguistic features to define
regional embeddings (Bohmann 2020), but this still operates under
traditional linguistic metrics and region-insensitive methodology
(embeddings). Future work could build on our results to produce a
flexible definition of variation that could directly leverage Twitter data.

• Finally, a future direction could be to connect the regional embedding
work with temporal embedding work (e.g., Hamilton, Leskovec, and
Jurafsky 2016; Rosenfeld and Erk 2018) to have a unified spacio–temporal
exploration of Twitter data. There is quite a bit of work that does
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spacio–temporal work with Twitter data (e.g., Goel et al. 2016; Eisenstein
et al. 2014), but this work makes limited use of embedding models.
Future work could better explain movement of language patterns with
greater accuracy and resolution.

Appendix A. Grieve and Asnaghi (2013) Lexical Variation Pairs

In Table A1, we provide the list of alternates used in our count-based models.

Table A1: Lexical variants from Grieve and Asnaghi (2013) used in our count-based
models. “Main” is the variant with the largest frequency. “Alternates” is the list of other
variants. “Num VP” are the number of voting precincts that include use of at least one
variant. “Main total” is the total frequency of the “Main” variant. “Alt total” is the total
frequency of the alternative variants. “P-Value” is the p-value from Moran’s I. Gray lines
are variant sets that were removed for having a p-value below 0.001 or appear in less
than 1,000 precincts.

Main Alternates Num VP Main Total Alt Total P-Value
before afore 4,416 16,267 33 0.000
lane alley 2,684 14,615 2,939 0.000
car automobile 6,425 309,589 162 0.000
baby infant 5,117 21,176 187 0.000
bag sack 2,026 4,217 381 0.000
ban prohibit, forbid 4,297 29,532 235 0.000
beg plead 2,261 5,268 138 0.000
best greatest 5,750 32,971 1,408 0.000
bet wager 5,750 36,660 29 0.000
big large 4,979 24,258 1,326 0.000
bought purchased 1,630 2,289 147 0.000
butte mesa 1,342 2,250 872 0.000
cab taxi 1,664 3,736 288 0.000
center middle 3,314 24,299 3,878 0.000
clothes clothing 1,733 2,342 1,254 0.000
understand comprehend 2,761 4,937 50 0.000
creek stream 1,332 5,075 1,179 0.000
dad father 4,705 16,457 2,344 0.000
dinner supper 2,490 7,873 275 0.000
sleepy drowsy 1,894 2,898 37 0.000
each other one another 1,552 2,164 170 0.000
hug embrace 2,947 8,201 326 0.000
loyal faithful 1,336 1,410 644 0.000
real genuine 6,559 67,748 307 0.000
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sneakers gym shoes,
running shoes,
tennis shoes

216 256 85 0.000

honest truthful 2,675 4,724 51 0.000
rush hurry 2,874 4,753 1,867 0.000
ill sick 7,266 223,879 5,173 0.000
wrong incorrect 3,364 7,136 62 0.000
little small 5,227 24,025 3,846 0.000
maybe perhaps 3,296 6,423 178 0.000
mom mother 5,727 27,826 5,489 0.000
needed required 2,007 4,526 445 0.000
prairie plains 540 3,896 476 0.000
student pupil 1,383 5,573 34 0.000
fast quick, rapid 4,325 11,958 7,274 0.000
sad unhappy 5,000 23,613 192 0.000
stomach belly, tummy 1,778 2,110 1,419 0.000
trash garbage, rubbish 1,248 1,726 248 0.000
while whilst 3,950 12,434 48 0.000
smart intelligent 1,521 2,453 225 0.000
holiday vacation 1,542 1,850 1,339 0.000
island isle 881 2,261 1,091 0.000
slim slender 492 916 11 0.000
especially particularly 1,269 1,816 38 0.000
obviously clearly 1,357 1,141 777 0.000
rude impolite 1,262 1,860 2 0.000
grandma grandmother,

granny, nana
2,259 1,739 2,339 0.000

bathroom restroom,
washroom

1,005 1,151 443 0.000

garage sale rummage sale, tag
sale, yard sale

182 218 94 0.000

icing frosting 579 899 62 0.000
grandpa grandfather 860 1,024 140 0.000
rare scarce 691 1,063 12 0.000
anywhere anyplace 737 979 8 0.000
ping pong table tennis 101 184 2 0.000
pharmacy drug store 392 3,243 5 0.000
sunset sundown 941 7,725 115 0.000
dawn daybreak 340 523 92 0.000
bucket pail 666 974 32 0.000
brag boast 370 403 43 0.000
madness insanity 612 780 185 0.000
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false untrue 336 512 12 0.000
expensive costly 459 520 22 0.000
global worldwide 460 1,007 329 0.000
couch sofa 810 891 400 0.000
spine backbone 186 191 93 0.000
fridge refrigerator 333 324 73 0.000
porch veranda 340 526 36 0.000
hot tub jacuzzi 159 154 40 0.000
sudden abrupt 525 590 14 0.000
wallet billfold 337 465 1 0.000
instantly instantaneously 157 170 2 0.000
hallway corridor 313 313 161 0.000
disappear vanish 324 340 44 0.000
explode blow up 358 218 181 0.000
bleach clorox 209 241 6 0.000
bookstore bookshop 90 153 14 0.000
polite courteous 97 101 10 0.000
fatal deadly, lethal 286 431 348 0.000
on accident by accident 160 107 71 0.000
accomplishment achievement 249 186 185 0.000
brave courageous 356 480 68 0.000
except for aside from 299 285 52 0.000
eggplant aubergine 46 56 2 0.000
cut the grass mow the grass,

mow the lawn
28 18 10 0.000

out loud aloud 278 284 55 0.000
cellar basement 147 259 148 0.000
cinema movie theater 397 1,221 174 0.000
similar to akin to 70 68 12 0.001
shant shall not 120 82 60 0.001
quilt comforter 94 181 33 0.001
inappropriate improper 133 130 40 0.001
sunrise sun up 485 3,486 14 0.003
cemetery graveyard 191 318 120 0.004
sufficient adequate 81 56 33 0.008
inquire enquire 28 49 2 0.028
jeep suv 524 873 199 0.050
casket coffin 92 70 60 0.058
thrive flourish 131 224 57 0.067
fierce ferocious 181 250 19 0.067
unbearable insufferable 45 42 4 0.079
unexplainable inexplicable 24 18 8 0.105
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endurance stamina 80 90 28 0.114
defy disobey 50 48 9 0.166
dampen moisten 8 8 1 0.183
passionate impassioned 159 205 1 0.208
saggy droopy 49 38 14 0.263
furthest farthest 62 40 25 0.294
agree to consent to 90 93 3 0.361
food processor cuisinart 3 3 2 0.439
somewhere else elsewhere 197 147 62 0.443
skillet frying pan 65 93 6 0.493
mailman postman 23 22 6 0.566
afire ablaze, aflame 31 29 19 0.575
inadequate insufficient 22 11 11 0.612
enclose inclose 9 10 1 0.656
husk shuck 253 330 129 0.662
ski doo snowmobile 2 1 1 0.671
slow cooker crock pot 19 16 8 0.745
flammable inflammable 5 8 4 0.754
murderous homicidal 11 6 5 0.760
entrust intrust 19 14 9 0.799
unarm disarm 33 47 3 0.857
shoelace shoestring 21 16 8 0.884
water fountain drinking fountain 22 23 4 0.890
incarcerate imprison 17 9 8 0.908
leaned in leaned forward 4 4 1 0.909

Appendix B. DAREDS Dialect-Specific Terms

In Table A2, we provide the list of dialect-specific terms used in our dialect prediction
evaluation.

Table A2: Dialect specific terms from DAREDS used in our analysis. “Num VP” is the
number of voting precincts the term appears in. “Total Freq” is the total frequency of
the term.

DAREDS Dialect Term Num VP Total Freq

Gulf States aguardiente 1 1

Gulf States bogue 1 1

Gulf States cavalla 1 1

Gulf States chinaberry 1 3

Gulf States cooter 12 23

Gulf States curd 17 18
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Gulf States doodlebug 1 1

Gulf States jambalaya 27 27

Gulf States loggerhead 1 3

Gulf States maguey 4 5

Gulf States nibbling 3 3

Gulf States nig 72 76

Gulf States pollywog 1 1

Gulf States redfish 14 20

Gulf States sardine 4 4

Gulf States scratcher 8 8

Gulf States shinny 3 4

Gulf States squinch 1 1

Gulf States whoop 488 588

Southwest acequia 2 5

Southwest agarita 1 1

Southwest agave 38 72

Southwest aguardiente 1 1

Southwest alacran 1 1

Southwest alberca 12 12

Southwest albondigas 3 3

Southwest alcalde 5 6

Southwest alegria 20 21

Southwest armas 8 16

Southwest arriero 1 1

Southwest arroba 1 1

Southwest arrowwood 2 5

Southwest atajo 1 1

Southwest atole 7 7

Southwest ayuntamiento 1 3

Southwest azote 1 1

Southwest baile 41 54

Southwest bajada 1 30

Southwest baldhead 2 2

Southwest barranca 3 3

Southwest basto 5 5

Southwest beaner 31 32

Southwest blinky 3 4

Southwest booger 47 49
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Southwest burro 17 44

Southwest caballo 12 13

Southwest caliche 1 1

Southwest camisa 16 16

Southwest carcel 2 2

Southwest carga 7 39

Southwest cargador 8 9

Southwest carreta 5 6

Southwest cenizo 2 2

Southwest chalupa 17 17

Southwest chaparreras 1 1

Southwest chapo 47 67

Southwest chaqueta 2 2

Southwest charco 7 8

Southwest charro 27 39

Southwest chicalote 1 1

Southwest chicharron 4 4

Southwest chiquito 20 25

Southwest cholo 39 40

Southwest cienaga 1 1

Southwest cocinero 1 1

Southwest colear 1 1

Southwest comadre 11 12

Southwest comal 31 124

Southwest compadre 37 97

Southwest concha 15 18

Southwest conducta 4 4

Southwest cowhand 2 2

Southwest cuidado 25 29

Southwest cuna 4 5

Southwest dinero 75 84

Southwest dueno 2 2

Southwest enchilada 39 47

Southwest encinal 4 9

Southwest estufa 1 1

Southwest fierro 16 77

Southwest freno 5 5

Southwest frijole 2 2
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Southwest garbanzo 5 9

Southwest goober 26 29

Southwest gotch 6 6

Southwest greaser 3 3

Southwest grulla 5 8

Southwest jacal 2 3

Southwest junco 2 3

Southwest kiva 9 25

Southwest lechuguilla 1 1

Southwest loafer 4 4

Southwest maguey 4 5

Southwest malpais 1 2

Southwest menudo 94 107

Southwest mescal 1 1

Southwest mestizo 3 8

Southwest milpa 2 3

Southwest nogal 4 5

Southwest nopal 8 9

Southwest olla 6 9

Southwest paisano 14 73

Southwest pasear 7 8

Southwest pelado 1 1

Southwest peon 17 17

Southwest picacho 2 11

Southwest pinole 2 2

Southwest plait 2 2

Southwest potrero 4 4

Southwest potro 6 12

Southwest pozo 3 4

Southwest pulque 2 2

Southwest quelite 1 1

Southwest ranchero 14 19

Southwest reata 6 28

Southwest runaround 3 3

Southwest seesaw 3 3

Southwest serape 6 12

Southwest shorthorn 1 1

Southwest slouch 2 2
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Southwest tamale 47 64

Southwest tinaja 2 2

Southwest tomatillo 5 21

Southwest tostada 16 23

Southwest tule 3 6

Southwest vaquero 19 37

Southwest vara 2 2

Southwest wetback 18 18

Southwest zaguan 1 3

Texas agarita 1 1

Texas banquette 3 3

Texas blackland 3 4

Texas bluebell 14 15

Texas borrego 10 17

Texas cabrito 5 27

Texas caliche 1 1

Texas camote 1 1

Texas cenizo 2 2

Texas cerillo 1 1

Texas chicharra 1 1

Texas coonass 3 3

Texas ducking 66 68

Texas firewheel 19 114

Texas foxglove 3 3

Texas goatsbeard 1 2

Texas granjeno 1 3

Texas grulla 5 8

Texas guayacan 2 3

Texas hardhead 1 1

Texas huisache 4 7

Texas icehouse 46 132

Texas juneteenth 12 16

Texas kinfolk 88 96

Texas lechuguilla 1 1

Texas mayapple 1 1

Texas mayberry 8 8

Texas norther 3 3

Texas piloncillo 1 1
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Texas pinchers 1 1

Texas piojo 18 20

Texas praline 14 17

Texas priss 5 5

Texas redhorse 1 1

Texas resaca 5 5

Texas retama 11 31

Texas sabino 2 2

Texas scissortail 1 3

Texas sendero 9 26

Texas shallot 1 1

Texas sharpshooter 3 3

Texas sook 1 1

Texas sotol 6 28

Texas spaniard 2 2

Texas squinch 1 1

Texas tecolote 2 6

Texas trembles 1 1

Texas tush 4 4

Texas vamos 392 580

Texas vaquero 19 37

Texas vara 2 2

Texas washateria 16 24

Texas wetback 18 18

West arbuckle 8 25

West barefooted 2 2

West barf 44 47

West bawl 10 10

West biddy 3 6

West blab 3 3

West blat 3 3

West boudin 29 36

West breezeway 6 10

West buckaroo 9 10

West bucking 19 21

West bunkhouse 4 5

West caballo 12 13

West cabeza 70 74
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West cack 4 4

West calaboose 1 2

West capper 2 2

West chapping 1 1

West chileno 1 1

West chippy 7 12

West clabber 1 1

West clunk 1 1

West cribbage 1 1

West cutback 1 1

West dally 3 3

West dogger 2 3

West entryway 7 8

West freighter 1 1

West frenchy 4 5

West gaff 2 7

West gesundheit 1 1

West glowworm 1 1

West goop 5 5

West grayback 1 2

West groomsman 1 2

West hackamore 1 2

West hardhead 1 1

West hardtail 2 5

West headcheese 1 1

West heave 3 3

West heinie 1 1

West highline 4 8

West hoodoo 1 2

West husk 1 1

West irrigate 1 1

West jibe 4 5

West jimmies 4 8

West kaput 1 1

West kike 15 16

West latigo 3 4

West lockup 3 4

West longear 1 1
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West lunger 1 1

West maguey 4 5

West makings 7 30

West manzanita 5 6

West mayapple 1 1

West mochila 4 4

West nester 1 1

West nighthawk 6 10

West paintbrush 19 29

West partida 5 5

West peddle 3 3

West peeler 1 1

West pincushion 3 6

West pith 1 1

West plastered 9 9

West podunk 2 2

West pollywog 1 1

West prat 1 1

West puncher 5 5

West riffle 1 1

West ringy 1 1

West rustle 1 1

West rustler 3 4

West seep 4 4

West serape 6 12

West sinker 11 15

West sizzler 5 5

West snoozer 1 1

West snuffy 2 2

West sprangletop 1 1

West sunfish 1 1

West superhighway 1 1

West swamper 2 4

West tallboy 2 2

West tamarack 2 3

West tenderfoot 2 4

West tennie 1 1

West tumbleweed 11 37
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West vamos 392 580

West waddy 2 2

West waken 9 9

West washateria 16 24

West weedy 1 1

West wienie 4 4

West wrangle 4 5

West zori 1 1

Appendix C. Han and Baldwin (2011) Lexical Variants

Table A3: Lexical variants from Han and Baldwin (2011) used in our lexical variant
evaluation. “Canonical” is the canonical form as identified by annotators and “Variant”
is the non-standard variant. “Var VP” and “Var Freq” are the number of voting precincts
that contain the variant and the total frequency. “Can VP” and “Can Freq” are the
number of voting precincts that contain the canonical form and the total frequency.

Variant Canonical Var VP Var Freq Can VP Can Freq Shared VP

ahh ah 1,009 1,319 1,162 1,800 1,839
bb baby 665 861 4,828 17,472 4,908
bc because 2,808 6,220 4,802 17,280 5,276
bday birthday 1,281 2,033 4,650 19,210 4,814
bf boyfriend 974 1,194 2,172 3,398 2,653
bro brother 3,735 12,036 2,747 5,263 4,535
bs bullshit 953 1,308 1,395 1,952 2,016
btw between 686 862 1,890 6,710 2,288
chillin chilling 1,174 1,653 888 1,185 1,773
comin coming 563 681 3,612 10,765 3,737
congrats congratulations 1,542 2,945 881 1,765 2,002
convo conversation 521 586 960 1,259 1,336
cus because 541 675 4,802 17,280 4,876
cuz because 2,288 3,959 4,802 17,280 5,162
da the 2,326 5,497 7,669 598,549 7,670
dat that 1,648 2,900 7,134 142,061 7,145
dawg dog 806 1,240 2,356 5,337 2,750
de the 3,267 21,053 7,669 598,549 7,692
def definitely 617 2,575 1,832 3,224 2,141
doin doing 941 1,272 4,153 11,681 4,334
fam family 2,040 3,921 3,862 12,856 4,376
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fb facebook 1,127 1,637 1,246 1,962 2,037
freakin freaking 554 654 1,555 2,157 1,884
fuckin fucking 1,891 3,064 4,209 12,868 4,547
gettin getting 1,380 1,992 5,066 21,187 5,226
gf girlfriend 772 942 1,474 2,087 1,959
goin going 1,446 2,089 5,881 33,556 5,949
gon gonna 1,227 1,914 5,327 22,704 5,449
hahah haha 901 1,104 4,667 15,314 4,793
hahaha haha 2,597 4,730 4,667 15,314 5,097
hahahaha haha 1,201 1,595 4,667 15,314 4,821
hrs hours 739 1,393 3,043 8,568 3,284
jus just 1,011 1,537 7,074 131,656 7,082
kno know 929 1,377 6,425 55,510 6,453
lawd lord 510 634 1,938 3,244 2,185
lil little 2,990 7,405 4,913 21,558 5,435
lookin looking 1,134 1,534 4,499 55,830 4,690
mins minutes 1,583 14,602 2,352 5,244 3,164
mis miss 561 948 5,103 19,099 5,171
nah no 2,882 5,869 6,526 6,6786 6,604
naw no 882 1,234 6,526 66,786 6,539
nd and 1,972 4,823 7,449 349,628 7,455
nothin nothing 692 839 4,074 10,591 4,213
ohh oh 736 869 5,264 20,804 5,343
pic picture 2,675 6,195 2,981 6,474 4,066
pics pictures 1,521 2,483 2,123 3,707 2,881
playin playing 585 679 3,163 7,102 3,350
pls please 1,107 1,635 4,164 12,972 4,388
plz please 840 1,313 4,164 12,972 4,340
ppl people 2,164 3,896 5,882 34,714 6,020
prolly probably 709 847 2,968 5,624 3,242
sayin saying 626 744 2,831 5,194 3,055
soo so 1,467 2,019 7,105 123,174 7,117
talkin talking 1,029 1,385 3,790 9,014 4,027
tha the 1,394 2,630 7,669 598,549 7,672
tht that 531 738 7,134 142,061 7,135
thx thanks 713 1,031 4,707 19,000 4,791
til till 1,401 2,279 2,887 5,588 3,435
til until 1,401 2,279 3,842 11,761 4,301
txt text 713 886 4,102 10,789 4,229
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umm um 555 625 826 1,090 1,265
ur your 2,810 5,917 6,729 83,776 6,794
wat what 983 1,318 6,617 67,576 6,634
yess yes 576 665 4,924 18,365 4,997
yr year 566 809 4,530 16,848 4,614
yu you 1,082 2,144 7,550 476,752 7,551

Appendix D. Liu et al. (2011) Lexical Variants

Table A4: Lexical variants from Liu et al. (2011) used in our lexical variant evaluation.
“Canonical” is the canonical form as identified by annotators and “Variant” is the non-
standard variant. “Var VP” and “Var Freq” are the number of voting precincts that
contain the variant and the total frequency. “Can VP” and “Can Freq” are the number
of voting precincts that contain the canonical form and the total frequency.

Variant Canonical Var VP Var Freq Can VP Can Freq Shared VP

aye yes 1,055 1,409 4,924 18,365 5,037
b be 2,915 8,312 7,081 212,570 7,108
bae baby 3,001 6,203 4,828 17,472 5,312
bb baby 665 861 4,828 17,472 4,908
bby baby 814 958 4,828 17,472 4,949
bc because 2,808 6,220 4,802 17,280 5,276
bday birthday 1,281 2,033 4,650 19,210 4,814
bout about 3,295 8,238 6,463 94,613 6,594
bro brother 3,735 12,036 2,747 5,263 4,535
bros brothers 635 1,066 1,145 1,899 1,561
bs bullshit 953 1,308 1,395 1,952 2,016
butt but 1,312 1,846 6,808 86,579 6,825
c see 2,332 7,926 6,259 132,803 6,358
cause because 4,439 13,497 4,802 17,280 5,735
chillin chilling 1,174 1,653 888 1,185 1,773
comin coming 563 681 3,612 10,765 3,737
convo conversation 521 586 960 1259 1,336
cus because 541 675 4,802 17,280 4,876
cutie cute 692 880 3,951 10,397 4,073
cuz because 2,288 3,959 4,802 17,280 5,162
da the 2,326 5,497 7,669 598,549 7,670
dat that 1,648 2,900 7,134 142,061 7,145
def definitely 617 2,575 1,832 3,224 2,141
dem them 556 767 5,320 23,430 5,361
dis this 891 1,269 7,247 392,504 7,249
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doin doing 941 1,272 4,153 11,681 4,334
em them 2,585 5,577 5,320 23,430 5,578
fa for 607 942 7,429 438,864 7,431
fam family 2,040 3,921 3,862 12,856 4,376
fav favorite 1,422 2,199 3,531 10,655 39,20
fb facebook 1,127 1,637 1,246 1,962 2,037
feelin feeling 753 950 3,300 7,215 3,511
fml family 750 898 3,862 12,856 4,053
fr for 1,059 1,672 7,429 438,864 7,436
freakin freaking 554 654 1,555 2,157 1,884
ft feet 1,273 11,113 1,303 1,916 2,173
fuckin fucking 1,891 3,064 4,209 12,868 4,547
gettin getting 1,380 1,992 5,066 21,187 5,226
gf girlfriend 772 942 1,474 2,087 1,959
goin going 1,446 2,089 5,881 33,556 5,949
gon going 1,227 1,914 5,881 33,556 5,936
homie home 1,343 2,249 5,314 27,569 5,442
hr hour 852 2,624 2,404 5,606 2,838
hrs hours 739 1,393 3,043 8,568 3,284
ii i 770 9,871 7,699 621,319 7,699
jus just 1,011 1,537 7,074 131,656 7,082
k ok 3,145 7,414 3,940 71,563 4,824
kno know 929 1,377 6,425 55,510 6,453
lawd lord 510 634 1,938 3,244 2,185
lil little 2,990 7,405 4,913 21,558 5,435
lookin looking 1,134 1,534 4,499 55,830 4,690
luv love 1,030 1,390 6,698 76,733 6,714
m am 2,507 7,994 5,176 25,099 5,507
ma my 783 1,231 7,512 309,237 7,512
mi my 2,204 6,510 7,512 309,237 7,551
min minutes 1,203 2,314 2,352 5,244 2,941
mines mine 510 589 2,755 5,078 2,968
mins minutes 1,583 14,602 2,352 5,244 3,164
mo more 585 20,581 5,669 31,459 5,706
n and 3,408 17,544 7,449 349,628 7,478
nada nothing 508 712 4,074 10,591 4,187
nah no 2,882 5,869 6,526 66,786 6,604
naw no 882 1,234 6,526 66,786 6,539
nd and 1,972 4,823 7,449 349,628 7,455
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nothin nothing 692 839 4,074 10,591 4,213
nun nothing 622 788 4,074 10,591 4,195
ohh oh 736 869 5,264 20,804 5,343
pic picture 2,675 6,195 2,981 6,474 4,066
pics pictures 1,521 2,483 2,123 3,707 2,881
playin playing 585 679 3,163 7,102 3,350
pls please 1,107 1,635 4,164 12,972 4,388
plz please 840 1,313 4,164 12,972 4,340
ppl people 2,164 3,896 5,882 34,714 6,020
prolly probably 709 847 2,968 5,624 3,242
pt part 570 2,138 2,647 11,220 2,823
r are 2,280 5,466 6,657 76,873 6,712
rd road 2,123 15,149 2,022 5,075 3,220
sayin saying 626 744 2,831 5,194 3,055
sis sister 857 1,219 2,714 5,257 3,022
soo so 1,467 2,019 7,105 123,174 7,117
sum some 990 1,541 6,017 42,637 6,052
talkin talking 1,029 1,385 3,790 9,014 4,027
th the 3,238 17,089 7,669 598,549 7,672
tha the 1,394 2,630 7,669 598,549 7,672
thang thing 691 876 4,434 12,995 4,550
tho though 3,959 11,480 3,879 9,628 5,092
thot thought 607 791 3,690 8,510 3,844
thru through 1,406 2,281 3,400 8,800 3,818
tht that 531 738 7,134 142,061 7,135
thx thanks 713 1,031 4,707 19,000 4,791
til till 1,401 2,279 2,887 5,588 3,435
trippin tripping 790 975 558 669 1,204
turnt turn 684 836 2,918 5,943 3,161
tx texas 6,275 456,640 4,983 96,986 6,869
txt text 713 886 4,102 10,789 4,229
u you 5,375 34,958 7,550 476,752 7,578
ur your 2,810 5,917 6,729 83,776 6,794
w with 4,195 28,363 7,043 146,575 7,124
wat what 983 1,318 6,617 67,576 6,634
wen when 524 653 6,637 67,470 6,650
wit with 1,769 3,389 7,043 146,575 7,054
wut what 582 724 6,617 67,576 6,627
y why 3,107 11,552 5,974 36,088 6,182
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ya you 4,484 15,215 7,550 476,752 7,563
yea yeah 2,418 4,617 4,499 13,843 4,938
yess yes 576 665 4,924 18,365 4,997
yo you 3,677 10,918 7,550 476,752 7,559
yr year 566 809 4,530 16,848 4,614
yu you 1,082 2,144 7,550 476,752 7,551
yup yes 1,056 1,499 4,924 18,365 5,040
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