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Abstract

This paper introduces our system at CCL-2023 Task: Chinese Essay Fluency Evaluation (CEFE).
The CEFE task aims to study the identification and correction of grammatical errors in primary
and middle school students’ test compositions. The evaluation has three tracks to examine the
recognition of wrong sentence types, character-level error correction, and wrong sentence rewrit-
ing. According to the task characteristics and data distribution of each track, we propose a token-
level discriminative model based on sequence labeling for the multi-label classification task of
wrong sentences, an auto-encoder model based on edited labels for character-level error correc-
tion and a seq2seq model obtained by pre-training on pseudo data and fine-tuning on labeled
data to solve the wrong sentence rewriting task. In the final evaluation results, the method we
proposed won the first place in all three tracks according to the corresponding evaluation metrics.

1 Introduction

With the development of the Internet, the scale of online texts is also increasing, and it is difficult to meet
the needs of text proofreading by relying on manual review alone. Especially in some error-intensive
fields, such as the composition evaluation of elementary and middle school students, manual evaluation
has become expensive and inefficient. At this time, it becomes very necessary to use deep learning
technology to build an efficient evaluation system, which can assist teachers in identifying.

In order to promote the development of the field of text error correction, the China National Conference
on Computational Linguistics (CCL-2023) has taken Chinese Essay Fluency Evaluation (CEFE) as one
of the shared tasks. This task systematically classifies text errors at different granularities, provides
human-annotated data, and proposes three tracks covering error correction and error detection.

In this work, we introduce our method at CCL-2023 CEFE task. For error detection, we adopt a fine-
grained error detection model based on sequence annotation. Sentence-level multi-label tasks are accom-
plished by discriminating the type of error involved in each token. At the same time, we use techniques
such as model inheritance and threshold post-processing to alleviate the bias caused by pseudo-data
training. Due to the misalignment between the sequence labeling task and the provided human-annotated
data, we constructed a large amount of pseudo-data for various types of errors based on LTP(Che et al.,
2020) and heuristic rules, which were used for the training of the Trackl model and the pre-training of
Track?2 and Track3 models. For error correction, we trained an auto-encoder model based on edit label
prediction and an auto-regressive model of seq2seq for character-level errors and extensive errors (in-
cluding character-level and component-level), respectively. In the final evaluation, our method won the
first place in the three tracks of wrong sentence type discrimination, character-level error correction, and
wrong sentence rewriting.

This article is organized as follows: Section 2 briefly introduces the CEFE shared task; Section 3
mainly expounds the methods we use in this evaluation, including data level and model level; Section 4
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presents the main experimental results; Section 5 introduces some related work on text error correction;
Finally, we conclude in Section 6 with reflections on future work.

2 Chinese Essay Fluency Evaluation

The goal of the CCL2023 CEFE task is to identify wrong sentences in primary and middle school stu-
dents’ compositions, judge the wrong sentence category they belong to, and propose amendments.

The previous work did not carry out a detailed classification of wrong sentences. This evaluation is the
first to start from the two perspectives of character-level errors and component-level errors, and defines
four categories of coarse-grained error categories (Character-level error, Component Incompleteness er-
ror, Component Redundancy error, and Component Mismatch error) , which contain 14 fine-grained
error categories, as shown in Table 1.

Coarse-grained Error Fine-grained Error Amount of Pseudo Data

Missing Word 20w
Typo 27w
Character-level Missing Punctuation 16w
Punctuation Misuse 20w

Subject unknown Sw

Component Incompleteness Predicate Incompleteness Sw
P P Object Incompleteness Sw
Other Incompleteness Sw

Subject Redundancy 1k

Component Redundancy ~ Function Word Redundancy 1k
Other Redundancy 1k

Improper Word Order 1k

Component Mismatch Verb-object Mismatch 1k
Other Mismatch 1k

Table 1: The 4 types of coarse-grained error categories and their corresponding 14 fine-grained error
categories provided in this evaluation, among which Track 1 and Track 3 involve all categories, and
Track 2 only involves Character-level error category. The table also shows the number of pseudo data
we constructed for each error category, which will be explained in 4.2.

Specifically, Track 1 of the task is mainly dedicated to identifying the error types of wrong sentences,
Track 2 requires the identification and correction of Character-level coarse-grained errors in sentences,
and Track 3 requires the rewriting of wrong sentences containing extensive errors.

3 Methodology

According to the requirements of each track, the system we submitted needs to complete the identification
and error correction of wrong sentences. Below we will introduce our method from these two aspects.

3.1 Wrong Sentence Type Recognition

Track 1 is a sentence-level multi-label classification task, which requires the model to determine the
coarse-grained error and fine-grained error categories contained in the wrong sentence. However, due to
the large number of types of wrong sentences and the large differences in the scale of various types of
errors (a token is involved at the character level, and a span is usually involved at the component level),
using conventional multi-label classification methods has not achieved good results.

Therefore, we consider classifying wrong sentences from the token level rather than the sentence level.
The token-level sequence labeling task can not only convert sentence-level multi-label classification into
token-level classification tasks ( different errors usually involve different characters), but also simplify
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relatively difficult tasks (such as Component Mismatch) through interpretable token labeling. Specifi-
cally, the sequence labels for Character-level, Component Incompleteness, Component Redundancy, and
Component Mismatch are shown in Figure 1.

Coarse-grained Category Sequence Label

#char_error

R ARARRIGSE

Character-level

#miss_other

HIET6000 | 2 | Mt

Component Incompleteness

#redu_sub

Component Redundancy B | T2 TR

#coll_vobj #coll_vobj
Component Mismatch Bt w3 | TEx| s

Figure 1: Illustration of the sequence labels for each category. The correct character is marked as #cor-
rect, and all #correct labels are omitted in the table for clarity.

Sequence Labeling Method

According to the error category definition of Trackl, our sequence labeling model has a total of 15
categories (correct label and other fine-grained error labels). Through the sequence labeling model, we
obtain fine-grained error labels for each token. Finally, we integrate all the involved fine-grained labels
as the result of the sentence-level fine-grained category, and then deduce the coarse-grained category
according to the fine-grained category. The entire pipeline processing flow is shown in Figure 2.

Pseudo Data Construction

Since the human-annotated data provided by Trackl and the sequence labeling task are not aligned,
and the amount of each track’s data is not large. We consider using some semantic parsing tools and
open-source data to construct a large amount of pseudo data for model pre-training.

Finally, we use LTP(Che et al., 2020) and some heuristic rules to construct a parallel corpus containing
corresponding errors for the correct sentences in the CGED(Rao et al., 2018) training set. The specific
rules are as follows:

1. Character-level error’s construction mainly includes additions, deletions, and modifications to the
original text. We construct Missing Word and Missing Punctuation by random delete operations.
Relying on the word confusion sets proposed by Wang et al. (2018) and the Pinyin confusion set
collected from the Internet, we construct Typo and Punctuation Misuse errors. We also randomly
inserted some words from the vocabulary to cover the case of redundant word errors, whether it is
Chinese characters or punctuation.

2. Component Incompleteness error’s construction mainly depends on the syntactic analysis of LTP.
According to the syntactic analysis results of LTP, we randomly delete the subject, object, predi-
cate, and other component in it to construct Subject unknown, Predicate Incompleteness, Object
Incompleteness, and Other Incompleteness. It should be noted that Subject Unknown also con-
tains error subject sentences, so we will also randomly replace some subjects to construct this type
of pseudo data.

Proceedings of the 22nd China National Conference on Computational Linguistics, pages 271-281, Harbin, China, August 3 — 5, 2023.
(c) Technical Committee on Computational Linguistics, Chinese Information Processing Society of China

273



Computational Linguistics

3. Component Redundancy error’s construction also depends on the syntactic analysis of LTP. We
construct Subject Redundancy and Function Word Redundancy by repeating or inserting the
corresponding components. Other Redundancy is difficult to construct, so we directly use the
corresponding part of the open-source Chinese semantic error dataset (CSED) proposed by Sun et
al. (2023) as the training set.

4. Component Mismatch error mainly includes three types of errors. Improper Word Order error
can be achieved by randomly shuffling spans, and we also use some of this type of data in CSED. For
Verb-object Mismatch and Other Mismatch errors, we first constructed some subject-verb, verb-
object collocation knowledge bases according to the LTP analysis results, and then we randomly
replaced the subject, predicate, object in sentences from the knowledge base to realize improper
collocation errors.

Transformer Model for Sequence Labeling

We use the model of the Transformer architecture (Vaswani et al., 2017) to complete the sequence la-
beling task. As usual, we first use the encoder model to model the input token to obtain hidden layer
features, and then, we predict the label type of each token through the linear layer. For the input sequence:
S = tg, t1, ..., tn, the formula for the labeling process is as follows:

) = Wet; + W, M
h! = TransformerBlock(h.™") @)
yi = Softmazr(Wiinearh! + b) 3)

where t¢; is the current token, W, is the word embedding matrix, and W, is the position embedding
matrix. After the extraction of each block, the hidden layer representation of the L layer hé is obtained
to predict the final label y; by linear layer Wi ,eqr--

During the training stage, we use the label cross-entropy loss to optimize the model, which can be
formulated as follow:

n
losssequence,labeling = Z CTOSSEntTOpy(yia gz) (4)

=1

where y; represents the model prediction result, and ¢; represents the gold label.

Model Integration

Due to the large difference in the scale of the four coarse-grained category errors, we found that a single
model can’t discriminate all errors well. Therefore, we consider using four different sequence labeling
models to model errors of different scales. The specific method we use for inheriting model results can
be formulated as follows:

4
Final; = U Pred,, 5
m=1
where Pred,, is the set of fine-grained error categories predicted by the mth model. For efficiency,
we directly union the results of each model at the sentence level. This enables our system to learn more
specifically about different types of errors and make more reasonable judgments.

Threshold Filtering

Although through model ensembles, we have been able to guarantee the requirement on recall. Our
model still suffers from excessive false positives, due to the bias of pseudo data and the difficulty of the
task.

Therefore, we consider the post-processing operation of threshold filtering on the model output.

We set a bound of confidence. When the predicted label is not correct and its corresponding confidence
value is less than this lower limit, set this label to correct.
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track1 pipeline

input text BEET—2! AT HEA.
sequence labeling model

token-level label {#redu_sub} {#punc_error} {#char_errorJ

| T

merge and extract

<

sentence-level label

coarse-grained character-level component redundancy
fine-grained ‘ subject ‘ ‘/punctuation ‘ ‘ typo
_redundancy /| | misuse

Figure 2: Illustration of the pipeline for the detection of the entire trackl wrong sentence category. First,
we obtain the token-level error labels involved in the input text through the sequence labeling model, and
then obtain the sentence-level results by merging and extracting the token-level labels.

Specifically, we set a confidence hyperparameter as a threshold. When the model confidence is lower
than this hyperparameter, we will set it as correct. The filter formula is as follows:

Yijs if P(y;;) > threshold

correct, else

(6)

labelij =

where y;; is the predicted label, and P(y;;) is the model’s confidence in the label.

3.2 Wrong Sentence Correction

In addition to detecting the wrong sentence category, Track2 and Track3 also require us to correct the
sentences to varying degrees. Considering the difference between these two categories of errors (the
edit distance involved in Character-level errors is relatively short, usually within 1 word, while the edit
distance involved in component-level errors is usually longer), We use two model architectures, auto-
encoder and auto-regressive, to accomplish these two error correction tasks, respectively.

Operation Detail explanation
repeat insert a repeated word or token (including punctuation)
insert redundancy insert a synonym, based on bigcilin”
random insert a random word from the vocabulary
delete random delete a token (including punctuation)

token-level replace based on token-level confusion set (Wang et al., 2018)
replace word-level  replace based on word-level confusion set'
random randomly replace from the vocabulary

Table 2: Introduction to the method of constructing Character-level error pseudo data

0
1

www.bigcilin.com
constructed from token-level confusion set
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Pseudo Data Construction

As in the error detection part, in view of the relatively small number of training sets provided by the
evaluation, we used a similar LTP-based method (see in 3.1) to construct some pseudo data for the
alignment error correction task in the pre-training stage.

In particular, we have constructed more fine-grained pseudo data for Character-level errors. The main
construction methods are shown in Table 2. We randomly process the unlabeled corpus according to the
operations in the table, so as to obtain sentences containing corresponding errors.

000000100010 KKKKKKABIKKKREK

Detection Head Correction Head

<s>RRSHRIIFRAIHREED, HARRM</s>
A A

| T

[ GECToR ] E [ Encoder ] Decoder ]

1

<s>REHMRAITRATH, HREUH</s>  </s>

!
B R R, BRREH

Figure 3: Illustration of the multi-task GECToR model used in Track2 and the seq2seq model used in
Track3. For error correction header prediction labels, A means insertion and R means replacement.

Character-level Error Correction

For Character-level errors, we use the GECToR framework (Omelianchuk et al., 2020) based on editing
tag sequence annotations to implement addition, deletion, and modification operations for Chinese char-
acters and punctuation errors. We believe that non-generative models are easier to fit to the training set
than generative models, and can make more conservative modifications.

In order to obtain a reliable Chinese GECToR model, we initialized with the weights of Chinese
Bert(Cui et al., 2021), pre-trained on pseudo data and fine-tuned on the provided real distribution training
set. We use error detection and correction multi-task learning to train the model. The model architecture
is shown in the left side of Figure 3. As shown in the figure, we use the loss of multi-task learning as the
optimization target during our GECToR model’s training stage, which can be formulated as follows:

n
1085 detect = »_ CrossEntropy(ysi, i) )
=1
n
losscorrect = Z CTOSSEntTOPy(ytOkenv ytoken) (8)
i=1
lOSSgector = 085 detect + 10SScorrect )

where vp;, U represents the binary label of the model prediction and the gold label, while y;oken, token
represents the edit distance label. We simply add the error detection and error correction losses as the
final loss in the task.

Wrong Sentence Rewriting

For the wrong sentence rewriting task that contains all the above error types, we consider using a seq2seq
model to cover the correction with a larger edit distance. The model architecture is shown in the right
side of Figure 3. we finally chose BART(Lewis et al., 2019) as our backbone model due to its pre-
training task of denoising. We believe that BART is more suitable for the task of text error correction
than other models, because denoising and error correction are related tasks. Specifically, we used Shao
et al. (2021)’s Chinese BART weights for model initialization.

Considering the amount of real training data, we still use the two-stage method of pre-training with
pseudo data and fine-tuning with real data to train the error correction model. In the pre-training stage,
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we combined the previously constructed pseudo data (see in 3.1) and other open source semantic datasets
(Sun et al., 2023) for training; in the fine-tuning stage, considering the data distribution, we integrated
the Track2 and Track3 parallel corpus datasets for training.

We use the conventional way to train the seq2seq model. It should be noted that in order to avoid
over-correction, we use greedy-search decoding in the inference stage.

4 Experiment

4.1 Data Analysis

We first counted the distribution of various errors in the data provided by Trackl1, which is used to guide
our subsequent model training and pseudo-data construction guidelines.

The distribution diagram is shown in Figure 4. Through the analysis, no matter which source of
the data set, Character-level errors account for the main part, and the metric of Character-level error
contributes the most to the overall metrics. The result is in line with intuition, and Character-level error
is also the most likely to occur and catch errors in composition writing scenarios.

403

400 Character-level

Component-incomplete
350 Component-redundant
Component-mismatch

300 -

250

200 4

150 A

100

Number of Wrong Sentences

50

train val part_testA
Dataset

Figure 4. The distribution of each reference data set provided by Trackl.

Specifically, the error of Character-level type accounts for a large proportion, followed by the error
of Component Incompleteness and Component Redundancy, and the least is the type of Component
Mismatch. Such a proportion also affects the amount of pseudo-data later to a certain extent.

4.2 Dataset

We present the source and number of other (unofficially provided) datasets we used in the datasets sec-
tion. Overall, our model relies more on pseudo data constructed with Section 3.1. For Character-level
error which has extensive open-source datasets, we use SIGHAN(Tseng et al., 2015) and CTC(Wang et
al., 2022) as supplements. In addition, as mentioned in Section 3.1, we directly use the relevant parts of
CSED(Sun et al., 2023) for some composition errors difficult to construct.

The amount of pseudo data we constructed for each category is shown in Table 1.

4.3 Maetric

Referring to the requirements of the Task, we use the coarse-grained and fine-grained precision (P), recall
(R), and F-score as metrics in Trackl. And the F-score of character-level and sentence-level is used for
Track2’s Character-level correction model. Track3 integrates the edit distance label Fp 5, EM, Bert PPL,
Levenshtein distance, BLEU-4, and BERT-Score as a reference.

4.4 Training Details

We generally use the AdamW optimizer and 128 max sequence length for model training. For Trackl,
we finally select the Chinese-electra-base model as encoder, we train four models for 50 epochs with a
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batch size of 32 and a learning rate of 5e-5 on the pseudo dataset, respectively. For Track2, we used
Chinese-bert-base weight initialization. We pre-train on the pseudo dataset with batchsize 64, epoch 6,
learning rate 1e-4, and fine-tune on the real dataset with batchsize 32, epoch 20, learning rate 5e-5. For
Track3, we used the same settings as Track2, and submitted the best result on the validation set.

4.5 Validation Results

Due to time and submission mechanism factors, we mainly conducted ablation experiments on the setting
of the error detection model.

Integrated Policy Validation

In order to verify our conjecture, we performed ablation experiments on the methods of directly predict-
ing 14 error categories and model integration based on 4 coarse-grained error categories. As shown in
the Table 3 below, the experimental results show that using four models to model various types of errors
can reduce the task difficulty to a certain extent and improve the detection ability.

Coarse-grained Error  Fine-grained Error
method P R F | R F score

single model 3541 2796 3124 1977 1336 1594 23.59
model integration 35.34 68.51 46.63 21.16 36.45 26.77 36.70

Table 3: Validation results using a single model and model integration method. For fair comparison, we
used the Bert-base model for experiments.

Backbone Model Selection

Besides, we tried two transformer-based backbone networks, BERT(Devlin et al., 2018) and ELEC-
TRA(Clark et al., 2020), for sequence labeling tasks. The experimental results are shown in Figure 4,
ELECTRA achieves better performance on error detection due to discriminative-based pre-training tasks.

Coarse-grained Error  Fine-grained Error
model | R F P R F score

BERT-base 35.34 68.51 46.63 21.16 3645 26.77 36.70
ELECTRA-base 34.21 89.96 49.56 18.70 46.17 26.62 38.09

Table 4: Results on the validation set using different backbone networks. The structure of the two
models both adopt the method of integrating four coarse-grained models.

Threshold Hyperparameter Selection

In order to determine an appropriate threshold, we tuned the threshold hyperparameters on the validation
set, and the experimental results are shown in Figure 5. Combining the macro and micro metrics, we
finally choose 0.99 as the confidence threshold hyperparameter.

4.6 Testing Results
Our final score and ranking on each track are shown in Table 5 below. According to the official evaluation

metric, we achieved the first place in all the tracks.

5 Related Work

Due to the complexity of the Chinese language itself, Chinese text error correction has always been a
challenging task. For Chinese spelling error correction, Hong et al. (2019) utilizes a pre-trained language
model to generate candidate words. Cheng et al. (2020) uses GCN to enhance the modeling of confusing
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Figure 5: Illustration of threshold and detection metric on val under the optimal setting, which uses the
ELECTRA-base backbone network and adopts model integration method.

Track Reference Metric Score | Ranking

CQarse— grained F1 Flr.1e— grained F1 micro F1 | macro F1

1 micro macro micro macro 52.16 1
56.7 42.81 47.62 16.46 52.16 29.64

Detection Correction )

2 char sent char sent Identify CRrect 67.33 1
62.28 55.86 62.76 40.02 74.22 60.44

3 Fos EM PPLBERT LD BLEU,; | BERTg.0r¢ 5783 |
45.81 17.34 291 1.91 89.85 97.60 )

Table 5: Metrics and rankings on the official test sets for each track.

characters. Liu et al. (2021) proposes PLOME which incorporates pinyin information and font informa-
tion to assist in error correction. And DCN(Wang et al., 2021) calculates the transfer matrix through the
neural network, and generates more fluent error correction results through beam search.

For Chinese grammatical error correction, we continue to follow up the excellent methods of CGED.
Wang et al. (2020) combines ResNet and Transformer structures for error detection. Luo et al. (2020)
also uses GCN to model the syntactic dependency tree, thereby enhancing the error detection ability.
Cao et al. (2020) proposes a feature-based gating mechanism, which can reduce the amount of training
parameters of the model.

A major difficulty in Chinese grammar error correction is the lack of high-quality labeled data. In
recent years, some scholars have also devoted themselves to the construction of high-quality grammar
data sets. Zhang et al. (2022) relabeles and integrates the current CGEC dataset to build a multi-reference
dataset that can evaluate the model more accurately. Xu et al. (2022), Sun et al. (2023) organizes manual
annotation according to the exam questions of wrong sentences in primary and secondary school, and
construct high-quality native Chinese grammar error datasets with fine-grained classification.

6 Conclusion and Future Work

This paper describes our detection and correction system on the CCL-2023 CEFE task, which includes
token-level error correction and the implementation of two different paradigm GEC models. In all three
tracks, the metrics of our model reached the first. In future work, we will continue to study more efficient
grammatical error correction methods, such as the adaptation of the seq2seq model to error correction
tasks, the improvement of the speed of autoregressive methods, and the utilization of LLMs like chatgpt,
etc.
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