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Graph-based semantic representations are popular in natural language processing, where it is
often convenient to model linguistic concepts as nodes and relations as edges between them.
Several attempts have been made to find a generative device that is sufficiently powerful to
describe languages of semantic graphs, while at the same allowing efficient parsing. We con-
tribute to this line of work by introducing graph extension grammar, a variant of the contextual
hyperedge replacement grammars proposed by Hoffmann et al. Contextual hyperedge replace-
ment can generate graphs with non-structural reentrancies, a type of node-sharing that is
very common in formalisms such as abstract meaning representation, but that context-free types
of graph grammars cannot model. To provide our formalism with a way to place reentrancies
in a linguistically meaningful way, we endow rules with logical formulas in counting monadic
second-order logic. We then present a parsing algorithm and show as our main result that this
algorithm runs in polynomial time on graph languages generated by a subclass of our grammars,
the so-called local graph extension grammars.

1. Introduction

Formal graph languages are commonly used to represent the semantics of natural and
artificial languages. They are exceptionally versatile, lend themselves to human inter-
pretation (in contrast to, for example, vector-based semantic representations), and have
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a comprehensive mathematical theory. Recent applications are the abstract meaning
representations (AMRs) (Langkilde and Knight 1998; Banarescu et al. 2013) that capture
the semantics of natural language sentences, and the work of Allamanis, Brockschmidt,
and Khademi (2018), who use graphs to represent both the syntactic and semantic
structure of source code. In these cases, it is common to represent objects as nodes,
and relations as directed edges. Probabilities and other weights are sometimes added to
reflect quantitative aspects such as likelihoods and uncertainties.

In this work, we propose the graph extension grammar for modeling languages
of graph-based semantic representations. We formalize these grammars in a tree-based
fashion in the sense of Drewes (2006). Thus, a grammar consists of a graph algebra A
and a tree grammar g. The trees generated by g are well-formed expressions over the
operations of A. Each generated tree thus evaluates into a graph, meaning that the tree
language generated by g evaluates to a graph language. If we are careful about how we
construct and combine g and A, we can make parsing efficient. In other words, given a
graph G, we can find a tree in the language of g that evaluates to G under .A—or decide
that no such tree exists, meaning that G is not in the graph language specified by g and
A—in polynomial time. The main contribution of this work is the design of the algebra.

As a guiding example, we take the aforementioned AMR. (Note that since this
article focuses on parsing in terms of membership problem solving, we do not go into
the extensive string-to-AMR parsing literature.) AMR is characterized by its graphs
being directed, acyclic, and having unbounded node degree. The concept was first
introduced by Langkilde and Knight (1998) based on a semantic abstraction language
by Kasper (1989). The notion was refined and popularized by Banarescu et al. (2013) and
instantiated for a limited domain by Braune, Bauer, and Knight (2014). To ground AMR
in formal language theory, Chiang et al. (2018) analyze the AMR corpus of Banarescu
et al. (2013). They note that even though the node degree is generally low in practice,
this is not always the case, which speaks in favor of models that allow an unbounded
node degree. Regarding the treewidth of the graphs in the corpus, they find that it never
exceeds 4 and conclude that an algorithm can depend exponentially on this parameter
and still be feasible in practice.

In the context of semantic graphs, it is common to talk about reentrancies. Figure 1
illustrates this concept with a pair of AMR graphs, both of which require node sharing,
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Figure 1
Semantic graphs for the pair of sentences “The boy tries to believe the girl” and “The boy wants

s 1// “ v
7

the girl to believe herself”. The nodes represent the concepts “boy”, “gir try”, “want”, and
“believe”. The edges labeled “arg0” give the agent for each verb, and the edges labeled “arg0”
the patient. The bold edges indicate reentrancies: on the left-hand side the structural reentrancy
needed for the control verb “try”, and on the right-hand side a non-structural one used for
co-referencing. In the latter case, the “argl” edge could equally well have targeted the “boy”
node, in which case the semantics would be different but still sound.
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or reentrant edges, to express the correct semantics. We propose to distinguish between
two types of reentrancies: In the first graph, the reentrancy is structural, meaning that
the boy must be the agent of whatever he is trying, so the “arg0” edge can only point to
him. In the second graph, the reentrancy is non-structural in the sense that although
in this particular case the girl believes herself, there is nothing to prevent her from
believing someone else, or that someone else believes her. In general, we speak of (1)
structural reentrancies when they are syntactically governed, for example, by control
or coordination, and of (2) non-structural reentrancies when they can in principle refer
to any antecedent, in some sense disregarding the structure of the graph in favor of
the roles of the concepts. Structural reentrancy can, for example, also take the form of
subject control as in “They persuaded him to talk to her”, where the person who talks
and the person who was persuaded must be one and the same. In contrast, “[...], but
she liked them” is an example of (2) since the antecedent of “them” may be picked from
anywhere in “[...]” for the semantic representation to be valid.

A second important characteristic of AMR and other notions of semantic graphs in
natural language processing is that certain types of edges, like those in Figure 1, point
to arguments of which there should be at most one. For example, the concept “try” in
Figure 1 must only have one outgoing “arg0” edge. Other edges, of types not present
in Figure 1, can for example represent modifiers, such as believing strongly and with a
passion. Outgoing edges of these types are usually not limited in number.

It is known that contextual hyperedge replacement grammars (CHRGs), an exten-
sion of the well-known context-free hyperedge replacement grammars (HRGs), can
model both structural and non-structural reentrancies (Drewes and Jonsson 2017). To
achieve this, contextual hyperedge replacement rules may contain so-called context
nodes which, during the application of a rule, are identified with any appropriately
labeled node of the graph to which the rule is applied. In particular, this allows for
the generation of non-structural reentrancies, using rules that contain edges pointing
to context nodes. Despite this added generative power compared to HRGs, previous
research on CHRGs has resulted in a pumping lemma (Berglund 2019) for the generated
graph languages and a parser generator (Drewes, Hoffmann, and Minas 2017, 2021,
2022) that, for a certain subclass of CHRGs, yields a parser that runs in quadratic (and in
the common case, linear) time in the size of its input graph.! However, similarly to LL-
and LR-parsers for ordinary context-free languages, and in contrast to our algorithm,
the parser generator may discover parsing conflicts. In this case it is unable to construct
a parser. Compared to the string case, the possible reasons for conflicts are much subtler,
which makes grammar construction a complex and error-prone manual endeavor.

For this reason, we are now proposing graph extension grammars, a type of graph
grammar that makes use of the idea of context nodes in a different way. It enables poly-
nomial parsing based on an entirely syntactic condition on the rules (our main result
Theorem 5) while retaining the ability to specify graph languages with reentrancies of
both type (1) and (2). One key property of these grammars that allows for polynomial
parsing is that, intuitively, nodes are provided with all of their outgoing edges the
moment they are created. Using ordinary contextual hyperedge replacement, this would
thus result in graph languages of bounded out-degree, the bound being given by the
maximal number of outgoing edges of nodes in the right-hand sides of productions.
To generate semantic graphs in which a concept can have an arbitrary number of
dependents, we use a technique from Drewes et al. (2010) known as cloning. Here,

1 The graph parsing tool Grappa is available at: https://www.unibw.de/inf2/grappa.
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tree-based graph generation is helpful because it allows us to incorporate both contex-
tuality and cloning in a natural way without sacrificing efficient parsability. While tree-
based hyperedge replacement grammars are well-known to be equivalent to ordinary
ones (see below), the tree-based formulation does make a difference in the contextual
case as it avoids the problem of cyclic dependencies that has not yet been fully charac-
terized and can make parsing intractable (Drewes, Hoffmann, and Minas 2019).

The creation of reentrant edges via context nodes requires a control mechanism
that ensures that edges are placed in a meaningful way. One must, for example, make
certain that co-references refer to entities of the correct type and plurality. For such
conditions, we use monadic second-order (mso) logic since it has many well-known ties
to the theory of hyperedge replacement. In particular, the theorem commonly known as
Courcelle’s theorem (see, e.g., Courcelle and Engelfriet 2012) states that mso formulas
can be evaluated in linear time on graphs of bounded treewidth. The theorem is thus
applicable to graphs generated by HRGs, because they generate graph languages of
bounded treewidth. Unfortunately, the addition of non-structural reentrancies destroys
this property and can cause a generated graph to have a treewidth proportional to the
size of the graph. Despite this, we show in our main result that, if the mso formulas
involved are local in a sense that restricts their ability to make general statements
about the structure of the graph, then Courcelle’s theorem can be exploited to solve the
membership problem in polynomial time. We also show that the membership problem
is NP-complete if no restriction is imposed on the formulas.

We first prove our main result for graph extension grammars that are edge agnostic,
meaning that their mso formulas are not allowed to make use of the edge predicate.
Since this is a rather severe limitation that does not allow the placement of reentrant
edges to be controlled by structural conditions at all, we show afterwards how it can
be relaxed. We do so by allowing the logic to make use of predicates which, for a
given node, state that this node belongs to a part of the graph having a certain form.
The resulting local graph extension grammars are much more general than the edge-
agnostic ones, but they still allow for polynomial parsing. We note here that, in fact,
our algorithm works correctly even without any such restriction, the only downside
being a lack of efficiency. With this in mind, it may be worth noting that neither edge
agnosticism nor locality are needed to be able to apply Courcelle’s theorem if we are
only interested in parsing graphs of bounded treewidth. For AMR, by checking the
AMR bank, Chiang et al. (2018) observed that, although there is no theoretical upper
limit on the treewidth of AMR graphs, in practice AMR graphs of treewidth larger
than 5 are extremely rare. Hence, if one is willing to place such a bound on the treewidth
of acceptable AMR graphs, then Courcelle’s theorem and thus our result can be used
even without the locality assumption.

Regardless, it is our belief that locality, from a practical point of view, is not a
particularly severe restriction. In fact, even edge agnosticism may be tolerable in many
practical cases. This is because, as long as we are interested in the generation of AMR-
like structures, the primary use of context nodes is to be able to describe reentrancies
caused by language elements such as pronouns. Simplifying the situation only a little,
one may say that a pronoun may refer to any suitable antecedent in the sentence,
wherever and in whichever role it occurs. This is essentially saying that their placement
is edge agnostic even from a linguistic point of view. For example, if the pronoun “he”
occurs in a sentence (or its AMR graph) that also has an occurrence of “Bob” then the
former may refer to the latter, regardless of which other edges point to Bob. The only
thing that (usually) matters is whether the label “Bob” refers to a person that uses the
personal pronoun “he”.
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1.1 Related Work

Tree-based generation dates back to the seminal article by Mezei and Wright (1967),
which generalizes context-free languages to languages over arbitrary domains, by eval-
uating the trees of a regular tree language with respect to an algebra.? Operations on
graphs were used in this way for the first time by Bauderon and Courcelle (1987).
See the textbook by Courcelle and Engelfriet (2012) for the eventual culmination of
this line of work. Graph operations similar to those used here (though without the
contextual extension) appeared first in Courcelle’s work on the mso logic of graphs
(Courcelle 1991, Definition 1.7). Essentially, if the right-hand side of a production con-
tains k nonterminal hyperedges, it is viewed as an operation that takes k hypergraphs as
arguments (corresponding to the hypergraphs generated by the k subderivations) and
returns the hypergraph obtained by replacing the nonterminals in the right-hand side
by those k argument hypergraphs. By context-freeness, evaluating the tree language
that corresponds to the set of derivation trees of a grammar of such productions (which
is a regular tree language) yields the same set of hypergraphs as is generated by the
grammar itself.

This two-step approach is somewhat similar to that of lexical-functional grammar
(LFG) by Kaplan and Bresnan (1982): In LFG, a c-structure containing syntactical in-
formation about a sentence and an f-structure that provides its semantic information
are combined to create a representation for a language user’s syntactic knowledge. The
c-structure is comparable to a derivation tree, while the semantic f-structure that applies
semantic knowledge on top of that can be compared to the algebraic operations on
graphs. Using tree formalisms for capturing linguistic aspects such as co-occurrence
is not new: See, for example, the work by Joshi and Levy (1982) for the usage of trees
to impose local constraints on sentences. Similarly, Carroll et al. (1999) investigate the
practical implications of the extended domain of locality of tree-adjoining grammars.

Several formalisms have been put forth in the literature to describe graph-based
semantic representations in general and AMR in particular. Most of these can be seen
as variations of HRGs (see Habel and Kreowski 1987; Bauderon and Courcelle 1987;
Drewes, Kreowski, and Habel 1997). It was established early that unrestricted HRGs
can generate NP-complete graph languages (Aalbersberg, Rozenberg, and Ehrenfeucht
1986; Lange and Welzl 1987), so restrictions are needed to ensure efficient parsing. To
this end, Lautemann (1990) proposes a CYK-like membership algorithm and proved
that it runs in polynomial time provided that the language satisfies the following
condition: For every graph G in the language, the number of connected components
obtained by removing s nodes from G is in O(log#), where n is the number of nodes
of G and the constant s depends on the grammar. Lautemann’s algorithm is refined
by Chiang et al. (2013) to make it more suitable for natural language processing (NLP)
tasks, but the algorithm is exponential in the node degree of the input graph.

In a parallel line of work, Quernheim and Knight (2012) propose automata on
directed acyclic graphs (DAGs) for processing feature structures in machine translation.
Chiang et al. (2018) invent an extended model of these DAG automata, focusing on
semantic representations such as AMR. For this, the left- and right-hand sides in their
DAG automata may take the form of restricted regular expressions. Blum and Drewes
(2019) complement this work by studying language-theoretic properties of the DAG

2 Mezei and Wright formulate this in terms of systems of equations, but the essential ideas are the same.
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automata, establishing, among other things, that equivalence and emptiness are decid-
able in polynomial time.

Various types of graph algebras for AMR parsing are described in the work by
Groschwitz et al. (see, e.g., Groschwitz, Koller, and Teichmann 2015; Groschwitz et al.
2017, 2018; Lindemann, Groschwitz, and Koller 2019, 2020). A central objective is to
find linguistically motivated restrictions that can efficiently be trained from data. An
algorithm based on such an algebra for translating strings into semantic graphs is
presented by Groschwitz et al. (2018): operations of arity zero denote graph fragments,
and operations of arity two denote binary combinations of graph fragments into larger
graphs. The trees over the operations of this algebra mirror the compositional structure
of semantic graphs. The approach differs from ours in that their graph operations are
entirely deterministic, and that neither context nodes nor cloning are used. Moreover,
as is common in computational linguistics, evaluation is primarily empirical.

Through another set of syntactic restrictions on HRGs, Bjorklund et al. (2021)
and Bjorklund, Drewes, and Ericson (2019) arrive at order-preserving DAG grammars
(OPDGs)—with or without weights—which can be parsed in linear time. Intuitively,
the restrictions ensure that each generated graph can be uniquely represented by a
tree interpreted by a particular graph algebra. Despite their restrictions, OPDGs can
describe central structural properties of AMR, but their limitation lies in the modeling
of reentrancies. Of the previously discussed types of reentrancies, type (1) can to a large
extent be modeled using OPDGs. Modeling type (2) cannot be done (except in very
limited cases) since it requires attaching edges to the non-local context in a stochastic
way, which cannot be achieved using hyperedge replacement alone.

The CHRGs by Drewes, Hoffmann, and Minas (2012) extend the ordinary HRGs
with so-called contextual rules, which allow for isolated nodes in their left-hand sides.
Contextual rules can reference previously generated nodes that are not attached to the
replaced nonterminal hyperedge and add structure to them. Even though this formal-
ism is strictly more powerful than HRG, it inherits several of the nice properties of
HRG. In particular, there are useful normal forms and the membership problem is in
NP (Drewes and Hoffmann 2015) for certain subclasses. However, as indicated above,
the conditions defining these subclasses are semantic ones and thus difficult to handle.
Here, we set out to use the idea of context nodes, enriched by a benign form of cloning,
in a different way to develop a type of graph grammar that is sufficiently descriptive
to model structural and non-structural phenomena in semantic graphs such as AMR,
while allowing for easily verifiable syntactic conditions that result in polynomial time
membership tests.

A very preliminary version of this work was published as Bjorklund, Drewes, and
Jonsson (2021), the main result being a parsing algorithm that runs in time o>+
where T is the maximal type of any extension operation in the grammar (see Sections 2
and 3 for definitions). The graph extension grammars in that version restrict the match-
ing of context nodes to nodes in the argument graph solely via node labels (that is,
their node labels have to be identical). The use of mso formulas for that purpose is
more general, simplifies the formalism, and allows us to take advantage of Courcelle’s
theorem in the main proof of the article while preserving the upper bound on the
running time of O(n***1). Furthermore, it enables us to extend polynomial parsing
to so-called local graph extension grammars. Their extension operations use a logical
vocabulary enriched by so-called local node predicates, thus relaxing the assumption of
edge agnosticism.

The remainder of this article is structured as follows. In the next section, we gather
the basic definitions regarding graphs and logic on graphs. In Section 3 we introduce

846



Bjorklund, Drewes, and Jonsson Graph Languages with Non-Structural Reentrancies

graph extension grammars and discuss an example. Section 4 shows that graph ex-
tension grammars can generate NP-complete graph languages. Readers who are less
interested in NP-completeness results may safely skip that section, or consider it as
another illustration of the concept of graph extension grammars. The major technical
section is Section 5, in which we present the parsing algorithm and show that it can be
implemented to run in polynomial time for edge-agnostic graph extension grammars.
Subsequently, in Section 6, we show how the edge agnosticism requirement can be
relaxed without sacrificing polynomial parsing, by turning to local graph extension
grammars. Finally, Section 7 concludes.

2. Preliminaries

We first recall standard definitions from discrete mathematics, automata theory, and
logic. The set of natural numbers (including 0) is denoted by N, and for n € N, we let [1]
abbreviate {1,...,n}. In particular, [0] = (). For a set S, we denote by p(S) the powerset
of S. The set of all finite sequences over S is denoted by S*; the subset of S* containing
only those sequences in which no element of S occurs twice is written S®. Both contain
the empty sequence €. For a string w € 5%, we let [w] denote the set of all elements of
S occurring in w.3 The canonical extensions of a function f: S — T to S* and to ©(S)
are denoted by f as well, that is, f(s - - -s,,) = f(51) - - - f(sp) for sq,...,s, € S, and f(S') =
{f(s) | s € S’} for S’ € p(S). The composition of f and a function g: R — S is the function
fog: R— T defined as (f o g)(r) = f(g(r)) for all r € R. The restriction of f to S’ C S is
denoted by f|s/. We let the priority union of two functions f;: S; — Ty and fo: S, — T
be the function f; U f,: S U S, — T U T, given by

fi(s) ifse S

(ilfo)s) = {fz(S) ifse S, \ S

Hence, in case of conflicts the priority union gives priority to the first operator and is
thus not commutative.

We sometimes use boldface letters x to denote (finite) indexed sequences, whose
individual elements are then denoted as x;, that is, x = x7 - - - x; where k = |x|. Alterna-
tively, we may sometimes denote x; by x(i).

Trees and Algebras

A ranked alphabet is a pair A = (%, k) such that ¥ is a finite set of symbols and rk: ¥ —
N is a function that assigns to every f € ¥ a rank. We usually keep rk implicit, thus
notationally identifying A with 3, and write f®) to indicate that rk(f) = k.

The set Ty, of all well-formed trees over a ranked alphabet ¥ is defined inductively:
It is the smallest set of expressions such that, for every f® € X and all trees ty,...,t; €
Tx,wehavef[ty,..., ] € Ty.Inparticular f[] for k = 0, which we henceforth abbreviate
by f,is in Ty,.

We refer to the subtrees of a tree by their Gorn addresses, defining the set
addr(t) C N* of addresses in a tree t, and the subtrees they designate, inductively in the

3 The similarity to the notation [#], n € N, is intentional, since both operations generate sets.
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usual way: An address is a string of numbers which, when read from left to right, shows
how to descend from the root of the tree down to the node in question. Every number in
the string corresponds to the child number of the current node to be descended to. Thus,
formally, consider a tree t = f[ty, ..., t]. Then addr(t) = {e} UU;cpqlicc | o € addr(t;)}
(where the basis of the induction is the case k = 0). For all « € addr(t), we let

t/oc:{t fa=c¢

t;/o  if « = it for somei € [k] and o € addr(t;)

Let X be a ranked alphabet. A Y-algebra is a pair A = (A, (f4)rex) where A is a set
called the domain of A, and f 1 is a function f;: A¥ — Aforevery f¥) € ¥. Givenatreet €
Ts;, the result of evaluating t with respect to A is denoted by wal 4(t): for t = f[t1, ..., tx]

we let wal 4(t) = fa(val o(t1), . .., val 4(t)).
To generate trees over the operations of an algebra, we use reqular tree grammars.

Definition 1 (Regular Tree Grammar)
A regular tree grammar is a tuple g = (N, 3, P, S) consisting of the following compo-
nents:

*  Nisaranked alphabet of symbols, all of rank 0, called nonterminals.
e X isaranked alphabet of terminals which is disjoint with N.

. P is a finite set of productions of the form A — f[A1, ..., Ax] where, for
keN,f® cx,and A Ay,..., Ay € N.

. S € N is the initial nonterminal.

We also say that g is a regular tree grammar over 3.

While we are going to work with algebras over graph domains, let us illustrate the
general idea by considering an algebra over the rational numbers Q. In this setting, the
operations could be the standard arithmetic ones, such as +, —, /, X, all binary, together
with constant-valued operations in Q, all of arity zero. It is hopefully easy to see how
the trees +[x[2, 1],2] and /[10, —[10, 4]] evaluate to 3 and %, as they are mere syntactic
variants of the common arithmetic expressions (2 x 1) 4+ 2and 10/(10 — 4), respectively.

Definition 2 (Regular Tree Language)

Let g = (N, %, P,S) be a regular tree grammar. Then (L4(g))aen is the smallest family
of sets of trees such that, for every A € N, a tree f[ty,...,#] is in La(g) if there is a
production A — f[A4,...,Ax] in P for some k € N and A, A, ..., A € N, such that t; €
L4, (g) for all i € [k]. The regular tree language generated by g is L(g) = Ls(g).

Graphs and Counting Monadic Second-Order Logic
We now define the type of graphs considered in this article, and the operations used to

construct them. In short, we work with node- and edge-labeled directed graphs, each
equipped with a sequence of so-called ports. From a graph operation point of view, the

848



Bjorklund, Drewes, and Jonsson Graph Languages with Non-Structural Reentrancies

sequence of ports is the “interface” of the graph; its nodes are the only ones that can
individually be accessed. The number of ports determines the type of the graph.

Definition 3 (Graph)
A labeling alphabet (or simply alphabet) is a pair L = (L, L) of finite sets L and L of
labels. A graph (over L) is a system G = (V, E, lab, port) where

. V is a finite set of nodes,
. ECVxLxVisa (necessarily finite) set of edges,
e lab: V — L assigns a node label to every node, and

e port € V® is a sequence of nodes called ports.

The type of G is type(G) = |port|. The set of all graphs (over an implicitly understood
labeling alphabet) of type k is denoted by Gy. For an edge e = (1, z,v) € E, we letsrc(e) =
u (short for source) and tar(e) = v (short for target).

In the following, if the components of a graph G are not explicitly named, they will
be denoted by Vg, Eg, labg, and port, respectively.

The restriction of a graph G to V C Vi and E C E is defined if [port;] C V and
E CV x L x V,and is in this case given by (V, E, lab|y, port ).

A morphism from a graph G = (V,E, lab, port) to a graph G’ = (V/, E/,lab’, port') is
a structure and label preserving function p: V — V’. More precisely, we require that
lat’ (w(v)) = lab(v) for all v € V, (w(u),z, w(v)) € E’ for all (u,z,v) € E, and w(port) is a
prefix of port’ (that is, every port of G is mapped to the respective port of G’, but G’ may
contain additional ports). The fact that p is such a morphism is also denoted by writing
u: G — G'. Gis included in G', denoted by G C G/, if the identity on V is a morphism
from Gto G'.

A morphing of a graph G = (V, E, lab, port) into a graph G’ = (V',E/, lab’, port’) is a
surjective morphism p: G — G’ which is also surjective on edges and ports, thatis, E' =
{(n(n),z, n(v)) | (u,2z,0) € E} and port’ = p(port). Given such a morphing, we denote G’
by w(G), and call it a morph of G. A morphing is an isomorphism if it is bijective; if an
isomorphism between G and G’ exists, then these graphs are isomorphic.

As described in Courcelle and Engelfriet (2012), graphs are examples of (finite)
relational structures. Such a structure consists of a finite set of objects (in the case of
graphs these are the nodes of the graph*) and a finite set of relations on these objects.
Selecting the set of relations to be considered and their arities determines which type of
structures we talk about. To be able to view (our type of) graphs as relational structures
we need unary relations lab, for every node label a € L, so that lab,(v) is true if the node
v carries the label a. We also need unary relations port; for all port numbers i to express
that a given node is the i-th port. Finally, we need binary relations edg, for all z € L in
order to express that there is an edge labeled z between two nodes, that is, edg, (1, v) is
true if there is an edge labeled z from u to v.

4 We get an alternative definition of graphs as relational structures if we additionally consider edges as
objects, rather than as relations as we will do here; see Courcelle and Engelfriet (2012) for a discussion of
the difference.

849



Computational Linguistics Volume 49, Number 4

The formal definition thus reads as follows:

Definition 4 (Relational Structure of Graphs)
Let G be a graph. Then we identify G with the finite relational structure (V, (lab,),¢; ,

(edg,).cr, (POTY)ic[ype(cy)) Such that®

. V¢ is the domain (or universe) of the structure,

e foreverya € L, lab, is the unary predicate such that lab, () holds if and
only if labg(u) = a,

e foreveryz € L, edg, is the binary predicate such that edg, (1, v) holds if
and only if (u,z,v) € Eg, and

e foreveryi € [type(G)], port; is the unary predicate such that port;(u)
holds if and only if u = port(i).

We use predicate logic to express properties of (nodes in) graphs. While, in princi-
ple, any logic may be used, we focus on counting monadic second-order (cmso) logic.
Thus, formulas can make use of individual and set variables, denoted by (possibly
indexed) lowercase letters x, y, . . . and uppercase letters X, Y, .... In the following, we let
Vp and V; be disjoint countably infinite sets of individual and set variables, respectively.
The set CMSO of all cmso formulas expressing graph properties is inductively defined
to be the smallest set of formal expressions satisfying the following conditions:

e The formulas true and false are in CMSO.

. Forallx,y € Vy,a € L,zeL,and i € N, the formulas x = y, lab,(x),
edg.(x,y), and port;(x) belong to CMSO.

. For all x € Vy and X € V;, the formula x € X is in CMSO.

o Forall X € V; and all 7,5 € N with r < s, the formula card,¢(X) is in
CMSO.

. Forall ¢ € Vy UV, Q € {V, 3}, and formulas ¢, ¢’ € CMSO, the formulas
(Q&.9), (¢ A @), and (—@) belong to CMSO.

As usual, we can omit parentheses when writing down formulas if there is no
danger of confusion.

A cmso formula ¢ may be denoted by ¢ (X, x), where X € V1® andx € VS’B, to express
the fact that the free variables occurring in ¢ are in [X]U [x].° Given a graph G, an
assignment appropriate for a formula @ (X, x) is a mapping asg that assigns a subset of
Vi to every X € [X] and an element of V; to every x € [x]. Given such an assignment,
@ can be evaluated in G in the usual way, where card, ;(X) (with X € X) is satisfied if
and only if |asg(X)| = r (mod s).If asg(X) = V and asg(x) = v, we let G F ¢(V,v) denote
the statement that ¢ is satisfied (i.e., evaluates to true) in G under asg. As usual, we can
make use of other Boolean connectives such as V and — in formulas since they can be
expressed in terms of A and —. For example, for cmso formulas ¢ and ¢’, the formula

5 Courcelle and Engelfriet (2012) denote this structure by |G|.
6 Note that this notation does not imply that each of the variables actually occurs in @.
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@ — @’ is equivalent to —(¢@ A =¢"), in the sense that the two formulas are satisfied by
the same set of assignments, and ¢ V ¢’ is equivalent to (=@ A —¢").

In Section 5, we will make use of the so-called Backwards Translation theorem for
quantifier-free operations. These quantifier-free operations map relational structures to
other relational structures, in our case graphs to graphs. The formal definition of these
operations takes some getting used to (as so much in the area of formal logic). In the
next paragraphs, we thus try to convey the intuition first. However, we would also
like to point out that quantifier-free operations and the Backwards Translation theorem
are “merely” technical tools we use to formulate the proof of our main result. They
are not used in the graph extension grammars themselves. Hence, readers who are
just interested in the formalism and the overall parsing strategy may safely skip the
remainder of this section.

The idea behind quantifier-free operations, which is a special case of the more
general cmso operations, is to use a collection of logical formulas to describe a mapping
from one type of relational structure to another. Hence, the input is a relational structure
consisting of a set of objects (like the nodes of a graph) and a number of relations on
these objects. The output is supposed to be a similar relational structure, though in
general it can be a structure involving other relations. Now, we can use logical formulas
to define both the domain of the resulting structure and each of its relations in terms of
the input structure. For this, we need two things:

1.  adomain formula  with one free individual variable (the “argument” of
the formula) which, when applied to an object in the input structure,
determines whether this object is to be an object in the output structure
(value true) or not (value false);”

2. for every relation R; of the output structure, a formula Og, with {3; free
variables, where [3; is the arity of R;. If this formula, applied to objects
v1,...,0g, of the input structure, yields true, then (vy,...,v3,) is a tuple
in the relation R; of the output structure (provided that all of vy, ..., vg,
are in its domain, as dictated by the domain formula).

Naturally, both the domain formula and the formulas determining the output relations
can make use of the relations of the input structure. The mappings definable in this way
are called quantifier-free operations because we shall forbid the formulas to make use
of quantifiers.

We are actually only interested in the case where both input and output structures
are graphs. Hence, the purpose of § is to pick the nodes to be included in the output
graph, while the formulas O, define its node labels, edges, and ports.

The following formal definition provides one more element, which for simplicity
was left out in the explanation above: A quantifier-free operation can have additional
parameters. These parameters are represented by free set variables Xj,..., X, in the
formulas and are thus to be instantiated by sets of nodes of the input graph when the
operation is “called”. Hence, the operation can yield different output graphs for one

7 Thus the output structure cannot be bigger than the input structure in terms of the number of objects in it.
One can remedy this by considering domain formulas with several free variables, which then determine
whether a tuple of objects of the original formula is an object of the output formula, but we will not need
this in the current article.
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and the same input graph depending on those parameters. In later parts of the article,
these parameters will be used to be able to select certain nodes that are meant to play a
distinguished role in the construction formalized by the operation.

Definition 5 (Quantifier-Free Operation on Graphs)

Let Ry,...,Rg be a list of the relations in Definition 4, where R; has the arity 3; for
all i € [k]. Let Xy,..., Xy € V) and x,x1,xp,--- €V be (pairwise distinct) variables.
A quantifier-free operation & in Xj,..., X, is specified by quantifier-free formulas
8,0r,,-..,0g, such that

. 0 is a formula with the free variables X3, ..., X,, x, and

. every Og,, for i € [k], is a formula in Xy, ..., X¢, x1,...,Xp,,

and we write & = (§,0g,,...,0g,). Given a graph G and node sets Uy,..., Uy C Vg, its
image H = &(G, Uy, ..., U;) under & is defined as follows:

. The nodes of H are all v € Vz such that G = 6(Uy, ..., U, 0).

. Givennodes vy, ...,0g, € Vg, Ri(v1,...,0vg,) holds in the image H if and
only if G |= 0g,(Un, ..., Ug,v1,...,0p,).

Remark 1

A quantifier-free operation as defined above does not necessarily map graphs to
graphs, but to slightly more general relational structures. More precisely, the resulting
structures do not necessarily have exactly one port of each kind, as we may have
GE Oport, (U1, - - ., Up, v1) for any number of nodes v; € Vj (including zero). Hence, the
output of a quantifier-free operation may strictly speaking not be a graph. We may
disregard this formal inconsistency for two reasons. Firstly, the quantifier-free opera-
tions constructed later in this article yield true graphs by construction, meaning that
the problem does not occur. Secondly, the results we are going to use (the Backwards
Translation theorem and Courcelle’s theorem) both apply not only to graphs but to
general relational structures.

Example 1 (Quantifier-Free Operation)

LetkeN,L=1{}, L={—~}, and G € G; a graph, viewed as a relational structure
(Vg, (1ab,) ¢, (edg,).cr, (POrt;)ic(npe(c))) in the way described in Definition 3. We dis-
cuss a quantifier-free operation & = (5, (Ogr)rer) in the set variables Xj, X5, X3 € V4,
where R = {lab, |a € L} U {edg, | z € L} U {port; | i € [k]}. We choose constitute for-
mulas of & so that the application of £ to G with set arguments Uy, U,, U3 C V¢ has the
following effect: The set of nodes is restricted to (U; U U,) \ Us. All edges that involve
a node not in U, are kept, but switch their label (from “—" to “~” or vice versa), and
the nodes in U, form a clique of edges labeled “—”. The output graph has no ports. To
achieve this, we define the formulas as follows:

® 6(>(1/}(2/>(3/'x) = ((xE Xl)v(xe XZ))/\ﬁ(x € X3)/
expressing that a node (represented by the variable x) belongs to the
output graph if and only if it is in (X; U X) \ X3,
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* O, (X1, Xa, X3,x1) = lab,(x1) foreverya € L,
expressing that nodes in the output graph inherit their label from the
input graph,

*  Oeqg (X1, X2, X3,x1,%2) = edg.—-(x1,X2) V (x1 € X Axa € X2),
expressing that there is an edge labeled “—” between two nodes of the
output graph if these two nodes are connected by a “-~” edge in the input
graph or both belong to Xj,

*  Oedg (X1, X2, X3,x1,%2) = edg_(x1,x2) A =(x1 € X2 Axp € X3),
expressing that there is an edge labeled “~” between two nodes of the
output graph if these two nodes are connected by a “—" edge in the
input graph and at least one of them does not belong to X;,

*  Opor, (X1, X2, X3, x) = false for every i € [k], expressing that the output
graph has no ports.

Figures 2 and 3 show an example pair of input and output graphs, where the parameters
corresponding to Xi,..., X5 are Uy, ..., Us, indicated by the green, blue, and orange
areas of Figure 2. In these figures, edges labeled “—" and “--” are drawn as solid and
broken lines, respectively, and we do not indicate edge directions, for simplicity.

We note here that the quantifier-free operations defined in Courcelle and Engelfriet
(2012) satisfy £ =0, that is, they do not depend on arguments Uj,...,U;. However,
the extension to { > 0 will turn out to be technically convenient and is mathematically
insignificant because one can alternatively consider relational structures with additional
unary predicates Uy, ..., U, to achieve the same effect in the setting of Courcelle and
Engelfriet (2012). A similar remark applies to Theorem 1 below.

Figure 2

An input graph G to the quantifier-free operation & in Example 1. The sets of nodes U, i € [3],
are parameters that (in this particular example) control which nodes are to be included in the
output graph H shown in Figure 3. The graph has two ports, indicated by the numbers 1 and 2.
Solid and dashed lines represent edges with two different labels; see Example 1 for details.
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Figure 3

The result H of applying the quantifier-free operation & in Example 1 to the graph G in Figure 2.
Nodes outside U; U U, and those in U; have been discarded, edges involving some node outside
U, have switched their labels, and the nodes belonging to U, \ U; now form a clique. The node
that previously was the second port has become an ordinary node.

Now we can state the Backwards Translation theorem (which is a weak version
of a similar theorem for the much more general CMSO-transductions [Courcelle and
Engelfriet 2012, Theorem 7.10]). This theorem states that, if we have a quantifier-free
operation &, any property of £(G) that can be expressed by some cmso formula ¢ can
also be expressed as a property of the original graph G by means of a cmso formula ¢’
(obtained by, intuitively, “backwards translating” ¢ along &).

Theorem 1 (Backwards Translation Theorem [cf. Courcelle and Engelfriet 2012, Theo-
rem 5.47])

For every quantifier-free operation & in set variables Xi,...,X¢ € V; and every
formula @(Y1,..., Yk, ¥1,---,Yp) € CMSO, there is a formula ¢'(Xy,..., X, Yq,...,
Y, v1, ..., yx) € CMSO such that the following holds:

Let Gbe a graph, Uy,..., U, CUg, and H = &(G, Uy, ..., Uy). Then we have
GE¢WUy,...,U,Vy,...,Vi,0p,...,0p)ifand only if H = @(Vy, ..., Vi, 01, ..., 00),
forall Vq,..., Vi CVyandoy,..., 0y € V.

Example 2 (Backward Translation)

Let us return to the quantifier-free operation  of Example 1, and the pair of input and
output graphs in Figures 2 and 3. Consider now a formula ¢ which, say, states that a
pair of nodes v; and v, given as parameters to this formula (i.e., v; and v, correspond to
free variables y; and y, in the formula) are such that every node that is not in a given set
V1 (corresponding to a free set variable Y7 in the formula) is reachable from at least one
of v; and v, via an undirected path. Reachability is known to be definable in mso logic
(and hence in its extension cmso). The property can, for example, be expressed through
the predicate REACHABLE(x, y), which is true if and only if x = y or there exists a set X
of nodes such that:

1. xy e X,

2. everyz € {x,y} has an edge to exactly one element in X \ {z},

3. everyz € X\ {x,y} has edges to exactly two elements in X \ {z}.
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It should be straightforward to verify that each of the properties 1-3 is cmso definable.
Using the predicate REACHABLE, we can define @ (Y1,¥1,Y2) as Vy.ap, where

P =—(y € Y1) = (REACHABLE(Y, 1) V REACHABLE(y, i»))

If we have a graph such as H in Figure 3, a set V7 of nodes in H, and two further
nodes vy and v; in that graph, ¢(Vy,v1,v,) expresses the property mentioned above,
that is, all nodes except possibly those in V; are reachable from at least one of v; and v;.
In Figure 3, this is obviously true.

What the backwards translation theorem tells us is that we can construct another
formula ¢’ which, if applied to the input graph G to &, checks whether ¢ would be
satisfied in its output graph H. In other words, in order to find out whether & applied to
G will yield a graph in which @ is satisfied, we do not need H but can instead evaluate
the new formula ¢’ in G.

Recall, however, that H depends not only on G but also on the additional set
parameters; in this particular example, H = &(G, Uy, Uy, Us). Clearly, this means that the
formula ¢’ will have to take Uy, Uy, U; into account. Hence, ¢’ must be provided with
these as auxiliary parameters, in addition to the original parameters of ¢. This is why
the backwards translation turns @(Y1,1,¥2) into ¢'(X3, Xo, X3, Y1, ¥1,2) instead of the
simpler form ¢’(Y1,y1,2).

We shall not attempt to construct the concrete formula ¢’ for this example, but it
should not be too hard to imagine that a suitable definition of ¢’ may take the form

@' (X1, X2, X3, Y1,y1,2) = Vy.(y € X1) V (y € X)) A~ (y € X3)) = U

for a suitable formula 1’ obtained from . Intuitively, this formula 1} needs to “an-
ticipate” the effect the application of £ to G with the given parameters represented
by Xj, X5, X3 would have and thus, for example, consider edges labeled “~” instead
of “—” where & would turn the former into the latter, and it would have to consider
all pairs of nodes in X; \ X3 to be connected by “—” edges. This can be achieved by
replacing REACHABLE by a suitable predicate REACHABLE'. The details are technically
complicated, but the Backwards Translation theorem tells us that it can be done (and
the proof by Courcelle and Engelfriet [2012] shows how).

3. Graph Extension Grammars

Graph extension grammars generate graphs by repeated application of two types of
graph operations. One type of operation takes the disjoint union of a pair of smaller
graphs, in doing so concatenating their port sequences. The other type extends an
existing graph with additional structure placed “on top” of that graph. The extension
operation uses a template graph with designated nodes, so-called docks. The docks are
to be attached to the ports of the argument graph, and the ports of the template become
the ports of the combined graph. The template also contains a number of context nodes
that can be duplicated (or cloned) and identified with arbitrarily chosen nodes in the
argument graph. This is provided that the choice satisfies a given formula whose free
variables are the targets of the cloned context nodes.
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Figure 4

The cloning operation takes a graph G and a subset C of its nodes, and replaces each of the nodes
in C and their incidents edges by an arbitrary number of copies. The above figure shows G on
the left-hand side, with C = {u}. On the right-hand side, u and attaching structure has been
replaced by a number of clones.

© ® ©® ©

To formally define the simpler one of these graph operations, disjoint union, let
k,k" € N. Then Wy : Gy X G — Gy is defined as follows: for G € G; and G’ € Gy,
Wik (G, G') yields the graph in Gy, obtained by making the two graphs disjoint by
a suitable renaming of nodes and taking their union. This is defined in the obvious
way for the first three components of the argument graphs and concatenates the port
sequences of both graphs. Thus, Wy is not commutative and only defined up to iso-
morphism. We usually write G Wy G’ instead of Wy (G, G'). To avoid unnecessary tech-
nicalities, we shall generally assume that G and G’ are disjoint from the start, and that no
renaming of nodes takes place. We extend Wy to an operation Wy : p(Gx) x o(Gy) —
9(Gryx) in the usual way: for G C Gy and G’ € Gy, W ¢’ = {Guyyw G' |G € g,
G ed'}.

To introduce the second type of graph operation, we first define cloning. The pur-
pose of cloning is to make the expansion operations (to be defined afterwards) more
powerful by allowing them to attach edges to an arbitrary number of nodes in the
argument graph. Cloning of nodes was originally introduced to formalize the structure
of object-oriented programs (Drewes et al. 2010), and later adopted in computational
linguistics (Bjorklund, Drewes, and Ericson 2019).

To define cloning, consider a graph G = (V, E, lab, port) and let C C V'\ [port]. Then
clonec(G) is the set of all graphs obtained from G by replacing each of the nodes in
C and their incident edges by an arbitrary number of copies. Figure 4 illustrates this
construction. Formally, G’ = (V',E’,lab/, port’) € clonec(G) if there is a family (CL,)yey
of pairwise disjoint sets CL, of nodes, such that the following hold:

e CL,={v}forallveV\C,

¢ V' =Ueev CLy,

o E' = Uazoyee CLu % {z} x CL,, and

. forallv € Vand ¢’ € CL,, lab' (v') = lab(v).

Note that cloning does not rename nodes in V' \ C. In the following, we shall continue
to denote by CL, (v € V) the set of clones of v in a graph belonging to clonec(G).

We can now define the second type of operation. It is a unary operation called graph
expansion operation or simply expansion operation. We will actually use a restricted
form, called extension operation, but define the more general expansion operation first.
An expansion operation is described by a graph enriched by two additional compo-
nents: a sequence of nodes called docks and a cmso formula that controls the matching
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of context nodes to nodes of the argument graph. A graph expansion operation is given
by a tuple

o = (Vq>, Eq>, lﬂbq;,pm’t@,dOCk@, (Pq>)

where

. ® = (Vg,Eg,labg,porty) and (Vg, Eg, labg, dockg) are graphs, the former
being referred to as the underlying graph of ®, and

L @g € CMSO is a formula in which every free variable is a set variable X,
for some v € Vg \ ([porty] U [docks]).

For notational convenience, we define two abbreviations:

. Co = Vg \ ([porty] U [dockg]) is the set of context nodes and
0 NEWg = [portg] \ [docks] is the set of new nodes.

We assume in the following that the set Cg is implicitly ordered, so that we can view it
as a sequence whenever convenient. Thus, if C¢ = {vy, ..., v}, the last component of &
has the form @ (X,, - - - X, ) with one set variable X,, for every context node v;.

Throughout the rest of this article, we shall continue to denote the components of
an expansion operation ® by Vg, Eg, labg, ports, docks, Cp, and @g.

When applied to a graph, ® adds (copies of the) nodes in NEW to the graph while
those in [dockg] and Cg are references to ports and nondeterministically chosen nodes
in the input graph, respectively.

Formally, the application of ® to an argument graph G = (V,E, lab,port) € G, is
possible if |dockg| = L. It yields a graph of type |porty| by fusing the nodes in dockg
with those in port. Moreover, clones of the context nodes are fused with arbitrary nodes
in V, inheriting the labels from G. Thus, the application of the operation to G clones the
nodes in Cg, fuses those in dockg with those in port, and fuses all nodes in CL,, for each
v € Cg, injectively with nodes in V, provided that ¢4 is satisfied under the assignment
given by the mapping of cloned context nodes to nodes in V. The port sequence of the
resulting graph is port,.

Formally, let |ports| = k and |docks | = £. Then @ is interpreted as the nondetermin-
istic operation ®: G, — p(Gy) defined as follows. For a graph G = (V, E, lab, port) € G,
a graph H € Gy is in ®(G) if it can be obtained by the following steps:

1. Choose a graph G’ € clonec, (®) and a morphing p of G to a graph
(V',E',lab’, port') such that the following hold:

(@ WNEWg)NV =10,
(b)  u(docks) = port,
(¢)  forall nodes v € Cg, it holds that u(CL,) C V, and

(d) GF ¢3(1(Cs)) (Where we view Cg as a sequence).

2. DefineH = (VUV',EUFE,labUlab’,port’).

857



Computational Linguistics Volume 49, Number 4

1 2 4 1 3

®
©

3
O 0,0 O ©

0o Xy, Xy) = Vx.(x € X, — lab.(x)) A
’ Ix.(laby(x) AVy.y € Xy <> x =V)) @ @ @

Figure 5

The figure on the left shows an extension operation ® with four ports (indicated with numbers
above the nodes), three docks (indicated with numbers in parentheses below the nodes), and
contextual nodes u and v. The formula @4 requires that all clones of u be mapped to nodes
labeled ¢, and that v is not to be cloned (i.e., cloned exactly once) and mapped to a node labeled
b. The figure on the right shows a graph G with three ports (again, indicated with numbers
above the nodes). Note that ® is applicable to G because the number of ports of G coincides with
the number of docks of ®.

We observe that by the definition of the priority union L, the labels of nodes not
belonging to NEWg are disregarded. Hence, the labels of nodes that are fused with
context nodes or are ports in G are determined by lab.® This means that the labels of
nodes not in NEWg can be dropped when specifying ®, essentially regarding these
nodes as unlabeled ones.

We now specialize expansion operations to extension operations by placing condi-
tions on their structure. The intuition is to make sure that graphs are built bottom-up,
that s, that ® always extends the input graph by placing nodes and edges “on top”, with
edges being directed downwards, and in such a way that all nodes of the argument
graph are reachable from the ports. For this purpose, edges must point from new to
“old” nodes, and all nodes in [docks] which are not in [porty] (i.e., intuitively, ports in
the argument graph that are “forgotten”) must have an incoming edge. Formally,

(Rl) Eg C NEW@ x L x (V@ \NEWCI)) and
(R2)  [docke] \ [porte] C tar(Eg).

Since edges introduced by an extension operation, owing to (R1), can only be di-
rected from new nodes (which by definition of NEW g must be ports) to nodes in the ar-
gument graph, it follows in particular that all graphs constructed from the empty graph
with the help of union and extension operations are directed acyclic graphs (DAGs). By
a straightforward induction, (R2) ensures that every node in a graph constructed in this
way is reachable from a port.

8 This idea has its origins in personal discussions between Frank Drewes and Berthold Hoffmann in 2019.
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Figure 6

Three graphs in ®(G) where ® and G are as in Figure 5. The differences between the graphs
reflect the number of times the context node « has been cloned, and the mapping of (cloned)
context nodes to nodes in G. The node u has been replicated 0 times to obtain the first graph,
once to obtain the second, and twice to obtain the third. In all cases, the clones are mapped to
nodes in G which are labeled by ¢, as required by ¢4. In the first two graphs, v has been
identified with one of the b-labeled nodes in G, and in the right graph with another.

4

@
@

Example 3
Figure 5 depicts an extension operation together with a graph to which it can be applied.
In Figure 6, we see three different graphs, all resulting from the application of the
extension operation in Figure 5 to the graph in Figure 6.

A graph extension algebra is a X-algebra A = (9(G), (fa)rex) where every symbol in
Y is interpreted as an extension operation, a union operation, or the set {(b}, where ¢ is
the empty graph (0,0, 0, €). Note that the operations of the algebra act on sets of graphs
rather than on single graphs. This is necessary because of the nondeterministic nature
of extension operations. It also takes care of the fact that operations are only defined on
graphs of the right type: By convention, the application of an operation to a graph of an
inappropriate type yields the empty set of results. This relieves us from having to deal
with typed algebras.

Definition 6 (Graph Extension Grammar)

A (tree-based) graph extension grammar is a pair I' = (g, A) where A is a graph exten-
sion X -algebra for some ranked alphabet ¥ and g is a regular tree grammar over X. The
graph language generated by I', denoted by L(I'), is defined as

L) = |J waly()
teL(g)

The width wd(I') of I' is the maximal result type of operations appearing in its opera-
tions, that is, wd(I") = max({type(f4) | f € £}) where type(d) = 0, type(Wye) = k + {, and
type(®) = |port,| for all extension operations .

For notational simplicity, we shall assume that, in a graph extension grammar as
above, f = f, for all f € 3, that is, we use the operations themselves as symbols in ¥.
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Before entering on the topic of parsing, let us pause to consider a concrete example
in the setting of natural language processing.

Example 4

The graph extension grammar in Figure 7 illustrates how the formalism can model
semantic representations. For each extension operation ®, the formula @4 checks that
all context nodes of ® are mapped to nodes in the argument graph with the same
label. Furthermore, @4 checks that no cloning is used or, formally, that every context
node is cloned exactly once. Thus, similarly to the condition on X, in Figure 5, if
Co = {v1,...,v}, where labg (v;) = a;, then @ is the formula

/\ dxdab, (x) AVy.y € Xy, <> x =y
i€[k]

In Figure 7, these formulas are not explicitly shown.

In the context of this example, the concepts girl and boy represent entities that
can act as agents (which verbs cannot), try and persuade represent verbs that require
structural control, and want and believe represent verbs where this is not needed.

First, we take a top-down perspective to understand the tree generation. The initial
nonterminal is S. The base case for S is the generation of an extension operation that
creates a single node representing a girl or a boy concept. In all other cases, S generates
an extension operation that adds a verb and its outgoing edges, and in which the verb
is the single port. The nonterminal C has the same function as S with the following two
differences: It has no corresponding base case, and the ports of the extension operations
mark both the agent of the verb (designated by an arg0 edge) and the verb itself. The
nonterminal S’ can only generate extensions that create girl or boy nodes. As we shall
see, this makes sure that arg0 edges always point to persons. Finally, there is a pair of
nonterminals U and U that both create union operations, the former with two resulting
ports, and the latter with three.

Now, we take a bottom—up perspective to see how the extension operations of a tree
are evaluated. Unless the tree consists of a single node, we will have several extensions
generated by S and S’ that create girl and boy nodes as the leaves of the tree. In this
case, we can apply one or more union operations to concatenate their port sequences
and make them visible to further operations. The construction ensures that an arg0
edge can only have a person, that is, a valid agent, as its target. After the application of
a union operation, it is possible to apply any extension that is applicable to U (or U"),
meaning that none of the non-port nodes are contextual nodes. The resulting graph can
have one or two ports—if the graph has one port, the applied extension operation was
generated by S, and if the graph has two ports, the applied operation was generated
by C. In other words: C signals that the graph is ready for the addition of a control
verb, and S that the graph is a valid semantic graph with one port. When sufficiently
many nodes have been generated, it is no longer necessary (but still possible) to use
the union operations. Instead, we can add incoming edges to already generated nodes
contextually (unless control is explicitly needed, as is the case for control verbs). The
generated graphs can therefore contain both structural and non-structural dependen-
cies. See Figure 8 for an example of a tree generated by the grammar in Figure 7, and its
evaluation into a semantic graph.

While cloning is explicitly disabled in the extension operations above (by requiring
that context nodes are cloned exactly once), in general cloning may play a central role
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A (graphical representation of a) label-matching graph extension grammar demonstrating how
to generate semantic graphs akin to AMR. Instead of repeating productions that only differ with
respect to node labels, we use label variables, where x € {girl,boy}, y € {girl, boy, want,
believe, try, persuade}, and z € {want, believe}. The nonterminal C generates graphs of

type 2 whose ports are to be embedded in a control verb construction.
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arg2

valy = believe arg0
argl
boy
Figure 8

A graphical representation of a tree generated by the regular tree grammar in Figure 7 and the
graph resulting from its evaluation. The nonterminal generating each subtree is shown next to
the respective circle. Dotted lines indicate the identification of context nodes with nodes in
argument graphs. In this example, there is only one possible candidate for each context node,
hence the resulting graph is unique up to isomorphism.

for NLP applications, because it enables concepts to refer to an unbounded number
of “arguments”. (Note that in the edge-agnostic case, i.e., if the formulas @g of the
extension operations are not allowed to make us of the predicates edg,, the mapping
of cloned nodes to nodes in the actual graph is made solely based on labels and ports.
Similarly, the decision about how many clones to create cannot depend on the presence
or absence of edges. We may, for instance, say “create at least (or at most) k clones if
there is both an a- and a b-labeled node”, but not “create a clone for every node which
is the target of a z-labeled edge and map it to that node”.)
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Figure 9

Extension operations such that ®,(®,(G)) express situations in which a group of persons (boys
and girls) persuades another group of persons to believe in something or someone.

Cloning can be used if we, for example, want to express the situation that an entire
group of people is persuaded by another group to believe something or someone, thus
using several agents as a target of any of the argument edges. For this, we can use op-
erations such as those in Figure 9 (where an extension operation ® is depicted as a pair
consisting of the graph ® with docks indicated as before, and the formula ¢ ). Here, the
formula @, plays a vital role. The formula ¢ only requires that the believers (targets
of arg0-edges) are persons (and that there is at least one). While ¢, incorporates the
same requirement for both persuaders and persuaded persons, it additionally requires
that the persuaded ones (represented by nodes in X,) are exactly those who are also
reachable via arg0-edges from the port of the argument graph, that is, the believers. It
may be instructive to note that the corresponding structural requirement was expressed
by “remembering” nodes as ports in the rules of Figure 7. This is no longer possible here
(recall that port; (x) picks the first port), because the set of nodes to be remembered is not
a priori bounded in size. Hence, we have to express the desired coordination by means
of the edg,,,,-predicate. With this addition, the example is not any longer edge agnostic
in the sense to be defined in Definition 7, and thus the result we are going to prove in
Section 5 does not apply to it anymore. However, the property expressed by ¢ is a local
one in the sense to be defined in Section 6, and hence our main result (Theorem 5) does
indeed cover it.

Readers familiar with HRGs or Courcelle’s hyperedge replacement algebras
(Courcelle 1991) may have noticed that productions using union and extension oper-
ations (disregarding context nodes and the effect of the component ¢4) correspond to
hyperedge replacement productions of two types:

(@ A — By C corresponds to a production with two hyperedges in the
right-hand side, labeled B and C, where the first one is attached to k of
the nodes to which the nonterminal in the left-hand side (which is
labeled A) is attached, and the second is attached to the remaining ¢
nodes of the left-hand side. In particular, there are no further nodes in the
right-hand side.

(b) A — ®[B] corresponds to a hyperedge replacement production with a
single nonterminal hyperedge labeled B in its right-hand side. Such
productions are the ones responsible for actually generating new
terminal items (nodes and edges).
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Generalized extension operations of arity greater than one can be constructed by
defining so-called derived operations through composition of suitable extension and
union operations. Given a set of such derived operations, the tree-to-tree mapping that
replaces each occurrence of a derived operation by its definition is a tree homomor-
phism. As regular tree languages are closed under tree homomorphisms, this shows
that the restriction to binary unions and unary extensions is no limitation (in contrast to
requirements (R1) and (R2), which help reduce the complexity of parsing).

We also remark here that it is not a restriction that all new nodes introduced in an
extension operation are ports. This is because we can add a non-port to a graph G by
evaluating ®(®’(G)) where @’ introduces the desired node as a port, say port i, and
® “forgets” port i, that is, dockg (i) ¢ [ports]. (Note, however, that (R2) then requires
dockg (i) to have an incoming edge from one of the ports of ®, making sure that the node
introduced in this way is reachable from a port in ®(®'(G)).)

4. NP-Completeness

Before turning to graph extension grammars for which parsing can be implemented
to run in polynomial time, we confirm in this section that restrictions are required to
accomplish this (unless P = NP), as the problem is NP-complete in general. Readers
who are not interested in the proof may either skip this section or read it for the sake of
seeing another example of a graph extension grammar.

Theorem 2
For all graph extension grammars I, it holds that L(I') is in NP. Furthermore, there exist
graph extension grammars I" such that L(I") is NP-complete.

Proof. As an immediate consequence of the parsing algorithm to be presented in
Section 5, it holds that L(I') € NP for all graph extension grammars I'. This is because
nondeterminism can be used to simply “guess” an appropriate matching in line 21 of
Algorithm 1. The verification that such a guessed matching is indeed one can easily be
implemented to run in polynomial time.

It remains to find a graph extension grammar that generates an NP-complete graph
language. We do this by presenting a graph extension grammar I' whose generated
graphs represent satisfiable formulas in propositional logic. The grammar consists of
three parts. Taking a bottom—up view, these three parts serve the following purposes:

1. The first part, corresponding to the rules applied furthest down in the
derivation tree, generates trees with node labels in {—, V, A, war}, where
every node labeled — has one child, those labeled Vv and A have two
children, and nodes labeled war are leaves. These trees thus represent
formulas in the usual way, where every node labeled var stands for an
occurrence of an unnamed variable.

2. The second part introduces a chain of =- nodes on top of the root of the
formula. From each of these nodes, any number of edges will point to
some of the (nodes representing) variable occurrences. Two occurrences
of variables will be considered to be occurrences of the same variable if
and only if they are both targets of edges originating from the same
=-labeled node.
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Algorithm 1 Parse a graph G with respect to a graph extension grammar I' = (g, A)

1: procedure PARSE(G = (V, E, lab, port))

2: if G is acyclic and G = VGport then

3: return PARSE_REC(S, port) > Invoke recursive part with initial nonterminal S
4 else

5 return false

6 end if

7. end procedure
8: procedure PARSE REC(A € N, p € V®)

9: if result[A, p] undefined then > No memoised result available
10: result[A, p] < false > For the moment, memoise failure
11: ifp=-cand (A — ¢) € P then
12: return result[A, p] < true > Memoise success
13: else
14: for all (A — By Wy, B2) € Pdo
15: letp = p,p, where |p;| = k; fori=1,2
16: if p/ Npy = 0 and PARSE_REC(By, p,) and PARSE_REC(B,, p,) then
17: return result[A, p] < true > Memoise success
18: end if
19: end for
20: forall (A — ®[B]) € Pdo
21: for all matchings m of ¢ to VGp do
22: if PARSE_REC(B, m(dockg )) then
23: return result[A, p] < true > Memoise success
24: end if
25: end for
26: end for
27 end if
28: end if

29: return result[A, p]
30: end procedure

3. The third part of the grammar, corresponding to the topmost section of
the derivation tree, consists of only one rule that “guesses” a satisfying
truth assignment and uses its cmso formula to check that this truth
assignment is indeed satisfying.

To simplify the grammar and make the rules more readable, we occasionally use rules
whose right-hand sides are arbitrary trees over the given operations and nontermi-
nals, rather than sticking to rules of the form A — f[Ay,...,Af] as in Definition 1.
In a straightforward way, these rules can be decomposed into rules of the form A —
flA1, ..., Ax] by introducing additional nonterminals.

The first part of the grammar is shown in Figure 10.

The rules of the second part of the grammar are shown in Figure 11. The cmso for-
mula makes sure that edges from the generated nodes all point to variable occurrences.

Finally, the rule that ensures that the generated formula is satisfiable is shown in
Figure 12. Its left-hand side S is the initial nonterminal of the grammar. The conjuncts
of the formula express that every node representing a subformula has precisely one
eq-edge pointing to it (line 1, where we make use of the customary abbreviation '
for ‘there exists exactly one’), every node representing a variable or logical operator
is assigned either true or false (line 2), different occurrences of the same variable are
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F— ®_[F], F— Oy,[Fw; 1F] forbin € {V,A}, F — O[]

1 1
1
q)_‘ = arg true ©bin = are are , true (bvar = ( ’ t?’lx[@)
O O O

Figure 10
Rules that generate, from the nonterminal F, trees that represent propositional formulas over
anonymous occurrences of variables.

E— ®_[E], E— ®_[F]

1
=
P_ = e \Chain , Vx.(x € X, — laby,(x))
O O
u

Figure 11
Rules that generate a chain or =-labeled nodes, each of which has edges to an arbitrary number
of variable occurrences.

S— q)sat[E]

1 Vx.(laby, (x) — H’y.edgeq(x,y)) A
Vx.(—(lab_(x) V1ab . (x)) = (x € Xp &> x € X7)) A
Vx, Y, z.(edg,  (x, y) A edg, (x,z) = (y € X1 <> z € X7)) A

O = chain , Vx.(lab_(x) —» (x € X7 < Vy.(edgarg(x, y) =y eXp)A
O O Vx.(labp(x) —» (x € X7 < Vy.(edgarg(x, y) =y e Xr)A
T r Vx.(laby (x) = (x € X7 < E!y.(edgarg(x, YAy € Xr))A

Elx/ y-(Vee{A,v,ﬁ} lab( (]/) A edgchain(x/ y) A ye XT

Figure 12
The rule that checks the existence of a satisfying assignment of truth values (represented by the
clones of the nodes T and F).

assigned the same truth value (line 3), the truth assignment is compatible with the
definition of the logical operators (lines 4-6), and the truth value assigned to the root
node of the formula is true (line 7). It should be clear that the formula represented
by a graph G that can be generated from E is satisfiable if and only if ®,(G) # 0,
which is the case if and only if L(I') contains the graph G’ obtained from G by adding
a node labeled root with a chain-labeled edge pointing to the port of G and making
that new node the (unique) port of G'. (Note that this is the effect of applying @, to G
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if the formula is satisfied for some choice of X1 and Xp.) Moreover, given a proposi-
tional formula it is easy to construct the corresponding graph G/, that is, there is a
logspace reduction of the NP-complete satisfiability problem for propositional formu-
las to L(T"). d

We note that the validity of the preceding proof does not depend on the use of
isolated context nodes in ®g,: The proof remains valid if we add (equally labeled)
edges from the port to each of these context nodes. Then every node corresponding
to a subformula would receive exactly one incoming edge from the port, regardless of
the truth assignment hidden in the choice of X1 and Xr, and adding those edges to the
output graph G’ of the reduction would again result in a logspace reduction to L(I").

5. Parsing for Edge-Agnostic Graph Extension Grammars

We now provide a blueprint of a parsing algorithm for graph extension grammars,
which we afterwards instantiate to a polynomial time parsing algorithm for a special
case of graph extension grammars, the so-called edge-agnostic ones. In the next section,
we will discuss how this restriction can partially be lifted.

Throughout this section, let I' = (g, .A) be a graph extension grammar, where
g=(N,%,P,S)and Ais a graph extension X-algebra.

The goal is to decide the membership problem for L(I') and, in the positive case,
produce a corresponding derivation tree t € L(g) such that the given graph G is in
wal 4(t). In fact, by the recursive structure of the proposed algorithm, it will be obvious
how to obtain t. Hence, we focus on the membership problem, which is formally defined
as follows:

Input: A graph G
Question: Does it hold that G € L(I")?

By definition, extension operations keep the identities of nodes in the input graph
unchanged, whereas new nodes added to the graph may be given arbitrary identities
(as long as clashes with nodes in the input graph are avoided). For the union operation,
it holds that renaming of nodes is necessary only if the node sets of the two argument
graphs intersect. As a consequence, when evaluating a tree t, we can without loss of
generality assume that operations never change node identities of argument graphs. In
other words, if G € wly(t), then for every « € addr(t), there is a (concrete) graph G, €
val 4(t/«) such that

. if t/ox = ®[t/x1], then G4 € P(Gq) and
i if t/(X:t/(Xl WHre t/oc2, we have G‘X: (Vl U Vz, El U Ez, lﬂb] (] lﬂb2,

porty, port,) where G; = (V;, E;, lab;, port;) fori = 1,2,

and G, = G.
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Thus, for every « € addr(t), the graph G is a subgraph of G. More precisely, if
G = (V,E,lab,port) and G, = (V',E',lab,port’) then V' C V, E' CE, and lab’ = lab|y.
Note that, while the graphs G, are usually not uniquely determined by G and ¢, the
important fact is that they do exist if and only if G € wal 4(t). We say in the following
that the family (G« )eadir(r) is @ concrete evaluation of t into G. Hence, the membership
problem amounts to deciding, for the input graph G, whether there is a tree t € L(g)
that permits a concrete evaluation into G.

The following lemma, which forms the basis of our parsing algorithm, shows that
G = (V',E',lab’, port’) is determined by port’ alone, as it is the subgraph of G induced
by the nodes that are reachable from port’. More precisely, consider a sequence p € V®
of nodes of G and let p” be the set of nodes reachable in G by directed paths from (any
of the nodes in) p.” Now, we define GV p = (p”, E| v xixp, lablys p).

Lemma 1
If (Go)weaddr(r) is a concrete evaluation of a tree t € Ty, into a graph G, then G, = G V
ports_ forall o € addr(t).

Proof. Let Gy = (V,Eq, laby, port ) for every o« € addr(t). We first show the following
claim:

Claim 1. We have {e € E | src(e) € Vi } C E and porty, C V.

We prove Claim 1 by induction on the length of «. (Thus, the induction proceeds
top-down rather than bottom-up.) For « = ¢, the statement holds trivially. Now, assume
that it holds for some o € addr(t). Since the empty graph ¢ has neither ports nor edges,
two relevant cases remain.

Case 1. G is of the form Gy Wi Gyo-

Let {i,j} = [2]. We have to show that the statement holds for G;. Thus, assume
that src(e) € Vi and v € porty,;. Then src(e) € V4 and thus, by the induction hypothesis,
e € E. By the definition of Wy, this means that e € E ;. Furthermore, v € porty,; implies
v € porty, and thus, again by the induction hypothesis, v € V. Hence, it remains to
argue that no node in G «; can be reached from port ,;. This follows readily from the just
established fact that there is no edge ¢’ € V' \ V; for which src(e’) € E,; (together with
the fact that Vi NV = 0).

Case 2. G4 is of the form ®(G 1) for an extension operation ®.

To show that the statement holds for G4y, let Go = (Vo U V', Eqq UE’, labyq U
lab’, port’), where (V',E’,lab’, port’) is obtained from @ as in the definition of ®(G4;). By
the induction hypothesis, src(e) € V, implies e € E,. Thus, src(e) € V41 impliese € Ey;
unless e € E’. However, by requirement (R1), all e € E satisfy src(e) € [port'] \ [port],
which is equivalent to src(e) ¢ V1 because Vi \ Vo1 = [port'] \ [port]. From this it fol-
lows thate € E 4.

9 We will only use the notation p¥ when the graph G being referred to is clear from the context.
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Now, let v € port,. If v ¢ V4, consider the first edge e on a path from a node in
[port ;] to v such that tar(e) € V1. Then src(e) € Vo but e € Ey;, contradicting the
previously established fact that src(e) € Vi impliese ¢ E4;.

This finishes the proof of Claim 1. Next, we prove the converse inclusion of the
second part of Claim 1:

Claim 2. V4 C port].

This time, we proceed bottom—up, by induction on the size of t/x. The statement is
trivially true for G = ¢. Thus, as before, there are two cases to distinguish.

Case 1. G is of the form Gy Wiy Gyo.

By the induction hypothesis, Claim 2 holds for G4; and G,. Consequently, V, =
Vo1 U Vo C porty, Uport?, = porty,.

Case 2. G is of the form ®(G 1) for an extension operation ®.

Again, let Gy = (Vo1 U V', Eqq UE',labyy U lab’, port’), where (V',E’,lab’, port’) is
obtained from @ as in the definition of ®(Gy1). (In particular, port’ = port,.) By
the induction hypothesis, V3 C port},. Moreover, by requirement (R2), for every
node v € [porty,] it either holds that v € [porty], or there are u € [port,] and e € E’
with src(e) = u and tar(e) = v. Hence, [port ;] C port}, and thus V4 C port?, C porty,.
Since, furthermore, V' \ V4 C [port,], this shows that V C [port,], and thus V, C
porty,.

Together, Claims 1 and 2 state that V, contains exactly the nodes reachable from
port, (by Claim 2 and the second part of Claim 1), and also all edges originating at
those nodes (by the first part of Claim 1). This finishes the proof of the lemma. O

We note the following immediate consequence of Lemma 1:

Corollary 1
Let (G)xeaddr() be a concrete evaluation of a tree t € Ty, into a graph G. If G = VGe
for some « € addr(t), then G, = ¢.

In Lemma 1, we find the beginnings of a recursive parsing algorithm: In the fol-
lowing, consider an input graph G = (V, E,lab, port), a nonterminal A € N, and a se-
quence p € V®. To decide whether G V p € wal4(La(g)) (and thus whether G € L(T') if
A =S and p = port;), we need to consider three cases, the first two of which are
straightforward.

Case 1. If p = ¢, then we have GV p = b € wml (La(g)) if and only if the production
A— ¢disinP.

Otherwise, we need to check each production with the left-hand side A according
to Cases 2 and 3, as follows:

Case 2. If the production is of the form A — Bj Wy, By, let p = p;p, where |p;| = k; for
i=121Ifp Npy #0,then GV p # GV p; b, GV p,. If p{ Npy =0, we recursively
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need to determine whether G V p; € wal 4(Lg,(g)) for i = 1,2 because in that case G V p =
Gv P1 b-Jklkz GV pa-

Case 3. If the production is of the form A — ®(B), assume first for simplicity that no
cloning takes place (i.e., every node in Cg is cloned precisely once). The basic intuition
is that we need to check all structure-preserving mappings of ® to G v p that map
portg to p. Such a mapping determines in particular the image of [docks] in G V p, say
p1, and similarly it defines the images vy,...,v,, € V of the context nodes uy,...,u, of
®. Hence, we now have to check whether G vV p; F 93({v1},...,{v,}) and, recursively,
whether G Vv p; € val 4(Lg(9)).

However, this disregards the fact that nodes in Cg can be cloned. To deal with
this additional difficulty, we define the notion of a matching of ® to G v p. Then,
based on Lemma 1, the parsing strategy in this third case is to check whether there
exists a matching m of ® to G V p such that, recursively, G V m(dockg) € val 4(Lp(g)).
Thus, for every such sequence m(dockgs ), the algorithm recursively invokes a procedure
PARSE_REC(B, m(dockg)) (which is outlined in the upcoming Algorithm 1) and returns
yes if one of the recursive calls does, and no otherwise.

To define the notion of matchings, consider a graph extension operation ¢ with
|porty| =k, as well as a directed acyclic graph H with type(H) = k (i.e., here H takes the
role of G V p above). We need to determine all possible p; € Vi such that H € ®(H v
p1)- To see how this can be done, let Ve = {porty (i) | i € [k] and porty (i) ¢ [docks]}.
In other words, Vg is the set of nodes of H which are images of nodes in NEWg. Recall
that, by (R1), the nodes in NEWg are the only nodes in ® that may have edges to other
nodes in ®. Thus, the edge set Exgyw = {e € Ey | src(e) € Vypw } contains precisely the
edges of H which are images of edges of ®. Hence, we have to find a suitable mapping
of the nodes in Vg to subsets of V| = py. We say that a function m: Vg — p(V7) is a
matching of ® to H if the following conditions are satisfied:

(M1) The restriction of H to V1 and Engw is a morph of a graph in clonec (®)
by some morphing p which satisfies the conditions |1(CL,)| = 1 for all
u € dockg and W(CL,) = m(v) forallv € Vg.

(In particular, |m(v)| = 1 for all v € [porte] U [docks]. Therefore, we shall
in the following view the restriction of m to [port4] U [dockg] as a
function from nodes to nodes rather than to sets of nodes, see, for
example, (M2) and the left-hand side of (M3) below.)

(M2) In H, every node in Vy; \ [porty] is reachable from (a node in) m(dockg ).
(M3)  HVm(docke) E @o(m(uy),...,m(u,)), where {uq,...,u,} = Cs.

The pseudocode of the algorithm is shown in Algorithm 1. In the code, we use the
statement “return result[A, p] < true” to denote memoisation: the variable result[A, p]
gets the Boolean value true assigned to it and then that same value is returned by the
procedure. Obviously, the condition in line 21 of the algorithm needs to be made more
concrete, that is, we have to find (efficient) ways to check whether m exists. However,
let us first postpone this question and show that the algorithm is correct.

Theorem 3
Algorithm 1 decides whether the input graph G is an element of L(I").
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Proof. By Lemma 1, it suffices to show that PARSE_REC(A, p), for all p € V®, returns
true if A —¢ t for a tree t such that wl,(f) = GV p, and false otherwise. By line 10,
termination is guaranteed since there are only finitely many pairs (4,p). Hence, it
remains to be shown that PARSE_REC(A, p) returns frue if and only if A —¢ ¢ for a
tree t such that wal4(t) = G V p.

We first show that PARSE_REC(A, p) returns true if there exists a tree t € L4(g) such
that G v p € val 4(t). We prove this by induction on the smallest tree t € L4(g) such that
G V p € val o(t). The derivation of t by g can have one of three forms, depending on
whether the root of ¢ is ¢, a union operation, or an extension operation.

If t = ¢, then P contains the rule A — ¢, so the algorithm returns true in line 12.

Ift=#4 Wik, t, with t; € LB,'(g) for i=1,2, then GV pP= Gy Wik, G, where G; €
val 4(t;) for i = 1,2. By the definition of Wy y,, if we set p = p;p, with |p;| =k; fori=1,2,
then py Npy =0 and G; = G V p;. Since both t; and t, are smaller than ¢, the induction
hypothesis yields that PARSE_REC(B;, p;) returns true for i = 1,2, which means that
PARSE_REC(A, p) returns true in line 17.

If t=®[t;] and GV p € mly(t), then there is a graph G; € wmly(t;), say G; =
(Vy, Eq,laby, port;), such that G V p € ®(G;). By the definition of extension operations,
this means that there is a graph G’ € clonec,(®) and a morphing p of G’ to a
graph (V/, E’,lab’, port'), such that G, F @g(m(uy),...,m(u,)) (where {uy,...,u,} = Cg)
and GV p = (Vi UV’ E{UE,lab; Ulab',port'). From this we obtain a matching m as
follows: For every node v € Vg,

 JW(CL,) ifveCyp
m(v) = {{p.(v)} otherwise

By construction, m satisfies (M1) (where H = G V p). It also satisfies (M2), by Lemma 1
applied to Gy (which applies because G; € wly(t;)). Finally, (M3) holds because
G1 F op(m(uy),...,m(u,)). Hence, if line 21 correctly loops over all matchings m,
then PARSE_REC(B,mj(docks)) returns true by the induction hypothesis, and thus
PARSE_REC(A, p) does so in line 23.

We have thus finished the first direction of the proof. It remains to be shown
that PARSE_REC(A, p) returns true only if there exists a tree f € L,(g) such that GV p €
wal 4(t). We proceed by induction on the number of recursive calls of PARSE_REC.

Since G V p = ¢ if p = ¢, the assertion is true for the return statement in line 12.

If the return statement in line 17 is reached, then it follows from the condition py N
ps =0 that GVp =GV p; Bk, GV p,. We also know from the induction hypothesis
that, for i = 1,2, there are trees t; € Lp,(g) such that G V p; € wl4(t;). Hence, t = t; Wy,
f is a tree in L4 (.A) such that G V p € val 4(t).

Finally, assume that the return statement in line 23 is reached. Let A — ®[B] be the
rule considered and m the matching whose existence is guaranteed by the condition in
line 23. Again, the induction hypothesis applies, this time stating that there is a tree ¢; €
Lg(g) such that G Vv p; € wml,(t1), where p; = m(docks). Let (V4,Eq,laby, port;) = G V p;.
By (M1), m determines a clone G’ € clonec, (®) of ® and a morphing p of G’ to a graph
(V',E,lab’, port’) such that G vV p = (V, U V', Ey UE’,laby L lab’, port’). Using (M3), this
implies that GV p € ®(G V p;) and thus, by the definition of wl,, that ®(G Vv p;) C
wal 4(t) because G V p; € wal4(t1). This shows that G V p € wal 4(t) and finishes the proof
of the theorem. |
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The remainder of the article will be devoted to the question of how line 21 can
be concertized. In this section, this will first result in a polynomial-time algorithm for
the special case of edge-agnostic graph extension grammars (to be defined formally in
Definition 7). With this as a basis, the next section will generalize the result to local
graph extension grammars.

For a fixed grammar, thanks to memoisation PARSE_REC will be called at most
On™1)) times, where n is the number of nodes of the input graph. This is because
there are only a constant number of possible choices for the first parameter and /(1)
for the second. Hence, the total running time is O™ ™) times the maximal number of
computation steps it takes to execute the body of the procedure (not counting recursive
calls). This, in turn, is dominated by the time it takes to enumerate the matchings m of ®
to G V p (line 21). For this, note that there is no need for line 21 to explicitly enumerate
all matchings m of ® to G V p because the loop body only depends on (the nonterminal
B and) m(dockg ). In other words, the loop can be replaced with

21’: foralld € V® do

22'; if there is a matching m of ® to G V p with m(docks) = d then

23’ if PARSE_REC(B, d) then

24’: return result[A, p] < true > Memoise success
25’ end if

26’ end if

27': end for

Hence, the question that remains is how to implement line 22/, that is, to decide
for given p,d € V® whether there exists a matching m of ® to G vV p with m(dockg) = d.
For this, we will now show that one can construct a cmso formula that checks whether
the mapping of dockg to d can be extended to a matching of ® to G V p. (This makes
it possible to use Courcelle’s theorem to come up with an efficient algorithm for the
edge-agnostic case of graph extension grammars later on.)

To simplify our reasoning, we make use of the Backwards Translation theorem for
quantifier-free operations (Courcelle and Engelfriet 2012, Theorem 5.47), by means of
the following lemma.

Lemma 2

For every extension operation ®, there is a quantifier-free operation & in { = |dockg|
variables such that the following holds. Let H be a graph, and let m: V3 — o(V7) be a
mapping that satisfies (M1) and (M2) (where V; = p{, as in the definition of matchings).
Then &(H, m(docke)) = H vV m(dockg ).

Proof. Let m be as in the lemma and d = m(dockg). We first show the following claim:

Claim 3. H V d is the graph H’ obtained from H by removing all nodes in [port] \ [d]
from it (together with their incident edges) and defining port,;, = d.

To prove Claim 3, note first that every node in Vi \ [porty] is reachable from d by
(M2). Thus, it remains to be shown that no node v € [porty] \ [d] is reachable from d.
However, this is clear by (M1) in combination with (R1). Furthermore, by definition
portyo, = d.
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Specifying the quantifier-free operation & is now straightforward. By Claim 3, it can
be defined as follows:

*  the domain formula 6 expresses that a node belongs to the resulting
graph if it is in [d] or not a port:

O(x1, .., X0, Y) = \/ y=x;V- \/ port;(y),
i€le] j€llporte|]

e edges and node labels are copied: forallz € Landa € L
Ocdg, (X1, -+, X0, Y1,Y2) = edg,(y1,y2) and Opp, (x1, ..., X, ¥1) = lab,(y1), and
o the nodes in [d] become the ports:

eporti(xlr' . -/x(’,ryl) = (yl = X;)-

This finishes the proof of the lemma. O

As a consequence, we can now prove the main lemma that—with the additional as-
sumption of edge agnosticism—will lead to an efficient implementation of Algorithm 1
using Courcelle’s theorem.

Lemma 3

For every extension operation ® with ¢ = |docks|, there is a cmso formula 14 with the
free individual variables x1,...,x; such that, for every graph H € Gy y.¢) and every
d € V) with |d| = {, we have H |= {(d) if and only if there is a matching m of ® to
H with m(docke) = d.

Proof. Let type(®) =k and Vg = {vy,...,v,} for some n € N. The formula 1\ to be
constructed has to check whether there exist sets V5, ..., V,, C Vi such that the mapping
m given by m(v;) = V; maps dockg to d and is a matching of ® to H. Thus, the formula
1 is of the form

P = E'Xl, .. '/XH'( /\ Vx.x € XU,‘ X = x]) /\II)(Ml) N lb(MZ) N 'Ll)(Mg).

(@,j)eln]x[¢]
vi=dockg (j)

Defining the conjuncts ) and W) is rather straightforward:

* U expresses that ports are bijectively mapped to ports, and for all
pairs of nodes in the image of m, if one of them is a new node (i.e., an
image of a node in [portg] \ [dockg]), then the edges between those nodes
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are exactly the images of edges between their pre-images. To be precise,
let i; € [n], for j € [K], be the index such that v;; = portg (j)- Then

Yoy = /\ Vx.portj(x) — /\ (x € X; <> v; = port5()))
jere i€n]

A /\Vx,y.(x € XiNy € Xj — edg,(x,y))

ij€lnlzeL
(vi,z,0)EE®

A /\Vx, y.x € port]-(x) — (—edg, (v, x) A (edg,(x,y) < \/y € X;)
j€lkl,zeL i€n]
o ¢[dockg] (portg (j),z,0;)EEq

It should be clear that H = Py (Vy, - . ., Vi, d) if and only if (M1) holds
for the mapping m that maps v; to V; for every i € [n].

* P expresses that for every node v that is not a port, there is a port
from which there is a path to v:

Vo) = Vx.( \ —port;i(x)) — Jy.(\/ port,(y) A path(y, x))
ie[k] ie[k]

This makes use of the fact that the predicate path can be expressed in
monadic second-order logic; see Courcelle and Engelfriet (2012,
Proposition 5.11).

. Finally, assume without loss of generality that C¢ = {v1,...,v.} for some
¢ € [n]. Then 3 must be constructed in such a way that
HE Vs (Vy, ..., Vo) ifandonlyif HVd = @g(Vy,..., V). In fact, since
Py and P already ensure that (M1) and (M2) hold, Lemma 2
applies, providing us with a quantifier-free operation & such that
&H, Xj, -+ - Xj,) = HV dwherejy,...,j, € [n] are the indices such that
v, = dockg (p) for all p € [£]. Hence, Theorem 1 applied to & and ¢4 yields
the formula 3 needed. (Thus, X;, --- X;, are to be substituted for
X1,...,X¢inTheorem 1, Xy, ..., X play therole of Yy,..., Yy, and K =0.)

Thus, line 22" can be implemented using any algorithm which, for a fixed cmso
formula J, an input graph G, and node sequence d € V¢, checks whether G = {(d).
Unfortunately, this is an intractable problem in general. Therefore, for efficient parsing,
we aim to restrict G to graphs of bounded treewidth, as in this case we can apply
Courcelle’s theorem (Courcelle and Engelfriet 2012, Theorem 6.4) which states that the
problem can be solved in linear time on graphs of bounded treewidth. Since it is an
important feature of graph extension grammars that they can generate graph languages
of unbounded treewidth, we now define a special case that retains that ability while
allowing us to consider graphs of bounded treewidth in the application of Lemma 3.
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Definition 7 (Edge-Agnostic Graph Extension Grammar)

A graph extension operation ® is edge agnostic if ¢4 does not contain any predicate of
the form edg, (1 € L). An edge-agnostic graph extension grammar is a graph extension
grammar in which all graph extension operations are edge agnostic.

Note that the graph extension grammar discussed in Example 4 is edge agnostic
(with the exception of the discussion in its last paragraph). Recall that the purpose
of the development of the graph extension grammar formalism is to capture not only
structural but also non-structural reentrancies. The example grammar handles both—
which despite the limitations of this example may indicate that even edge agnosticism
is not as severe a restriction with respect to the linguistic usefulness of the formalism
as one might think. The reason, as discussed in the Introduction, is that these non-
structural reentrancies are often caused by language elements such as pronouns which,
intuitively, are edge agnostic in themselves (as opposed to structural reentrancies like
those caused by control).

We can now show that Algorithm 1 can be implemented to run in polynomial time
for edge-agnostic graph extension grammars I'.

Theorem 4
Let I' be an edge-agnostic graph extension grammar, and let r be the maximal type
occurring in its operations. Then Algorithm 1 can be made to run in time O(n? ).

Proof. Let G be the input graph, where n = |V|. Since there are O(n") recursive invo-
cations of the algorithm, and the loop in line 21’ is also executed O(n") times, it suffices
to argue that line 22’ can be implemented to run in linear time. We do this by using
Lemma 3, but replacing the graph G V p by a graph H of bounded treewidth such that
H = Y(d) if and only if G V p =P (d).

The basic idea is very simple: Because @g does not make use of edge predicates,
Pz does not do so either. (More precisely, in the definition of the quantifier-free
operation & of Lemma 2, we can replace 0,45 by false. It follows that neither & nor @g
make use of the edge predicates of G, and as a consequence the backwards translation of
@ ¢ does not either. The latter follows directly from the construction of that formula; see
Courcelle and Engelfriet (2012), because then that entire construction effectively works
with relational structures that lack the relations edg, in the first place, i.e., we work
with discrete graphs throughout.) Moreover, 1) only depends on edges originating
at nodes that are in [p] \ [d] and are thus not in G V d. Hence, discarding the edges in
G V d affects the truth values of neither 1 1) nor ¥ vs). We only need to get rid of the
subformula ) of 1 because it obviously makes use of edge predicates regardless of
whether or not @4 does. However, this is easy as ) does not contain Xj, ..., X,, that
is, the truth value it attains depends only on the choice of d in line 21’. Consequently,
we can add the requirement that all nodes of G V p that are not in [p] shall be reachable
from [d] (which can be checked in linear time) to line 21’, delete {2y from 1 to obtain

‘ll), =3Xy,..., X,.( /\ Vx.x € XZ),- X = x]) A ﬂ)(Ml) A l-l)(MS)

(if)En]x[¢]
v;=dockg (f)

and check in line 22" whether H = 1/(d), where H is obtained from G V p by removing
all edges e for which src(e) ¢ [p] \ [d]. Since this graph H has at most r nodes that are
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sources of edges, its treewidth is at most k. By Courcelle’s theorem this means that
H | ’(d) can be checked in linear time, which completes the proof. O

6. Parsing for Local Graph Extension Grammars

The restriction to the edge-agnostic case used in the preceding section in order to ensure
a polynomial running time of the parsing algorithm is rather severe. In this section, we
show that this restriction can partially be lifted. The NP-completeness proof in Section 4
may provide a hint: The mso formula in the rule depicted in Figure 12 inspects the
entire graph. We shall now see that a certain amount of local structural conditions can be
allowed without sacrificing efficient parsing. The idea is that we weaken the restriction
imposed by edge agnosticism by adding primitive predicates to our logic that make
it possible to express that a node belongs (or does not belong) to a part of the graph
having a certain form. This type of predicate is inspired by the notion of (nested) graph
constraint in the theory of graph transformation (see, for example Habel, Heckel, and
Taentzer 1996; Arendt et al. 2014).

Definition 8 (Local Condition and Local Node Predicate)
A local condition is a sequence X = GoQ1G1Q; - -- Gy where Gy C Gy C -+ C Gy are
graphs!® for some k € N, and Qy, ..., Q¢ € {3,—3,V, ~V}.

Let G be a graph. We inductively define what it means for an injective morphism
Ho: Go — G to satisfy X. Every such morphism satisfies x if k = 0. Assume now thatk > 0
and let X' = G1Q; - - - Gx. Then yy satisfies X if one of the following cases holds:

1. Q1 = J and there exists an extension of 1y to a morphism p;: G; = G
that satisfies x’."!
2. (1 = —3J and there does not exist any extension of 1y to a morphism

W : G; — G that satisfies x'.
3. Q; = V and all extensions of g to a morphism ;: G; — G satisfy x'.

4. Q1 = —V and there exists an extension of 1y to a morphism p;: Gy =+ G
that does not satisfy x’.

Alocal node predicate is a unary predicate specified by a local condition x as above,
such that Gy consists of a single node u which is not a port. A node v in a graph G with
the same label as u satisfies X, that is, X(v) is true in G, if the morphism that maps u to v
satisfies x.

An example of a local node predicate (with k = 2) is shown in Figure 13.
Lemma 4

Let x be a (fixed) local node predicate, G a graph, and v € V. Then it can be checked in
polynomial time in the number of nodes of the graph G whether v satisfies x.

10 The reader may wish to recall the formal definition of the inclusion relation “C” from Section 2.
11 Thus, the requirement on p; is that its restriction to the subgraph Gy of Gy is .
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A local node predicate x (top row) that is satisfied by a node v if the following holds: The node v
itself has the label b, and for every a-labeled node v’ from which there is a green edge to v (we
use colors as edge labels), it holds that (1) ¢’ is the target of a green edge whose source is another
b-labeled node and (2) there is a black edge from the first port (which carries the label a) to v. For
example, in the graph G (bottom row) we have that x(v) is true because both of the a-labeled
nodes from which there are green edges to v have a green incoming edge from a b-labeled node
(here: w); the first port is labeled a; and is the source of a black edge pointing to v. Note that, in
fact, x(w) is true in G as well, despite the fact that no black edge connects it to the first port. This
is due to the fact that w does not have any incoming green edges from a-labeled nodes, which
makes the universal condition vacuously true. In contrast, x(v) is false in G’, because one of the
a-labeled nodes from which there is a green edge to v lacks the required incoming green edge
from another b-labeled node. However, x(w) continues to be true.

Proof. If x = GoQ1G1Qy - - - Gy, it is straightforward to test whether v satisfies x by
means of a recursive algorithm of fixed recursion depth k mimicking the definition of
satisfaction for local conditions. The body of the procedure consists of a loop which
enumerates all possible extensions of the morphism that maps G;_; to G (determined
by the enclosing call) and test whether they, recursively, fulfill G;Q; 1 - - - Gy. Since the
graphs G; are fixed, each loop runs in polynomial time, and hence the entire algorithm
runs in polynomial time. U

We note here that, while in general the exponent of the polynomial bounding the
running time of the test whether v satisfies x can be arbitrarily large, typical properties
that need to be tested in practice are unlikely to require big and complex graphs G; or
large k and may therefore be expected to be of reasonable complexity.

Definition 9 (Local Graph Extension Grammar)

Let CMSO),. denote the logic obtained from CMSO by removing all predicates of
the form edg,, where a € L, and adding all local node predicates. A graph extension
grammar such that every extension operation ® appearing in it satisfies ¢4 € CMSO),
is a local graph extension grammar.

Theorem 5
For every local graph extension grammar I', Algorithm 1 can be implemented to run in
polynomial time.
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Proof. Since the only difference between an edge-agnostic and a local graph extension
grammar is that the extension operations of the latter can make use of the local node
predicates, it suffices to show how to handle those. For this, we have to extend Lemma 3
accordingly, which we do by precomputing the required predicates for every relevant
node and adding them to the relational structure. Note first that any given extension
operation ® makes use of a finite number of local node predicates. Let X1,...,X; be
those predicates.

By Lemma 4 it takes polynomial time to compute, for every node v of H v d (where
H and d are as in Lemma 3) and every i € [k], the truth value x;(v) with respect
to H v d.2 Once this has been done, we can follow the construction in the proof of
Lemma 3, but only after first having turned H into the relational structure that is
obtained by adding these pre-computed unary predicates x,...,X; to it. Since the
Backwards Translation theorem and Courcelle’s theorem apply just as well to the re-
sulting relational structures (which are essentially graphs with & types of additional
node labels), and these unary predicates do not increase the treewidth of the structures,
the remainders of the proofs of Lemma 3 and Theorem 4 continue to be valid. O

We note there that the polynomial bounding the running time of the algorithm,
in contrast to the edge-agnostic case, is an arbitrary one. This is unavoidable (as long
as subgraph isomorphism is not in P, that is, P # NP) because the exponent of the
polynomial in Lemma 4 depends on the local node predicates occurring in the grammar.
However, as mentioned above, practically relevant local node predicates are likely to be
rather benign (at least for applications in NLP). For example, assuming that suitable
data structures are used, the local node predicate required to implement the coordina-
tion discussed in connection with Figure 9 can be computed for all nodes v of the host
graph in accumulated linear time. In those cases, the running time will be essentially
the same as in the edge-agnostic case.

7. Conclusion

We have introduced graph extension grammars, a simultaneous restriction and exten-
sion of hyperedge replacement graph grammars. Rules construct graphs using oper-
ations of two kinds: The first is disjoint union, and the second is a family of unary
operations that add new nodes and edges to an existing graph G. The augmentation is
done in such a way that all new edges lead from a new node to either

1 aportin G, or

(2) any number of (arbitrarily situated) nodes in G, chosen by a cmso
formula.

While graph extension grammars are inspired by the notion of contextual hyper-
edge replacement grammars (Drewes, Hoffmann, and Minas 2012), they differ from
them in a rather fundamental way: Intuitively, the context nodes in a rule r of a graph
extension grammar refer to nodes in the subgraph generated by the very subderivation

12 Note that we need to evaluate x;(v) in the graph H V d rather than in H because it is the former that is
the potential argument of ®.
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rooted in r. In contextual hyperedge replacement grammars, the situation is the oppo-
site: context nodes refer to nodes generated by rule applications outside that subderiva-
tion. The latter creates a problem that does not occur in graph extension grammars,
namely, that there may be cyclic dependencies which, intuitively, create deadlocks (see
Drewes, Hoffmann, and Minas 2022).

By way of example, we have shown that graph extension grammars can model
both the structural and non-structural reentrancies that are common in semantic graphs
of formalisms such as AMR. We have presented a parsing algorithm for our formalism
and proved it to be correct. If the formulas used to direct the placement of non-structural
reentrancies make only “local” structural assertions, then the running time is polyno-
mial. In general, the graph languages generated by graph extension grammars can be
NP-complete (shown in Theorem 2), and hence there is little hope of being able to find
an efficient membership algorithm for unrestricted graph extension grammars.

It is worthwhile repeating that the dynamic programming parsing algorithm pre-
sented here makes at most a polynomial number of recursive calls, and that the body
of the algorithm runs in polynomial time provided that it can be decided in polynomial
time whether a given mapping of the ports of an extension operation ® to nodes in the
input graph can be extended to a matching that satisfies @g. To obtain the main result
of this article, we exploited the fact that this is the case if @¢ is local. However, any
other restriction enabling us to decide the existence of matchings in polynomial time
would work just as well. In particular, there may be other ways to make sure that it
suffices to test @g on some subgraph of bounded treewidth, such as a spanning forest.
We currently do not know of a meaningful restriction that would allow us to do this,
but there is another restriction that is even simpler: if no extension operation contains
a context node, then graph extension grammars are special hyperedge replacement
grammars,'® and thus generate only graphs of bounded treewidth. This shows that
Theorem 4 holds for such graph extension grammars, a result which is not entirely
trivial because hyperedge replacement can, in general, generate NP-complete graph
languages (see Section 1.1):

Corollary 2

Let I" be a graph extension grammar such that none of its extension operations con-
tains a context node, and let T be the maximal type occurring in its operations. Then
Algorithm 1 can be implemented to run in time O(n").

There are several promising directions for future work. On the theoretical side, it has
to be said that the bounds on the running time proved in this article are rough upper
bounds for worst-case scenarios. Since the exponents are rather high, it would be useful
to have a closer look at the parameters that influence them, making a fixed-parameter
analysis. A parameter that readily comes to mind is the number of reentrancies of a
graph. Because the extreme case of a (directed acyclic) graph without reentrancies is a
forest, we expect such an analysis to offer plenty of room for reducing the running time
of our algorithms to much lower levels.

We would furthermore like to apply the new ideas presented here to the formalisms
by Groschwitz et al. (2017) and Bjorklund, Drewes, and Ericson (2016), to see if also these
can be made to accommodate contextual rules without sacrificing parsing efficiency. It is

13 Strictly speaking, this is not entirely true because, for an extension operation ®, the formula @4 still
restricts the applicability of extension operations to graphs having the property expressed by @, but this
is well known not to increase the power of hyperedge replacement grammars, and even if it did, it would
obviously not increase the treewidth of graphs.
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also natural to generalize graph extension grammars to string-to-graph or tree-to-graph
transducers to facilitate translation from natural-language sentences or dependency
trees to AMR graphs.

On the empirical side, we are interested in a number of directions. A first step could
be to check whether graph extension grammars can express the AMR languages of
some existing AMR corpora, and see how the running times of parsing vary in practice
depending on variables such as the number of reentrancies in the input graph or the
grammar size. In addition, we would like to develop algorithms for inferring extension
and union operations from AMR corpora, and in training neural networks to translate
between sentences and AMR graphs using trees over graph extension algebras as an
intermediate representation. Such efforts would make the new formalism available to
current data-driven approaches in NLP, with the aim of adding structure and inter-
pretability to machine-learning workflows.
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