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Introduction

Welcome to the proceedings of the Frontier Forum of the twenty second China National Conference on
Computational Linguistics (22nd CCL). The conference were hosted and co-organized by Harbin Institute
of Technology, China.

CCL is an annual conference (bi-annual before 2013) that started in 1991. It is the flagship conference of
the Chinese Information Processing Society of China (CIPS), which is the largest NLP scholar and expert
community in China. CCL is a premier nation-wide conference for disseminating new scholarly and
technological work in computational linguistics, with a major emphasis on computational processing of the
languages in China such as Mandarin, Tibetan, Mongolian, and Uyghur.

The Program Committee selected 9 overviews for the Frontier Forum of CCL 2023, in order to give a
general view of the NLP in the past year and increase the sense of the edge-cutting works for the
attendees. The 9 overviews encompass the compelling facets of large language models, including
selection, training, evaluation, and integration with the knowledge graph, among others.

We thank the Program and Organizing Committees for helping to make the forum successful, and we
hope all the participants enjoyed the CCL conference and a wonderful days in Harbin.

July 2023

Jiajun Zhang



Organizers

Tutorial Chairs

Jiajun Zhang Institute of Automation, CAS, China



Table of Content

TESE I 25 I ECH -5 FRZE e
WL, i, BEHE, AAANEE, BRI oo veeeeeeemee e 1

Unleashing the Power of Large Models: Exploring Human-Machine Conversations

Yuhan Liu’ Xluylng Chen’ and Rul Yan ........................................................................ 16

Plas i ERIA i =5 R 70

%I%, }%%, %J&ﬂ:, XU/B;T%?, E‘:%ﬁ” .................................................................... 30
A Systematic Evaluation of Large Language Models for Natural Language Generation Tasks

Xuanfan Nl, PlJl Ll ................................................................................................ 40
LI B BT T P

TR, FEERAL, BREE, MBI, BREETE 57
K5 5491H K1

BRERE, BR/AEN, XUEE, BUZE oo 67
K1 G RN 75 W, Pl #5246, IR E S

gg%% .............................................................................................................. 77

Through the Lens of Core Competency: Survey on Evaluation of Large Language Models
Ziyu Zhuang, Qiguang Chen, Longxuan Ma, Mingda Li, Yi Han, Yushan Qian, Haopeng Bai, Weinan
Zhang, Tll’lg Llu ........................................................................................................... 88

Frontier Review of Multimodal Al
Nan Duan ............................................................................................................ 1 10



He BT I 5 P OB SRR R

B SR t/NEE
LB AT ERERRNE B HRATENERE HEHRATEIERE
yanhang@pjlab.org.cn zyfei20@fudan.edu.cn  yangxg21@m.fudan.edu.cn
= BRI
LA TERRETRNE B BRI EALERE
gaoyang@pjlab.org.cn xpqiu@fudan.edu.cn
LS

ChatGPTRANEE ML B3, FBER T FH AR AT, iR s 7E 22k
B N ATHRF . REOpenAlH £ /AT ChatGPTHI AR KL, H—YL 8RN TIEE
VRO AT IR R B BT F S I T ChatGPTHIMERE - SRTT, RUE i LLfEi T fF Bt 4y
M _E R H 5 Chat GPTH IR TERE, (HAESLPRAVEIRE MM FE SN £, ENHRAR
WChatGPT « N T BT Chat GPTEEGPTAINERE, Tl 155 Tn = HEAAY (i)l 2k 1
FTEEIRNBIIFER o A SRS Nk B AR R I S5 A BE DA SRR BB M) A7 15108, B R As
M ET TR B SRR DL A B R, RN B R IR RS T SR R A
T GEIEHAT T 90T, SRIEXT X A 8 2 BRI A P 4 2870 33847 T mIBR, &
Ko IX LE AL JH T 5 ST T AR

g EERTIEOE  FEEEIAIE
1 5§

M20227F11 H JiE, 3£ EOpenAlA 7] # HChatGPTYE , KiEF M (Large Language
Model, THFLLM) 7E22ARFF T FH T T 2250 - ChatGPTH] LUE 3 % 18 B 7 20 58 B
ARESS, FIERE AR . BEIERIE . HEWRE, RS H e H AL R, LRI
W ZERXER S B S, X FE N E SR BT AR KRR TR A T,
It Chat GPTIRETE 2 BRYLE A H 8, FAET /R T AL E RS S - OpenAIAFIH R A
FFChatGPTIIFIA B2, (AR ]17EInstructGPT (Ouyang et al., 2022103 H$E2|, A DLl
—NEEEFEA, 4545 AEXFF (Human Alignment) Yl ZRF BT ERFE A K18 2 52
FFEAESS o [ Instruct GPTH BRI TTE, FLen)—5% TAEFE IR A (Nijkamp et
al., 2023b; Touvron et al., 2023) F—EFEEE I T ChatGPTHIERE (Sun et al., 2023; Taori et
al., 2023) - A FITR B ERER AR LR IE L, REIAEX LR\ — L0 Rl H
5ChatGPTHLIFIMERE, (ENERE IEFGE T, EA19A X ChatGPT, HE2HTHZE
B EEAChatGPT, ARG T AERIPEMERE - 7 T REW B INEEA Chat GPT /1 22 GP T4
e, BT EA R BRI BT EIR ARIBISY (Gudibande et al., 2023) -

NTHI—DHFREEER, RN ELEFEREWINGEIE, TRIP AT
T A R AN R TN ZR AL B 7 K/ 5 48 B B9 I 2R 2088 K/ - WGPT-2(Radford et al.,
2019)FPaLM2(Anil et al., 2023), fAFR/NHGK T 20005, 1H2FIZRMETE = RK/NE K
T450f% - Ft, FIZEEIN BRI K E ERE) . R1FHZH| T JLAH BEAR AN I ZRET 77 22 1Y)
THRBE - BR 7T RESRHIT B4 200, Tl TR AN [R] Y R R AT ) W 28 R, %t
AP JREAR A B BRI AT VTGN

2 FIgREHE
FIE AR EE, HEAIETINGEEN)IZra0EM, BEEX )AL BLE, 8UE
MR ERIMRENEERE . N TEREER)IGTS, TGRS —EBRE LiRE T H
RE TR o Kaplan® A (2020)8 50 & B, 4R3I FId FE i, BT KNS R B2 1k
s

"https://chat.openai.com

B R R A R RS, BT, WK, P, 2023683 %50
B2 WA
(c) 2023 RIS BELHHIET S LERL 1
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R Y% Token®t T HEBTHR VlERINES
GPT3 (Brown et al., 2020) 300B 100005KV100 14K
GLM-130B (Zeng et al., 2023) 450B 9925KA100 60K
LLaMA-65B (Touvron et al., 2023) 1.4T 20485KA100 21K
MPT-7B (Team, 2023) 1T 4405KA100 10K

Table 1: ZEEETIIIGR BR T K

102 o

=
o
°©

101 o

- 1071

Training tokens (in Trillion)

100 4

Number of parameters (in Billions)

N -H- Model-Size
N ini F 1072
10-14 ] =@~ Training-tokens

GPT-2 BERT  GPT-3 Gopher PalLM Chinchilla LLaMA PalLM-2

Figure 1: 3G AITIZRER R/ N U E AT B FI ZRE8cE K/

EFN GBI P RBA R, XHEGPT-3(Brown et al., 2020) /)2 /5 [ Chat GP T I AU 18 5
fith - Hoffmann% A (2022)i#47 7 R LUMIRT, KMEAENTTERSEET, IFENEIEEM
AT Kaplan® ATIITHOEE L, FHET UYL T M EEHE IF A Chichillaf& R o AREEH MEFE A
F, BALRITUNGEIR AR, HXTH A E R0 -

2.1 THYIGREIE IR IR

TINZRETE RO Bk RENE R Z 1% - ARPDRIFRERMEEE AR E-, A
7 A& = DL AR B E A T 20, #hFEA R R IR 5 7] LR IF g A T i S it 512 10
P (Longpre et al., 2023) - HAl, KIETIIZREREZRIET IR H FISCRE R, -

HEMIERNANRGEELHMWEE X, HETEENEFR - RI\EAIAFICEO Eric
SchmidtFiit, A H B M EIEEE 5145000 PB?. T EEEXKBETHAEBRZIER 4
ZE, R AR BGX — 5 2 — T E R RPkGY - 3228 T BB € i i Common Crawl 3
FFRE, 5T N 51 AT LABE {580 MAc 6 X 28 m R SHE . - Reoks 0 B8 A TR AL 3 B - Common
Crawl2 — T UM 48 T8 R B IR A6 FE R FF R H . EIRBUOHRTE T B 20134 LR A 5X
WA & B, TR AR REE T — iR - JEEL . Z2TES M ITEdESE - Common
Crawl?] HBNCBCEEA B ECM EAVEER, JERAREIERZIE, B — B AR S —E 5
BIRE, AFEEE A BURLLL AN AR ERIEANEE - B— P E 5 K7 E1.5 Billon 3L
B, B VLIS R] B A ELER R A EET B AR A R

Common Crawl HUIEHEEH L& ERFRFEEEZFMASERE A, HIEZX R S35
MA SR EUE & AL ERERME . Fitk, ZaipJLh TIESS ANE Z A EEdE, =5
BN 48 8 POk BB AT 8 S o BN, 7EBrownSE A (2020)38F], Bk T il ECommon
CrawlfJEHE SN, MBATRIFEZIN T & it & B P AR 5 DL EEE H R 4E - PileiB Bl (Gao et al.,
2021)F% T Common Crawliit & FIEIE S, BUCEE T Rram211ul S EE, H P a3 KR8
M PubMed ~ Arxiv, fAHSHLZE-&Github, ZRFESCHF & Stack Exchange, TiAb K 5541k
£ BookCorpus 2~ Books3 LS HAMAE % & L & EE S - 1HiE (Yuan et al., 2021)[FFEHIRH

“https://www.easytechjunkie.com/how-big-is-the-internet.htm
3https://commoncrawl . org/

Ho TP E G S RS, BIT-HI5T0, MA/REE, IE, 202348 A3HE5H
52: WILRA
(c) 2023 FEPfERBELTHEFT ¥ LWERAL 2
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Corpus =
g
4@ _E
132,145, 66,79, 12,56,

Figure 2: THYIZREHE L BIRAEE 7R (Zhao et al., 2023)

TRBIOMGER, SHERRGE EEBMEHGEN, #ERFTFHOF101 1M
.

BEAh, Gt BT ST, Pile(Gao et al., 20211 b B8 i BT HOBCIRSE 70T VRS
P, RS — R TIEBA FERIER A APles & Pile CC, LI 4 BRI )

IFIR], - [ETRSS A0 AER 43 BRI (B] 8N B Common CrawliBR},  DARIEREHS ) i 8 5 I R0 -

2.2 FYIZRERE B b B

—RME, AR B R E AR ER AN - —JH, X —REE LIHTMLARE
HATE—E, —MPORESEUTCERS GNP RREESCRER; H—J7m, WilZ5EdE+
FERFEAMERESR, HREER, MEEEULHEARDINES, HINEE BRIERNE
B, X—REBRNGWNIEEGE - HEIEREI AN TES RIS T1E S ERESH¥] -
L, H BT ERREE 2 IR B M S E R T A0 B, DUEERRAL AT LUBE f i 2 5] KR =
BB 9347 -

WmER2FR, TIGREER AR FZ S HUE S REifk, BaREE, RAEEMER
53CREATT - tnFREEIRIE R AMIER, AFEN MG BETRN, RERIAER
A TR SR B RREE « Dt BR TR — 22 TS B L BRX Common CrawlfIfE 8.
FEATHECZ AP, Common Crawlds 5 [FIFEFE L T 40 URH WETHE AR - ELETUI SRR
WAET, MBRFEFAE B AT LU RTE SR M ERRS AL, SURTATTIU R SUARER L token, LMER
FONSRETE R o TR JoT & 07 e 5 B0 25 FRE N 282 T B Rk A TTOJI R BT g v 5 1
}B/T%U\ﬁ’ﬁ%ﬂ[ﬁ]%@éﬁﬂﬁﬁﬁllﬁo A FEENMAEIRERERESEIE LR, DX ERERL
BT -

2.2.1 BRI

TRNZRE R B i & B R R RE SHRAIRITERE, T T80 /Y e & 0 e B 4 < R 2T
B HRARIMERE . BRI ERPIGEIR AR R 2k RE &, 251 g 2l
G RIBBITE -

MR %, Hoffa A0 77 208 URLs &R - (Bl THIEEL TR, &A1&
A RTURLE TR, EHBTS AR IR T 2 B s LRI T E DR R 26 [R5

BAERHN S IETTVE - At —HR B A =N, B O3 AT % - CARISRA 13X
M7, BT REB AN R, EEMERITEIHE LA SSRNERE, RIEARA
THFRMIBR SO, WERSFERIEG], WERT A “javascript” FHERIEESE (Raffel et al., 2020) -
X — RO RN & AT DA% ) — SN R A DL RiER), BEE SR E RS &
LRI . R TR EEMEEIE, FEMassiveText BB FEF, AR AGIRHELTHE
AFlgramFIEE M (Rae et al., 2021), LRGeS 7] 1Y i 128 12 (B R e 2 2 1R )R -

A TR BT % - Z R TIEEE SR BRI, FIangds+ A Ar5a A
RAFeR, EEZRAESE, HEARALEE, BLZAREEIEEZIR A THTMLIERR,
HlLes B shE B AR 7L PR fLAS IS - 9 T e s xX 3 IR . FImA OISR T
ER G IAE TR IR SR E - i, GPT-3#id Wiki% = i 2R R %5 T — 1 H#
B9 RER, il o RN EIRHTIR L, LLaMASE TAEZR T — P KenLMP)/ N GETHIE S
RRAL, FH DGR 2 H RS0

2.2.2 HUEXH
TEMTIEIET, BRI TFEEREE, Lee® A (2022) F Kl T n-gram% & MinHash ) 77 =

Ho TP E G S RS, BIT-HI5T0, MA/REE, IE, 202348 A3HE5H
52: WILRA
(c) 2023 FEPfERBELTHEFT ¥ LWERAL 3
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i Large-scale language model pretraining
Training on code

l_ GPT-3 Initial _l Instruction tuning

GPT-3 Series Codex Initial InstructGPT Initial

l LM + code training then instruction tuning

GPT-3.5 Series l Supervised instruction tuning

RLHF l_ _l RLHF

Figure 3: £f7%(2022)% NEH ) Open AT AL F (4 &

SRR R, IR R T LI A AL HornandesZE A (2022)45 R
DISRECR R AR LO% R SRR, H S BRI EA00MBECR RO 22
UM E T —1200MSE &R - BRIt Z S, PaLMIEZY (Chowdhery et al., 2022)t7E 183
PRBNTEFEAE LR A T RE LA RIS i MR RE . REBIBEEEH O AR T &R
HIPRE—3R(Zhang et al., 2022; Zeng et al., 2023; Scao et al., 2022; Touvron et al., 2023), {H
WA 5 R E Y B EE IR A 23R F P fe g AR E A A, ET518 3 (Raffel et
al., 2020)F, 1EEZA T EEFHEE, BEANEREFEZIFEINTENRE, FdEHT
VEE AR 2 i 2R g 2 2840, EALE 6 58 SR B HEAR —2 . Muennighoff%
AN(2023)7E9BZ 2 & 1) 1E SR _Eiht T HEE BRI SR R, il 2R EE s R E
FEARCAN, Bt LS IRALE M REIE - L5 EFnd, BUREENBAE NEE T2 IR
|, HUREEEEFITEARAN, FFIGR A PR % E# A S -

2.3 REHIEHNTIA

R RIE S RN TR RERZIF AT, XTI SRR A+ 4 B
% - OpenAlfJCodeX (Chen et al., 2021)8% A& KR 5 AR ZR A - HRIE R %
N (2022)FIMER , BIAAHS, H150penAIRIGPT RIEFE T HAMREZRE - Nt B EiiL%
B EE BB A IE SO AMERE, (HE TibE SRR A s RS A 5 th 2 — R H EEN
FetE, BZO7 IR M T — MO KR S SE i R A A B O, RmR RS AR I A2
FIZR IR EH L Z

TEZ AT ALY ZR A, R EE R B B MR B (Touvron et al., 2023; Nijkamp et
al., 2023b), fbATES RAE RS SCHRR BEFEAT T £ 8, (HSEhR TR F AN A ES
RIBEIREPHEAEFETERNEL R N7 B AREETE, LA (2023) X, XF
A BR3P DUE IR B i st 22 S (RIS PR S BE D 5 R0R - B, Eifak T —#F
S HIGithubH BOEE , HXFH M E S #1704, 403 T Jupyter Notebook, HFHEHERFE ARIE
TR RS, B R B E S M TR RS RS LRSS R T EERE . #—F
#1, Gunasekarf A (2023)INHRFR ARG R TCH BARRAT, MilRRE, — M FrRiEEdESE
ROZAETEW « TALE) ~ BRAERFCPEER - B, AT The StackEIEE (Kocetkov et
al., 2022)#17T T8, FIERAChatGPTAER T —Eh%dE, FEAEEHRINE LM -

2.4 PIXHNIGREGEE

REZR EHH D TIEFIR T ER > 3CEER, #l20Wudao (Yuan et al., 2021)~ Yuan
LOT (Wu et al., 2021), {EXEDEIE—HEENSEANL, 7H— T HEHEMFEAL AL
DRI —MEREBCIF AR AT, IR B BUCE Z B SGE R . ZFIPilet®RIIE 4, Ffl]
WS AR SCHERRIEAT T 038, RSO N AEHERIR, 45 RNER20R -

FATR A SRR _EREAR AT THES AT, SRR3R, TATAI, BHREinik
BUH) R token N R1T, X T HETEEL ET tokenZl A FITRIILGR, o0 A2 HEZ - BRit

B R R A R RS, BT, WK, P, 2023683 %50
B2 WA
(c) 2023 RIS BELHHIET S LERL 4
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Al E3ER | PR SORS BRESHR SRR
Pile-CC https://commoncrawl.org/the- WuDao ~ CCH B 37

PubMed Central
Books3

OpenWebText2
ArXiv

Github

FreeLaw

Stack Exchange
USPTO Backgrounds
PubMed Abstracts
EuroParl

Gutenberg (PG-19)
OpenSubtitles
Wikipedia(en)

DM Mathematics
Ubuntu IRC
BookCorpus2
HackerNews
Youtube Subtitles
PhilPapers

NIH Grant Abstracts

Enron Emails

data/
https://pubmed.ncbi.nlm.nih.gov/
https://bibliotik.me

https://www.reddit.com/
https://arxiv.org/
https://github.com/
https://www.freelaw.in/

https:/ /stackexchange.com/
https://www.uspto.gov/

https://pubmed.ncbi.nlm.nih.gov/
https://www.statmt.org/europarl/
https://www.gutenberg.org/

https://www.opensubtitles.org/en
https://www.wikipedia.org/

https://github.com/deepmind/
mathematics_dataset
https://webchat.freenode.net/

https://www.smashwords.com/
https://news.ycombinator.com/
https://www.kaggle.com/datasets/
wadzim /youtube-subtitles

https://philpapers.org/

https://reporter.nih.gov/exporter/
abstracts
https://www.cs.cmu.edu/~enron/

BREZEME « FHRETREZE
2O [ L . KindleF F
45« sobooks

Ul H RIS . /N

HEEREM - B REE - B
RHEEITIERE B E

R R X - B
SLg&IA
HEEZFEEM - F&EF -
FFUR & FIEHE 2
BRE2ME < FFIREGE
AR
HHESCER . E
. HAE

FEE . SubHD - M FE
g

P HEETRE . AEHE
£~ MBABEER
VENLAS « 2 B iy

M EIE AL R« &K
FAEEN ~ ZRIHERIEE
FEC R RO~ A A ST
3658 ~ BB PRI M
Subscene vk

HEPERN . 2R TE 28
A8 FEE BRI
B ATHE R

K A o 3% 3t
(RGeS

= LT HB

B BT F NSRS, IS5,

Table 2: Pile ! f#- SR TERLXT R AT A SRR

W& IRV,

H2: wrsEik

R, 20234E8H3HZESH.

(¢) 2023 HEPLGFEREXIHIGFEE LR



HEESY

ZON, ST A R P SORTE SRR GR A — AR - H A AR R Do A
SCRFIRSCMANSCRF AL, FEINERS, BN LSRRI 0E 2N, 3T i SCEUE R 2 E B
5o FICEIRP R S EARR TR A A R, PR, TR EE AETEAN
G N it P

HR Token# &

HIGEFR 0.8B
s 5B

KRN 120B
X AIZF 2008

e 100B
FIXCEM 9.5B
ERHANR 90B
e 64B
2RI 9.5B
Bt 598.8B

Table 3: H AR R BE R TokenZ EFERE 55T

2.5  FUZRIERL R BERY

HT RESEAEAINGMAER, STAEGFHFIZRER, R ARRSENEFITRE
WAl - Gopher(Rae et al., 2021)18 3 RA NG — 1 1.4BAH B8 F R B0 7 ORI AR 40
BAEN T RSB - 1R, BEEEIRBES P AWTIRA, 2 HIX EEE )%k
BRI SCR ST - B RERESEIREEZE, BEEIRYIZEEAE TR
AEERE S RETE (OpenWebText5C4) 7E1E & @RS EMEREFAERZ A BT - SRARIFER)
7715, Longpre§ A (2023)7E1.5BIAYIEA |, BF5T T ANIE] it 2 AUEER X T 08 5 AU Ab 3
ANFE RS LREREER - R A S A BB 20 TR R, AR
FOANR BT & TR TR AU R 4E FE RE IR Z B E R

X AR IME R I AT ISR A T EE AR B, BT DA IE SN SR 2 il & IRER A AE BiE £ n)
A, DARON T 2 BRI I ot AT 7 - (B T RIE S EANR IR AR, FIREE RGN
b, BAFERH —EERAEHERMNER . B, EREA R FEEE 5 H
M, HTPromptHIGI A, ARG WHE —ERAHEME, RaFER TEFENSES, R
AR PromptiZE AT 7 I, B2 FIEE RS KIEIEEE - BRI, QTS #4001 SRR
i 5 AR EER RN TEALGE 0, IR B IRE S A X IR A5 R -

YR Token®t IS UFEEHILE  Prompt #1  Prompt #2

20B 1.335 66.5 71.55
40B 1.334 65.6 73.88
60B 1.329 64.2 74.37
80B 1.328 64.8 76.17
100B 1.324 64.7 77.09

Table 4: FEEYIZRHIEST, TIEEBURAEAWT N - WREH Prompt #1045 RIE AW,
BRI 2, (B RE FHPrompt #2045 5%, NITEREFEZS 4T -

2.6 JTRTIGREE R
WEE KIE BRI B IRTE S A PRS2 R, e SR TR AR T 5 I R £ ) =R
SKRGEE K - [EWTogether A R YEMAIAKE: “ALEFEMRKLinuxif (87, & bt & KA TR

‘https://together.ai/blog/redpajama
Ho TP EEES RSB, BB, RRIE, hE, 2023F8H3HAEH.

B2 WA
(c) 2023 RIS BELHHIET S LERL 6
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kit W& BEEN H—REE FI—ERE SRR
GPT3-175B Absolute  Standard PreNorm LayerNorm LM(+FIM) Loss
CodeGen-16B RoPE Standard ParallelLayer LayerNorm LM Loss
PaLM-540B RoPE Multi-Query ParallelLayer LayerNorm LM(+UL2) Loss
OPT-175B Absolute  Standard PreNorm LayerNorm LM Loss
GLM-130B RoPE Standard PostNorm LayerNorm GLM+LM Loss
BLOOM-176B  ALiBi Standard PreNorm LayerNorm LM Loss
LLaMA RoPE Standard PreNorm RMSNorm LM Loss
CodeGen2-16B  RoPE Standard ParallelLayer LayerNorm LM Loss
MPT-7B ALiBi Standard PreNorm LayerNorm LM Loss
StarCoder Absolute  Multi-Query PreNorm LayerNorm LM+FIM Loss
Falcon RoPE Multi-Query ParallelLayer LayerNorm LM Loss
ChatGLM2-6B RoPE Multi-Query PreNorm RMSNorm -

Table 5: & FhkE FEAETRY

TRIIEIR 4 T2 RN BIME 5 B E BN EMEIES LB EIR - 20199, Google PR T
HTINZRT5HCAETESE (Raffel et al., 2020), ZEHE S M Common CrawlH B4 H 47 T
WES B % SR EIFI% - 20204E, Eleuther AIFYR T Pile{#E4E (Gao et al., 2021), Z%EHESE
AMUEFE T Common CrawlfER 3 EHE 4 F, BB T #043 vm t & S SCERE FH US AT 254k
BHRESZHEE . e, —SFFBER (OPT (Zhang et al., 2022)FGLM-130B (Zeng et
al., 2023)) 5% F I EOHR B2 30 4T B AR A () 1T 45

% F|LLaMARR B! (Touvron et al., 2023)H)f5 &, Togethers ® 4L ¥ I FF i T — 17 K
Z13TBHI T I 45 £ ¥E ZERedPajama(Computer, 2023) - RedPajamai ] T CCNetiii 7K £& &b #
777 (Wenzek et al., 2020), i35 T 20174 220204 [A] fJCommon Crawl®{ #& 5> K, 3 #b
7 T i1C4 ~ Wikipedia%s /= it 2 IR EUPE & - & BIRedPajamaZ{ i &, Together’d 7] Il %k H
T3BETBSEIEAISE & TFFIREAY . Bif5, 7ERePajamaZiiE £ 00 ., Together A F]>R
TR A AR A EE T IES R T — 126008 Token Y 5 /=1 i & FSlimPajama#{iE £ (Soboleva
et al., 2023) - LAh, FalconZHZHEEH T 20084 £ 2023F W] A Fi§ Common CrawlEiz4 A, I
FER T — 45T tokensf*Refined Web%{# % (Penedo et al., 2023), HAH600BEIE T4 7] LIA
FFARECES -

Ak, AR S M5 E TNLPAU R Z KiE - IR X HARBigCodei B % Tl
R F R EIR AT TIRARTE , AT T WM& TR, X FFERACHD
W Jupyter, Github issueZF#E 1T THFFRME, HEZLIFIR T K/INARI6TB B8 358 REES
FIFFRAAE T ZRELTE S The Stack(Li et al., 2023)

OpenLLaMATI H Z13 | ff fF{RedPajama « RefinedWeb#1The StackZIEFHTII1%%, AW
556X = RER W LIRS IREF IO T ZRA R (Geng and Liu, 2023) -

3 BRI

FEIX—TT 0, BT 32200 24 | A2 R AR AR SRl AT 08 - AR 3R 5 O Bl Ay 2 R AR Y
WL B ZGRAATILE, IREE AR BB AT R 24

3.1 NERmD

BB GRS K F SRR PLS AR A7 B 9 AS (Vaswani et al., 2017)FIFEX 7 B Zw Y (Shaw
et al., 2018; Su et al., 2021) K « HALEG I ERIG—ME N R, IERZREINLE IR AT 2
SR E GRS, Erpa] 2> A B AR AE Z B AT SR R 7z >k, BIZIBERT (Devlin
et al., 2019) ~ RoBERTa(Liu et al., 2019)f1GPT2(Radford et al., 2019)%, Wang (2020)%fixX
JUATNGEBI AL B G i W0 o AL BT B T AU, EE R B4R, AILVE HARNME

*https://huggingface.co/togethercomputer/RedPajama- INCITE-7B-Base
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3.2 HEEN

BHER /)& Transformerfd 8 fIAZ OISR, HHATREEREHO(L?), FE T Hit B ZEpE
ERMAKEREINI G K, ZAi TIERE TIRZ &3 IER SILHI(Tay et al., 2023a),
1 4 Longformer(Beltagy et al., 2020) ~ Linformer(Wang et al., 2020)% - {H7E Z B A 75X
—REEMRTEEMERN TIHERAEW®R  ZRH, FIRRNERERD, F—1EXES
M Transformer— AT 25| AFRELTE, XSEENITEENEGPUAFR, MiilZE X
AT AR EEBRES; I RE R IUE R TII R 2 (RS e 2 4 5 — e 2 i LT
PLE, T HATREEER N EZENTAA, FHEGRKER RN K, Ehr EHEE
FHEAMITER -

B R v SR B 22 0 F R BRI TH B & 1 U7 1A & Multi-Query /7 ¥, Multi-Query /7 148
WAENFFEE L2 B FZEBEE T FIKeyEFMValuelER/D 7 S H, Multi-Query i BI6 T
o T IER R KR 82 NE B G AR BB SR, FEERGTRES, FEM
FIK VA7 A 47 5 R TC A Key(E M Valuefd, ZEMulti-Query 5t ~, HTAREE 1L L=Z

B DR ET A F AR, BI-15TT, MREE, P, 20234E8 H3H ®5H .
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3.3 H—LE

AR BB B — T EE A — (LB E BRI X A, A— A HheFRARERE— 2
R HETEEEAFERE—CEMEFER =K, X=X AAESHT R - PreNormfEiG
FER T2 R (Radford et al., 2019; Brown et al., 2020); PostNormM &7 BERT (Devlin
et al., 2019) - RoBERTa(Liu et al., 2019)% i3 28 B8 1>k X% ; Parallel LayerHH TR B
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i

"https://github.com/THUDM/ChatGLM2-6B
Shttps://github.com/baichuan-inc/Baichuan-7B
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B, BARTRS £ N ZIFPRSHET BN, BRI ITRLIT Transformerf Query 513 £ K
B KeyEMATRATE, SO THENEHIOTEERE -

BEME, RTEEEMMNEMNEETRNARHBE. —H7H, MEEETER
M TransformerZ8 1 B ZE A | ARG BoofFrxot EdiFdE—2, HHiFERE SR
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Abstract

In recent years, large language models (LLMs) have garnered significant attention across various
domains, resulting in profound impacts. In this paper, we aim to explore the potential of LLMs
in the field of human-machine conversations. It begins by examining the rise and milestones
of these models, tracing their origins from neural language models to the transformative impact
of the Transformer architecture on conversation processing. Next, we discuss the emergence of
large pre-training models and their utilization of contextual knowledge at a large scale, as well
as the scaling to billion-parameter models that push the boundaries of language generation. We
further highlight advancements in multi-modal conversations, showcasing how LLMs bridge the
gap between language and vision. We also introduce various applications in human-machine con-
versations, such as intelligent assistant-style dialogues and emotionally supportive conversations,
supported by successful case studies in diverse fields. Lastly, we explore the challenges faced
by LLMs in this context and provide insights into future development directions and prospects.
Overall, we offer a comprehensive overview of the potential and future development of LLMs in
human-machine conversations, encompassing their milestones, applications, and the challenges
ahead.

1 Introduction

In recent years, there has been a remarkable surge in the interest and impact of LLMs across diverse
domains (Rodriguez, 2022; Khan et al., 2023). These models have revolutionized various fields, and the
ability of LLMs to generate coherent and contextually relevant responses has opened up new possibilities
for human-machine interaction (OpenAl, 2023). Within this expansive landscape, the realm of human-
machine conversations has emerged as a particularly dynamic and rapidly evolving domain. The ability
to engage in natural and meaningful dialogue with machines has long been a goal of Al research, and big
models have played a pivotal role in making this aspiration a reality.

LLMs are sophisticated artificial intelligence systems that have the ability to process and understand
human language at a remarkable scale. These models, such as GPT-3.5(Lin, 2023) and GPT-4 (OpenAl,
2023), are designed to generate text that is coherent and contextually relevant, making them valuable
tools for a wide range of applications. In the context of human-machine conversations, LLMs excel at
engaging in a natural and interactive dialogue with users. They can comprehend and respond to ques-
tions, provide information, offer suggestions, and even simulate human-like conversations. These models
leverage vast amounts of pre-existing textual data to learn patterns and generate responses that mimic hu-
man conversation, enabling them to understand user input, adapt to different conversational styles, and
provide meaningful and coherent answers. The characteristics of LLMs, including their immense size,
computational power, and training on diverse datasets, contribute to their ability to generate accurate and
contextually appropriate responses, making them valuable assets in enhancing human-machine interac-
tions.
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To comprehend the significance of big models in human-machine conversations, it is essential to un-
derstand their background and evolution. We provide a diagram to help readers familiarize the overall
structure (Figure 1). Section 2 gives a comprehensive overview of the development and milestones of
LLMs, tracing their origins from neural language models to the transformative impact of the Transformer
architecture on conversation processing. The rise of large pre-training models and their utilization of con-
textual knowledge at an unprecedented scale will also be explored. Furthermore, this section discusses
the scaling to billion-parameter models, pushing the boundaries of language generation and paving the
way for more advanced conversational capabilities. One key aspect that will be addressed is the advance-
ment of LLMs in facilitating multi-modal conversations, bridging the gap between language and vision
understanding. This opens up opportunities for more natural and immersive interactions between hu-
mans and machines. Section 3 focuses on two prominent areas: intelligent assistant-style dialogues and
emotionally supportive conversations. Through successful case studies, we demonstrate how LLMs can
assist users in various tasks and provide emotional support in sensitive contexts. Despite the promising
potential, LLMs face challenges in the context of human-machine conversations as mentioned in Section
4. Ethical concerns, biases, and the need for interpretability are some of the key challenges that need
to be addressed to ensure the responsible deployment of these models. Lastly, Section 5 highlights the
future directions of development.

1. Early conversations
2. Introduction of Neural Language
Models

3. Transformer Architecture Sec.2 The Rise and Milestones of > Sec 3. Applications of Human- 2. Emotionally Supportive Conversations
4. Emergence of Large Pre-training LLMs in Human-Machine <, H Machine Conversations with LLMs with LLMs
Models Conversations. H H

) _ B Sec.1Introduction =S 3. Successful Case Studies of Conversations

6. Multi-modal Conversations with LLMs
Sec4. Challenges of LLMs in Human- I} W Sec 5. Future Development Direction
Machine Conversation and Prospects

Figure 1: The overall diagram of this article

1. Intelligent Assistant-style Conversations
with LLMs

2 The Rise and Milestones of LLMs in Human-Machine Conversations

2.1 Early Conversations: Tracing the Roots of Conversational Al

Early conversations, such as ELIZA (Weizenbaum, 1966) and ALICE(Marietto et al., 2013), were pio-
neers in the field of human-machine conversations. However, these early systems had limitations. They
could not truly understand the meaning of the user’s input and relied heavily on pre-defined rules and
patterns. Consequently, these systems often provided generic and impersonal responses.

Despite their shortcomings, early conversations paved the way for advancements in natural language
processing and machine learning techniques. Researchers realized the need for more sophisticated mod-
els that could learn from data and context, leading to the development of modern LLMs like GPT-3.5.

2.2 Neural Language Models: Opening the Doors to Language Understanding

Neural Language Models (NLMs) have revolutionized the field of human-machine conversations, en-
abling more dynamic and contextually aware conversations, which leverage deep learning techniques,
such as recurrent neural networks (RNNs), to process and understand human language (Sutskever et
al., 2014). By training on large-scale datasets, these models learn the statistical patterns and semantic
relationships within the language, allowing them to generate more natural and contextually relevant re-
sponses. The integration of NLMs into human-machine conversations has significantly improved the
quality and naturalness of conversations. These models can consider the context of the conversation,
understand nuances, and generate coherent and contextually appropriate responses. Furthermore, they
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can also exhibit a sense of personality, empathy, and adaptability, which enhances user engagement and
satisfaction.

While there are still challenges to overcome, such as handling ambiguous queries and maintaining
privacy, NLM-based conversations have become invaluable tools for various applications in natural lan-
guage understanding and interaction. Their ability to generate human-like responses and engage in mean-
ingful conversations opens up new possibilities for human-machine conversations.

2.3 Transformer Architecture: Revolutionizing Conversation Processing

The Transformer (Vaswani et al., 2017) architecture has emerged as a breakthrough in the field of arti-
ficial intelligence, particularly in the realm of human-machine conversations. The Transformer model
revolutionized the way neural networks process and generate human language. Unlike earlier recurrent
neural networks (RNNs) that relied on sequential processing (Sutskever et al., 2014), the Transformer
introduced a novel attention mechanism that allowed for parallel processing of words in a sentence. In
addition, this architectural innovation overcame the limitations of sequential models, enabling the Trans-
former to capture long-range dependencies and contextual relationships more effectively. In the context
of human-machine conversations, the Transformer architecture has proven highly effective. It excels at
understanding and generating coherent responses, exhibiting a level of contextual awareness that makes
conversations feel more natural and engaging. Furthermore, the Transformer’s architecture allows for
parallel processing, making it highly efficient for large-scale training and inference. This scalability has
played a pivotal role in training LLMs, such as GPT-3.5, which have pushed the boundaries of human-
machine conversations by generating human-like responses across a wide range of topics.

The transformer has significantly improved the quality and coherence of responses, allowing dialogue
models to engage in more interactive and contextually aware conversations. With its scalability and ver-
satility, the Transformer architecture continues to drive advancements in natural language understanding
and conversational Al systems.

2.4 Emergence of Large Pre-training Models: Harnessing Contextual Knowledge at Scale

Large pre-training models have emerged as game-changer in the field of artificial intelligence, particu-
larly in the domain of human-machine conversations. In the context of human-machine conversations,
large pre-training models have shown tremendous potential, which possesses the ability to engage in
natural and interactive dialogues with users, simulating human-like conversations.

Model Publishing Agency #Parameters Architecture
BERT (Devlin et al., 2019) Google Al 110M/340M
RoBERTa (Liu et al., 2019) Facebook 123M/354M
SpanBERT (Joshi et al., 2020) Stanford 110M/340M
ERNIE (Sun et al., 2019) Baidu 110M
ERNIE-2.0 (Sun et al., 2020) Baidu 110M/340M Encoder
ALBERT (Lan et al., 2020) Google 12M-235M
DistilBERT (Sanh et al., 2019) Hugging Face 66M
ELECTRA (Clark et al., 2020) Google 14M/110M
SqueezeBERT (Iandola et al., 2020) Hugging Face 62M
GPT (Radford et al., 2018) OpenAl 117M Decoder
XLNet (Yang et al., 2019) CMU & Google  110M/340M
UniLM (Dong et al., 2019) Microsoft 340m ~ bneoder/Decoder
BART (Lewis et al., 2020) Facebook 140M,406M

PEGASUS (Zhang et al., 2020) Google 223M568M  reoder-Decoder

Table 1: Overview of Large Pre-training Models

In large pre-training models, as shown in Table 1, we can categorize them into three types based
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on their model architectures: Encoder-Only, Encoder-Decoder, and Decoder-Only. The Encoder-Only
models primarily focus on encoding input data, which transforms textual or other forms of input data into
semantic vector representations, where the encoder is responsible for encoding the input information into
high-dimensional representations. The Encoder-Decoders model combines the functionalities of both an
encoder and a decoder. The encoder encodes the input data into high-dimensional vector representations,
while the decoder generates output based on the semantic information provided by the encoder. The
Decoder-Only model specializes in generating task-related outputs. This model generates appropriate
output sequences by utilizing a decoder based on given conditions or context.

* Encoder-Only: BERT (Bidirectional Encoder Representations from Transformers) (Devlin et al.,
2019) pioneered this trend by leveraging Transformer-based pre-training and utilizing masked lan-
guage model (MLM) to generate deep bidirectional language representations for comprehensive
contextual understanding. Subsequently, ROBERTa (Liu et al., 2019) improved upon BERT by
enlarging the dataset, increasing model parameters and batch size, as well as removing the next
sentence prediction (NSP) task, leading to enhanced performance through improved text encod-
ing and dynamic masking. SpanBERT (Joshi et al., 2020) introduced novel pre-training objectives
specifically designed to better represent the context and establish long-distance dependencies.

In parallel, Baidu introduced two pre-training models, ERNIE (Sun et al., 2019) and ERNIE 2.0
(Sun et al., 2020), which leveraged large-scale Chinese corpora such as Baidu Baike, Baidu Search,
Baidu Zhidao, along with the English Wikipedia, for pre-training. ERNIE 2.0 (Sun et al., 2020)
further incorporated a continuous learning semantic understanding framework that continuously
learns from massive data and knowledge using techniques like deep neural networks and multi-task
learning. ALBERT (Lan et al., 2020), on the other hand, is a lightweight version of BERT that
reduces model size while maintaining high performance through parameter factorization of word
embeddings and cross-layer parameter sharing.

The development of these pre-training language models is closely related to the advancements in
conversation models. By better understanding context, effectively representing language, and estab-
lishing long-distance dependencies, these models provide a foundation and inspiration for conver-
sation construction and optimization. From the lightweight model DistilBERT (Sanh et al., 2019)
to the adversarial training-based ELECTRA (Clark et al., 2020) and the smaller and faster Squeeze-
BERT, these models have not only achieved breakthroughs in performance but also significantly
reduced model size and computational costs. They have made important contributions to both aca-
demic research and practical applications in the field of human-machine conversation.

* Encoder-Decoder: XLNet (Yang et al., 2019), UniLM (Dong et al., 2019), BART (Lewis et al.,
2020), and PEGASUS (Zhang et al., 2020) are pre-training models closely related to the devel-
opment of human-machine conversation. XLNet (Yang et al., 2019) significantly improves text
understanding by freely capturing contextual information through a “permutation-based training”
prediction approach. UniLM (Dong et al., 2019), combining the BERT encoder structure with
diverse pre-training tasks, demonstrates excellent performance across various natural language pro-
cessing tasks, making it highly applicable to human-machine conversation research. BART, with
its combination of bidirectional encoders and autoregressive decoders, possesses broad adaptability
and efficiency, effectively addressing the generation models in conversational systems. PEGASUS
(Zhang et al., 2020), utilizing the Transformer architecture and employing the Gap Sentences Gener-
ation pre-training objective, comprehends context by generating missing sentences and leverages the
Fine-tuning with an Easy Data Selection method for performance enhancement. The introduction
of these models has provided new insights and techniques for the development of human-machine
conversations, leading to improved performance and efficiency in dialogue modeling, including
enhanced contextual processing and generation capabilities.

* Decoder-Only: The GPT series (Radford et al., 2018), proposed by OpenAl, is a powerful pre-
training language model that achieves remarkable performance in complex NLP tasks without re-

Proceedings of the 22nd China National Conference on Computational Linguistics, pages 16-29, Harbin, China, August 3 - 5, 2023.
Volume 2: Frotier Forum
(c) Technical Committee on Computational Linguistics, Chinese Information Processing Society of China 19



Computational Linguistics

quiring supervised fine-tuning. By increasing the scale of training data and the number of network
parameters, the GPT series continually improves its model capacity, thus demonstrating the effec-
tiveness of continuously enhancing model capacity and corpus size.

As aresult, large pre-training models have revolutionized human-machine conversations by providing
a powerful tool for generating high-quality and contextually appropriate responses.

2.5 Scaling to Billion-Parameter Models: Pushing the Limits of Language Generation

In this paper, we refer to large pre-training models with billion-parameter parameters as LL.Ms. Billion-
parameter models represent a significant milestone in the development of LLMs and have ushered in a
new era of human-machine conversations. These models are characterized by their immense size and
computational power, pushing the boundaries of what was previously thought possible. It are built upon
the foundations of their predecessors, such as GPT-3.5, but with significantly increased capacity. They
are trained on vast amounts of textual data from diverse sources, allowing them to capture a wide range
of linguistic patterns and semantic relationships. The sheer scale of these models grants them a deeper
understanding of human language, resulting in more accurate and contextually appropriate responses.

In the domain of human-machine conversations, billion-parameter models have demonstrated remark-
able capabilities. They can engage in natural and interactive dialogues, understand complex queries, and
generate highly coherent and contextually relevant responses. These models have the potential to pro-
vide users with more personalized and tailored experiences, as they can adapt to different conversational
styles and preferences.

Similar to the pre-training models mentioned in the subsection 2.4, as shown in Table 2, billion-scale
language models are primarily divided into Encoder-Decoder architectures and Decoder-only architec-
tures. Moreover, as the model size increases, the model structures tend to become more standardized.

* Encoder-Decoder: The large-scale language models, namely TS5 (Raffel et al., 2020), ERNIE-3.0
(Sun et al., 2021), ERNIE-3.0 Titan (Wang et al., 2021), PaLM-2 (Google, 2023), and GLM-130B
(Zeng et al., 2022), which adopt the Encoder-Decoder architecture, play a significant role in the
human-machine conversation. Google’s T5 (Raffel et al., 2020) approaches all NLP tasks as “text-
to-text” problems, which grants it excellent adaptability when dealing with human-machine conver-
sation tasks. Baidu’s ERNIE-3.0 (Sun et al., 2021) and ERNIE-3.0 Titan (Wang et al., 2021) demon-
strate outstanding performance in knowledge enhancement and self-supervised learning, making
them particularly effective in handling knowledge-driven human-machine conversations. Google’s
PalLM-2 (Google, 2023), with its advanced reasoning capabilities, is especially well-suited for han-
dling complex human-machine conversation scenarios. On the other hand, Tsinghua University’s
GLM-130B model (Zeng et al., 2022), as a bilingual model, is particularly suitable for addressing
cross-lingual human-machine conversation tasks. The development and application of these models
have greatly enhanced the capabilities of human-machine conversation in understanding, reasoning,
and generating dialogue content, thereby significantly improving the performance and user experi-
ence of such systems.

* Decoder-Only: Large-scale pre-training models such as GPT2 (Brown et al., 2020), GPT3 (Ye et
al., 2023), GPT3.5(Lin, 2023), FLAN (Wei et al., 2022), InstructionGPT (Ouyang et al., 2022),
PalLM (Chowdhery et al., 2022), OPT (Zhang et al., 2022), Bloom (Scao et al., 2022), FLAN-
PalLM (Chung et al., 2022), and LLaMA (Touvron et al., 2023) have played a crucial role in various
domains, including human-machine conversation, natural language understanding, and generation.
The GPT series models from OpenAl (Brown et al., 2020; Ye et al., 2023; Lin, 2023), along with
OPT (Zhang et al., 2022) and LLaMA(Touvron et al., 2023) from Meta Al, leverage their extensive
parameters and complex model structures to provide robust semantic understanding and response
generation capabilities for human-machine conversation. Google’s FLAN and FLAN-PaLM en-
hance the model’s handling of unknown questions and generalization abilities in human-machine
conversation through instruction fine-tuning techniques. The InstructionGPT (Ouyang et al., 2022)
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optimizes GPT-3 to address toxic language and misinformation issues that may arise in human-
machine conversation. The PaLM (Chowdhery et al., 2022), trained by Google using large-scale
datasets and a distributed training architecture, enables the handling of complex human-machine
conversation tasks. Bloom (Scao et al., 2022), as an open-source model with extensive parameters
that supports multiple languages, offers powerful support for multilingual human-machine conver-
sation scenarios.

Model Publishing Agency #Parameters Architecture
TS5 (Raffel et al., 2020) Google Brain 220M-11B
ERNIE-3.0 (Sun et al., 2021) Baidu 10B
ERNIE-3.0 Titan (Wang et al., 2021) Baidu 260B Encoder-Decoder
PalLM-2 (Google, 2023) Google 1.04B-2.7B
GLM-130B (Zeng et al., 2022) Zhipu.Al 100M-515M
GPT-2 (Brown et al., 2020) 1.5B
GPT-3 (Ye et al., 2023) OpenAl 2.6B-200B
GPT-3.5 (Lin, 2023) -
FLAN (Wei et al., 2022) Google 137B
InstructGPT (Ouyang et al., 2022) OpenAl 1.3B-175B
PalLM (Chowdhery et al., 2022) Google 8B-540B Decoder
OPT (Zhang et al., 2022) Meta Al 6.7B-175B
Bloom (Scao et al., 2022) HuggingFace 560M-176B
FLAN-PaLLM (Chung et al., 2022) THUNLP 250M-11B
LLaMA (Touvron et al., 2023) Stanford 780M-65B

Table 2: Overview of Large Laguage Models

Nevertheless, billion-parameter models hold tremendous promise for the future of human-machine
conversations. As they continue to evolve, they have the potential to revolutionize various domains,
including customer support, virtual assistants, education, creative writing, and more. Their ability to
generate human-like responses and engage in meaningful interactions opens up new possibilities for
enhancing user experiences and pushing the boundaries of conversational artificial intelligence.

2.6 Multi-modal Conversations with LL.Ms: Bridging Language and Vision

Multi-modal conversation in LLMs represents an exciting frontier in the field of artificial intelligence,
particularly in the context of human-machine conversations. Traditionally, language models have focused
primarily on text-based interactions. However, with advancements in computer vision and multi-modal
learning, there is a growing interest in incorporating visual and other modalities into conversations.

In recent years, a major focus in the field of artificial intelligence has been on multi-modal large-scale
pre-training models, as shown in Table 3, which goal is to enable machines to understand and generate
various modalities of human conversations, including text, images, and sound. These models have played
a crucial role in making human-machine conversations more natural, rich, and intelligent. For example,
the PaLM-E (Driess et al., 2023), jointly developed by Google and the TUB, is an embodied vision and
language model. It is a generative model that takes multi-modal sentences as input to generate text,
providing natural and coherent responses for human-machine conversations. OpenAI’s CLIP (Radford
et al.,, 2021), on the other hand, employs contrastive learning to enable machines to understand the
relationship between images and text, providing a powerful tool for understanding user-provided image
inputs and generating relevant descriptions.

DeepMind’s Flamingo (Alayrac et al., 2022) and Google’s CoCa (Yu et al., 2022) establish connec-
tions between visual and language modalities. They are capable of processing and understanding both
visual and textual data, providing support for image understanding and description in human-machine
conversations. The Flamingo, in particular, can handle arbitrary interleaved sequences of visual and
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textual data, seamlessly processing image or video inputs. Google’s PaLLI (Chen et al., 2022a) and Al-
ibaba DAMO Academy’s OFA (Wang et al., 2022a), both with multilingual and multi-modal capabilities,
support multiple languages and understand inputs from various modalities, allowing them to adapt to dif-
ferent human-computer dialogue environments and requirements.

Microsoft’s BEiT-3 (Wang et al., 2022b) and Salesforce Research’s BLIP (Li et al., 2022) and BLIP-2
(Li et al., 2023) establish deeper connections between visual and language modalities. Through their
deep understanding and generation of images and text, these models provide richer and more accurate
responses. The KOSMOS-1 (Huang et al., 2023b), a multi-modal large-scale language model, has a
Transformer-based causal language model as its backbone. It can integrate inputs from language, vision,
and other modalities, enabling it to consider information from multiple modalities when understanding
user input and generating responses.

Finally, OpenAI’s GPT-4 (OpenAl, 2023) is a novel language model that has been improved in terms of
creativity, visual input, and longer contexts, which allows it to generate more natural, coherent, and rele-
vant responses. Overall, these multi-modal large-scale pre-training models have their unique advantages
and characteristics, and they have all contributed to the advancement of human-machine conversations
to varying degrees.

Model Publishing Agency #Parameters
PALM-E (Driess et al., 2023) Google & TUB 562B
CLIP (Radford et al., 2021) OpenAl 428M
Flamingo (Alayrac et al., 2022) DeepMind 3B-80B
CoCa (Yu et al., 2022) Google 383M-2.1B
PaLl (Chen et al., 2022a) Google 3B-17B
OFA (Wang et al., 2022a) DAMO Academy, Alibaba 33M-930M
BEiT-3 (Wang et al., 2022b) Microsoft 1.9B
BLIP (Li et al., 2022) Salesforce 446M
BLIP-2 (Li et al., 2023) Salesforce 474M-1.2B
KOSMOS-1 (Huang et al., 2023b) Microsoft 1.6B
GPT-4 (OpenAl, 2023) OpenAl -

Table 3: Overview of Multimodal LLMs

Multi-modal conversation in LLMs also holds promise for applications such as virtual assistants, in-
teractive storytelling, and social chatbots. For instance, a virtual assistant equipped with multi-modal
capabilities can process both text and images to provide more accurate and contextually relevant re-
sponses. Multi-modal dialogue in LLMs has the potential to reshape the landscape of human-machine
conversations, creating more immersive and context-aware interactions that better align with human com-
munication modalities. The integration of multi-modal capabilities in LLLMs enables them to comprehend
not just the text but also the contextual visual information, allowing for more contextually appropriate
responses. This opens up new possibilities for more dynamic and engaging human-machine interactions.

3 Applications of Human-Machine Conversations with LLMs

The application of LLMs for human-machine conversations is revolutionizing various industries by har-
nessing the capabilities of intelligent assistant systems and emotionally supportive conversations. In
the field of intelligent assistant-based human-machine conversation, LLMs have significantly improved
user experiences through natural language interactions and personalized recommendations. Another no-
table application of human-machine conversation with LLMs is emotional support conversations. These
systems aim to establish empathy with users, provide emotional support, and engage in meaningful con-
versations. By analyzing user inputs and offering appropriate responses, emotional support dialogues
can help individuals cope with stress, anxiety, or loneliness. Such systems have shown promising results
in supporting mental health by providing users with a safe and confidential environment to express their
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feelings and receive guidance. Successful cases of LLMs in human-machine conversation have emerged
across various domains, demonstrating their transformative impact.

3.1 Intelligent Assistant-style Conversations with LLMs

Intelligent Assistant-Style Human-Machine conversations system, exemplified by popular platforms such
as Siri, Alexa, and ChatGPT, has revolutionized the way users interact with technology. These systems
are primarily designed to address information needs and provide personalized assistance to users. With
a deep understanding of various business processes, they can offer comprehensive responses and fulfill a
wide range of user inquiries. Their rich knowledge base allows them to handle tasks such as answering
questions, providing recommendations, and assisting with navigation, making them invaluable tools for
traditional customer service products.

Modern Human-Machine conversations system are rapidly advancing, giving rise to a series of re-
markable models. OpenAI’s GPT-4 (OpenAl, 2023) is a large-scale multi-modal model that accepts both
image and text inputs and produces text outputs. While its capabilities still fall short of humans in certain
real-world scenarios, GPT-4 has demonstrated human-level performance on many professional and aca-
demic benchmarks, particularly in the domains of creativity, visual input processing, and understanding
longer contexts. Furthermore, OpenAl has developed an Al chatbot called ChatGPT (Lin, 2023), based
on GPT-3.5 and GPT-4 architectures. It engages in text-based interactions and leverages reinforcement
learning techniques to provide useful outputs.

In contrast, Google’s Bard (bar, 2023) is a chatbot built on the large language model LaMDA. Its
lightweight version extends to a broader user base while collecting and applying user feedback to con-
tinuously improve model performance. Claude (Bai et al., 2022), developed by Anthropic, is another
large-scale language model designed to detect and avoid pitfalls such as logical errors and inappropriate
content that ChatGPT may encounter. The model emphasizes usefulness and harmlessness, employing
the RLAIF algorithm.

For the Chinese-English bilingual environment, ChatGLM-6B (Du et al., 2022) from Tsinghua Uni-
versity is a language model with billions of parameters optimized specifically for Chinese. It supports
local deployment on consumer-grade graphics cards. Baidu’s ERNIE Bot (Sun et al., 2021) is a genera-
tive dialogue product built on the ERNIE model series, leveraging the power of the large language model
ERNIE 3.0-Titan, showcasing excellent text understanding and generation capabilities. Finally, MOSS
(mos, 2023) from Fudan University, as the first large-scale language model in China similar to ChatGPT,
offers enhanced functionalities through plugins, such as support for search engines, image generation,
calculators, equation solvers, and more, providing a richer interactive experience.

3.2 Emotionally Supportive Conversations with LLMs

Emotionally Supportive Human-Machine conversations have revolutionized the field of human-machine
interaction by focusing on emotions and social interaction. These systems aim to provide users with
information, emotional support, and engaging conversations. With rich emotions, knowledge, and per-
sonality as their main characteristics, these conversations can empathize with users, understand their
emotional states, and respond accordingly.

In the field of emotion-aware human-machine conversations, leading technology giants and academic
institutions such as Google, Meta, and Baidu have developed various outstanding models. Google’s
Meena (Adiwardana et al., 2020), a chatbot developed with 2.6 billion parameters and trained on 341GB
of social media conversation text, demonstrates human-level coherence and specificity in its responses.
Meta’s BlenderBot (Roller et al., 2021), on the other hand, is an open-domain dialogue bot with capa-
bilities for online searching and long-term memory. It is built upon deep learning models and is trained
to engage in interactive and responsive conversations. Another conversational application model by
Google, LaMDA (Thoppilan et al., 2022), can learn discussions on various topics and exhibits impres-
sive coherence and specificity in its responses after training and fine-tuning.

Baidu’s PLATO (Bao et al., 2020) is a large-scale open-domain dialogue generation network that mod-
els background knowledge using discrete latent variables. In the Chinese dialogue model domain, EVA
(Zhou et al., 2021) and OPD(opd, 2023) have demonstrated notable performance. EVA is a large-scale
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Chinese open-domain dialogue pre-training model that surpasses other Chinese pre-training dialogue
models in both automatic and human evaluation metrics. Its subsequent version, EVA2.0, has been opti-
mized in various aspects, and the 300M-parameter EVA2.0 (Gu et al., 2023) achieves the performance of
the 2.8B-parameter EVA1.0. OPD (opd, 2023), on the other hand, is currently the world’s largest open-
source Chinese dialogue pre-training model with 6.3 billion parameters. It exhibits excellent chit-chat
capability and knowledge question-answering ability, enabling in-depth multi-turn dialogue interactions
with users.

3.3 Successful Case Studies of Human-Machine Conversations with LLMs in Diverse Fields

Successful case studies of LLM in human-machine conversations have demonstrated their effective-
ness and impact across various fields. These systems have streamlined tasks such as content generation
(Alkaissi and McFarlane, 2023; Rodriguez, 2022), disease diagnosis and treatment(Duong and Solomon,
2023; Khan et al., 2023; Rao et al., 2023a; Rao et al., 2023b), and assisted software development(Amos,
2023; Castelvecchi, 2022; Surameery and Shakor, 2023), enhancing user experiences and improving
productivity. In addition, The integration of ChatGPT into the realm of data processing has the potential
to revolutionize the landscape of scientific research (Macdonald et al., 2023).

In the field of biomedicine, LLMs such as LLaMa (Touvron et al., 2023) and ChatGLM (Du et al.,
2022) often underperform due to a lack of specialized medical knowledge. To address this issue, HuaTuo
(Wang et al., 2023) has developed a Chinese medical instruction dataset using a combination of medical
knowledge graph and the GPT3.5 API. Additionally, leveraging the same medical data, this project
also trained a healthcare-oriented version of the ChatGLM model: ChatGLM-6B-Med.Bloomberg has
released BloombergGPT (Wu et al., 2023a), which is specifically trained on various financial data to
comprehensively support natural language processing tasks in the financial domain.

Overall, the successful case studies of LLM human-machine conversations in various fields highlight
their potential to transform industries, optimize processes, and enhance human-machine interactions.

4 Challenges of LLMs in Human-Machine Conversation

The use of LLMs in human-machine conversations presents several challenges that researchers and de-
velopers need to address:

* Data Bias and Ethical Issues: LLMs are trained on vast amounts of data, which may inadvertently
reflect biases present in the data. This can lead to biased responses or perpetuation of stereotypes
(Azaria, 2023). It is crucial to identify and mitigate these biases to ensure fair and inclusive in-
teractions. Additionally, the ethical implications of deploying powerful conversations should be
carefully considered, such as the potential for misuse or manipulation of information (Liebrenz et
al., 2023).

» Explainability and Transparency: LLMs operate as complex black boxes, making it difficult to
understand their decision-making processes. Users and stakeholders may have concerns about how
the models arrive at their responses or recommendations(Larsson and Heintz, 2020). Ensuring
transparency and providing explanations for the system’s behavior are essential to build trust and
accountability (Wischmeyer, 2020; OpenAl, 2023).

* Security and Malicious Use: As LLMs become more powerful, there is an increased risk of them
being exploited for malicious purposes, such as generating deceptive or harmful content(Ali and
others, 2023). Protecting the integrity of conversations and preventing malicious use is a significant
concern that requires robust security measures and monitoring (Hargreaves, 2023; Kasneci et al.,
2023).

* Incorrect, Long-term Memory and Persistence: Despite advancements, conversation models can
still produce inaccurate or nonsensical responses. Ensuring the systems have reliable mechanisms
for validation and error correction is essential. Additionally, conversations should be able to main-
tain a coherent context and memory over extended conversations, as well as recognize and address
inconsistencies in their responses. (Blog, 2023; Borji, 2023; Zhuo et al., 2023; OpenAl, 2023).
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Addressing these challenges is essential for the responsible and effective use of large models in human-
machine conversations. Researchers and practitioners need to collaborate and innovate to ensure ethical
considerations, transparency, security, reliability, and resource efficiency in the development and deploy-
ment of these powerful conversations.

5 Future Development Direction and Prospects

This section explores the future development direction and prospects, outlining the potential pathways
and opportunities that lie ahead in the field:

* Support and Research for Low-Resource Languages: LL.Ms have demonstrated remarkable per-
formance in high-resource languages, resources and data are scarce available for low-resource lan-
guages (Huang et al., 2023a). It is crucial to invest in research and develop techniques to make
these models more accessible and effective in low-resource language settings, enabling users from
diverse linguistic backgrounds to benefit from conversations (Mohtashami et al., 2023).

* Model Explainability and Transparency: Enhancing model explainability and transparency is
another significant prospect. Ensuring that these models provide interpretable and transparent re-
sponses is essential to build user trust and understand how the system arrives at its conclusions (Wu
et al., 2023b). Explainability and transparency is an ongoing area of research in the field.

* Personalized Conversations and Intelligent Assistants: LLMs have the potential to offer person-
alized experiences, but there are challenges in understanding and adapting to individual user pref-
erences, needs, and contexts. Designing conversations that can accurately capture and incorporate
user feedback, dynamically adapt to user preferences, and provide personalized recommendations
is a complex task that requires further research and development (Chen et al., 2022b).

* Social Applications and Industrial Adoption: There is a need to explore social applications and
promote the industrial adoption of large models in human-machine conversations. Integrating con-
versations into social platforms and applications can enhance user experiences, facilitate social in-
teractions, and offer new opportunities for information access and engagement (Zhao et al., 2023).
Encouraging the adoption of large models in various industries, such as healthcare, finance, and
entertainment, can lead to significant advancements and real-world impact in these domains.

These prospects will contribute to the advancement and responsible deployment of large models in
human-machine conversations. Continued research, collaboration, and innovation are necessary to over-
come these obstacles and unlock the full potential of large models in transforming the way humans
interact with machines.

6 Summary

In this paper, we investigates the role of LLMs in facilitating human-machine dialogue. It examines the
rise and development of these models, explores their applications in various domains, and discusses the
challenges associated with their deployment. Furthermore concludes by outlining future directions and
prospects, highlighting the need for ongoing research and addressing ethical considerations. It serves as
a valuable resource for researchers and practitioners interested in leveraging the potential of large models
in human-machine conversations.
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Abstract

Machine translation aims to automatically translate one natural language into another.
This process requires great ability of language understanding and language generation,
making machine translation a challenging task. Recent studies have shown that large
language models (LLMs) are capable of performing various tasks, including machine
translation, based on human instructions. The powerful ability of LLM provides new
possibilities for the innovation of natural language processing paradigms. To better
accomplish machine translation tasks with the support of LLMs, researchers have con-
ducted extensive research and analysis on the translation and multilingual capabilities
of these models. This paper introduces the latest developments in this field from the
following three aspects: evaluating translation capabilities of large language models;
eliciting translation capabilities of large language models; language ability of large
language models in different languages.

Keywords: Machine Translation , Large Language Model , In-Context Learning ,
Instruction-Tuning , Multilinguality
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1 58

HL2s#l7% (Machine Translation, MT) ZF|FITENIE—F HRIES BohiEif A —
FRERES SRR - MERT ALEIRE, HLas 80P bRod 8 R A B33 7 =X AT DLUSE A by 2 A1
R EIETR K, SR E BBt 225 A A E EENLEPRE L VIEEFE TSR
PR TR TS & FVERR R AR BPRE S AR AR, XA B A S SR HE S Y
Z3K (Nirenburg, 1989; Och and Ney, 2002; Vaswani et al., 2017)

TR, ERMEER LIZGmER KBS E KBS A (Large Language Model,
LLM) BILH THRGRME S . KBS EAREBEBARIES, HFRIBRELSEHEERNZE
HENRILERES: AE&HERY¥>] (In-Context Learning, ICL) (Brown et al., 2020), /8 4E#E
(Chain-of-Thought, CoT) (Wei et al., 2023)35HHLEE S GEWFI A L F X ESME BX H &
A2 BTN A5 SR A AT AL VRS - KR B A9 R RE ) ML e B e U iR it T mTRE -

HE, Fx KE S REENL B T E A T N H A REVTFT - A B EMLRX L
TAE, N=DHHENERESEE AN SRR T mNEnt g KBRS - K
B ERAENEEE A - KiESEBEAEARES ERIGES R -

WA X SR T TAEA TR MBS, RATTEBH ISR (1) S#FENRIEEEE
(tNChatGPT) T4 LAIFERR > 1E S0 LT RS E B ML s By, (HEfRIRH
RIS LINRFAERKER; (2) BR¥SS5ESHAE WM& BRI BA T =,
1B 2] 0] DLV /AN B AL B R AT AL B B, T 48 2 O RE 8 B8 47 B R B A B
715 (3) RESHEBEAEARES LMESRASEAFE, BE2ESFHEETUEDNES
BN AFRES Z BRI RIR R, BPEMEFEREES CORIMEARBIIES S - BF
Hevd, KiESBEBEH I NV SBT3 R TRk, £ T K& S BEEE LRI
s EE R ERRE T, AT+ KiE S BRI E 77t mT LIRS BY K 1R SR B 2 HiE
EwS RN PN b

RXWEENELHN T F2T RN AV SREEF B SHEAEMERE =, 83 4. 5T
SR BRE S EB FIRIERE S VTG - BRI BABE S RE BRI R RE R, 6Tk
SRR T AN R T T BT RE -

2 HBE
2.1 PLESENEE

T HU FIHL 25 801 (Nirenburg, 1989)E|ZE 1T #1253 #11% (Och and Ney, 2002), 2%
P &S B11% (Vaswani et al., 2017), PLESEEREUAMIEZS, VIgsBERUR AR - BHEl, &
U Fph 220 A B R Y 2 258 AT DAAE /DR 4 v B IRE S 6 (N E- 257 ) ElR T A\ 8% oKl K
F(Ng et al., 2019) - {HR, FHE SR B — B 7 (0] FOAL & B AR A To 1% 38 20 T 2 SR PRl
Ko AR RNTESFRNESBELZN, HE— 1 ENET W BME Z Y s8R A A
MEKX . T& WEFRNSCFREEZDEIETT M 1218 S LA EHIE ROURE RN TR A S BT A
%¥(Johnson et al., 2017; Costa-jussa et al., 2022; Yuan et al., 2022) - ILH], ZiE S L2eBIIEHE
BRI R Gt 2R IS 28 2040 « T EAR Z M8 5 KRB S REU N 25 SV EIE R oo 24
HETHFPI T RE(Garcia et al., 2023; Zhu et al., 2023) -

2.2 KiIBESHER

KE F R ) B AR ZEFY J& Transformer (Vaswani et al., 2017), ZEARYIZHES E1EF ER
%55 (Bengio et al., 2000), YIZREHEEAZ LITETE A EHLI1EF B15H1EEH(Zhang et al., 2022;
Lin et al., 2022). HA, EFEEESERERRIBEIZTH], RO MAE - £
FRTE R L 5 F @ BRAE S AT ISR AT DU R T R R P 2R S A B AR, AR S LA
PH(Petroni et al., 2019) ~ 1B F % A11R (Tenney et al., 2019)%, 3 HE&WIRIESHBENIES
HRLRE ST (Pavlick, 2022) - iXFRGRAIE T GESTH M RIE 5B H AR IR IR A\ BT84 72 Al &R N ilF
(i

HTE S SEVRIZ B V0O TINS5, 58 LS H A FEERIRE X
BXo M AGERE T TMOTIEB ST BRI N A R ARTIE S, HFE RIS ST X RAESS Y

RIE (Creative Commons Attribution 4.0 International License) ¥FA] HAR
B o R ETEE S RS, H30T-E39T, MUK, FE, 202398 H3HESH.

52: WILRA
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7, SRR B R ST RHE S OOR « T2 ) Brown et al, 2020)81F £ TR
WAL & RIARURGH TS, (UER THERT N B - DABIRAESS A, ARIESR AL S A T
AR (A, V), M3E B TR IRRP = T(X1,01) @ T(Xe, o) @ -+ @ T (X, Vi) FFFBH IR
EEATX, IR HEEARE . NIRRT RGBT € RES, HERBIESERY - #lFEs
RY— BB KRR argmaxy p(P & T(X,)))- HR¥ BRI NEHZEH
BN BRRR AN SERHE B S5 - Figure UBIR T — 1 KEF BN T 522 S AT L 2s B 1 41
*.

FRAHUIH (Wei et al., 2021; Ouyang et al., 2022)U/ERA TR EL - BB &R ETE LR
FEASRINGAETY , B RIS 4L, (AT GRS S I SE e E 55 - XTI S, T84
AT RETHENERESEMSE, LT BRI ZER B -

BN
Chinese: #R E3krEAt 4 ? et
English: What do you like to eat?
LLM [ I like to eat spaghetti ]
Chinese: & &7 & KAl &

English:

Figure 1: K& EBALED H R T ESRIEAIRE

3 KIESRABFERES S

YR EFEB AR EEHEE D BIBEIE N, BEPIESGERNEESHAL, W
HAE T iR EE RER/ G . R SRAEX R REdE o i LR S ERITFARIES 2
BIRIXT R R R, HFE— P2 BRI ENEIFEAR, &R EIEE X OM—1R#E. Eik, #f
FENN KIE SR 1) 278 F BIERE 134T T B EAENG (Lin et al., 2022; Moslem et al., 2023;
Jiao et al., 2023b; Bang et al., 2023; Hendy et al., 2023; Garcia et al., 2023; Zhu et al., 2023) -

XEHR TIERABEREIIN AN, BERETREZMTHNRESEUEESZNEIFET WL
FIENERE ST - Table 175125 T X B 55 TAERIEARFB O - HHZhu et al. (2023) 393 TAE
FAER BN TR, fi1E T Flores-101 2B EHLEBIIFEURESE, £102MEF, 2027 L
FFXGLM ~ BLOOMZ ~ OPTHIChatGPTX VU MAAT FIKE SR £ 18 5 B R 134T T
i, H5IE R A I B 2 5 FATINLLB-1.3B(Costa-jussa et al., 2022) ~ M2M-12B(Fan
et al., 2021)3#1T T XL - MATAOBFREE RERAH: ZERZHOIENIAIES B, ChatGPTH
B OB R INAAT - ML TRATAOKIES AL, ChatGPTEARRIE S M ENFE T4, HHH
TE20% Ze 47 DADETE i O BRI 77 [a] 42 0] LU 38 K0 I B RS AINLLE - {H5 RN,
FEREAEFE AL, THEREFIESENFEL, ChatGPTIRE G T8 W B A5 AL 28
BiE RS (WFigure 2FT7R) -

WAl TAE EERE EENEHE RIEFHE
Lin et al. (2022) 13 182 GPT-3, XGLM
Moslem et al. (2023) 6 5 GPT-3, BLOOMZ
Jiao et al. (2023b) 5 8 ChatGPT,GPT4
Bang et al. (2023) 13 24 ChatGPT
Hendy et al. (2023) 18 10 ChatGPT
Zhu et al. (2023) 102 202 XGLM, BLOOMZ, OPT, ChatGPT

Table 1: BiFEHE17FA T/EMENE

EREE AR Zhu et al. (2023) % A A T WS PP KE SR AL GE i 25 5 H 3
R Mtimm . BT RESHEANIGEREEEERUER BEWERE, A8 HINE HE
PEAT PR, IR 5 & A A ERE B & I AREIR P A E L, 5 2o BT A I R I

Bt R EVRES SRS, HI0T-EE39T, MRE, FE, 202348 3HZESH.
B2 WG
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Figure 2: KiEE R ChatGPTSH I EVLA#IFEAINLLB, 7 FHVLAREIE R iGoogle Trans-
lateFIBHIE R BLXT LU (45 5248 B (Zhu et al., 2023))

TSEFRENE K - B0, FHTBLOOMZ (Scao et al., 2022)FIH T Flores-2001E 1)1 ZrE1 4 ,
FEFlores-1014(#E £ _EPFHIBLOOMZHIEIE RN, s AERIEMIRAI R, SECHNSERT
VAR ST O BIERE ) (Zhu et al., 2023) - FREANFEIEE FEGR A& AHEE, s
A IEG MG B SR ENEGE S, (IR — MER RERR -

LaE ., KESHEIEAMBRER AR BER, BRI T KE S EIAERE LR AR
71, WEBLT XFEEE X ANEERE T o (BE, ZEMROCESE RS HTEIE, BN
RIFE T RIETIRE - BERE ST - 0Tt — D BUE KIE S RALREIIERE . T RE S RALRTE
FERE, IR — A AR R B TR [RIRE -

4 KESHEERRERE N B T AR

RIANR 875 2 K 5 LR RE ) ATRER 2 AR BRI, IR AR T
THF 22 ST RITE LTRSS AN Rl A T 2 R BRI (Table 2) -

BE7R  RmER MR ITHE
TR A 2% Zhu et al. (2023)
B E S Zhang et al. (2023a)
IR RR Vilar et al. (2022)

WRE>] Ffki%E  Agrawal et al. (2022),Zhang et al. (2023a),Moslem et al. (2023),Zhu et al. (2023)
AFIEL Moslem et al. (2023),Agrawal et al. (2022),Zhang et al. (2023a),Zhu et al. (2023)

~EE Zhu et al. (2023)

ENTEAES Zhu et al. (2023)

ey Li et al. (2023),Yang et al. (2023)
B HdEmE Li et al. (2023)

HE AR Jiao et al. (2023a),Zhang et al. (2023Db)

Table 2: BRERE AW TIEBESE

4.1 FRABRZEIBRKE SRR EGE T
BRSPS HANRFIREAR €SS, B, mOITER A faE R 2
et o FERAE R IBRRE S HABIFRE R, BARA%ESRE  ROIAEREE T 2 R R

ot T P EV RS ARSI, FH0T-H39TT, RUKIE, hE, 2023F8H3HZ5H.
&2 HISRAR
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S ERAEIERIAERM - /T HRIEFNEREI TR, RSN XER R HT T 2H
I TS (Lin et al., 2022; Vilar et al., 2022; Chowdhery et al., 2022; Agrawal et al., 2022
Zhang et al., 2023a; Moslem et al., 2023; Zhu et al., 2023) -

4.1.1  BOTEERER % IR

BB ANE R RS EARER, BRYIER S BREEEFERE B RCR - K
TE S EAE R ERRAR T AR R IE B R KAIZRE (Zhu et al., 2023; Zhang et al., 2023a) . F it
W] o R S5 80T T S L2 B0 55 BB Al T — B AT 50 Rl -

R, RERETEIRE TR Z A B, RIRERREEA—E/RFE AEREN - Zhu et al
(2023)F5 i, TEECE KIESHRIXGLMASES F, “<X>\n can be summarized as \n <Y>"iX
PN S HBRRE 2 L “<X>\n can be translated to\n <Y>"iX & HERRE GEIA KIE S A
AOENERIN (Table 3) o BERRARUES AR E B Z AR R A PO R TIERH T E R
Pohk, AR ANTRHE R 2% S ) TR R AT AR B

iR, mMUEHELDER, TEERERMESBMER - WA TELAM, F—BMAEN
Al R S AL BRI EFROR 2 ZEAIRORHT - B, —Mheg S fgllE AR S5 BUR “[SRC): <X>\n
[TGT]: <Y>", EH“SRC]"5“TGT]" 4 I NFIESF EIREE AR, <X>"54<y>"
S Hrm e+ o XM T PaLM(Vilar et al., 2022), GLM(Zhang et al., 2023a)#%!
RRIRLF, (HEN TXGLMERHIHRIRZE (Zhu et al., 2023) - HFh, RN R R AT 7
RIRIE =77 [ _E i BIERT R (b AOREIR R (Lin et al., 2022; Zhang et al., 2023a; Zhu ef
al., 2023) o X% IAL U IAAR R BHIEAL 55 50T 18 A A RS o SRR JEH B Pk Ay -

In-context Template Deu-Eng Eng-Deu Rus-Eng Eng-Rus Rus-Deu Deu-Rus Average
reasonable instructions:
<X>=<Y> 37.37 26.49 29.66 22.25 17.66 17.31 25.12
<X> \n Translate from [SRC] to [TGT]: \n <Y> 37.95 26.29 29.83 20.61 17.56 15.93 24.70
<X> \n Translate to [TGT]: \n <Y> 37.69 25.84 29.96 19.61 17.44 16.48 24.50
<X> \n [TGT]: <Y> 29.94 17.99 25.22 16.29 12.28 11.71 18.91
<X> is equivalent to <Y> 23.00 4.21 17.76 9.44 8.14 9.84 12.07
<X> \n can be translated to\n <Y> 37.55 26.49 29.82 22.14 17.48 16.40 24.98
[SRC]: <X> \n [TGT]: <Y> 16.95 8.90 14.48 6.88 7.86 4.01 9.85
unreasonable instructions:
<X>$<Y> 37.77 26.43 29.53 20.99 17.72 17.27 24.95
<X> \n Translate from [TGT] to [SRC]: \n <Y> 38.18 26.21 29.85 20.35 17.75 16.63 24.83
<X> \n Compile to [TGT]: \n <Y> 37.39 26.35 29.68 19.91 17.52 16.15 24.50
<X> \n [SRC]: <Y> 27.86 16.69 24.41 18.16 11.98 12.60 18.62
<X> is not equivalent to <Y> 23.50 3.92 16.90 7.80 8.06 9.23 11.57
<X> \n can be summarized as \n <Y> 37.46 26.24 29.42 22.62 17.68 17.15 25.10
[SRC]: <X> \n [SRC]: <Y> 19.03 8.21 15.96 6.37 7.57 4.40 10.26

Table 3: ANFIE 527 5 RO IR IR (%45 5490 H (Zhu et al., 2023))

4.1.2 EEEENERZE IR

TE R IR A — D EERE R EE R SIRE] - B SRS ERIER %
)R EIRE RSB AR R R - 18 52 SR ] — O E e B BRIl 2R % « BEEE kot
M, Vilar et al. (2022)& FLA 5 5t 2 Y55 UE 5 FP Pk de 5 5727 S R 1 HE I ZR B Fk e 5 R B
U . TR T MEREE Tk M EEREIRE, IR NGB T aEmHLRR - FAERE -
RAERRELZMIRFIPLTT 2 (Agrawal et al., 2022; Zhang et al., 2023a; Moslem et al., 2023),
B2 LT RENLRE RS AT HLECE IR - Zhu et al. (2023)#F—F &I, BIRIEL EIRAIH
SEFEOHTRR, IR R — PR -

AN 28 S R 0@ — PR A SR A B R I AYIE T2 (Moslem et al., 2023; Agrawal
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GaoKao(%)

Systems Avg. chinese english mathqa physics chemistry biology history geography mathcloze

GPT-3.5-turbo  43.87 42.68 86.27 30.48 21.00 44.44 46.19 59.57 63.32 0.85
BayLing-13B 32.13 29.27 69.28 29.34 21.50 36.71 30.00 34.04 38.19 0.85
BayLing-7B 28.20 27.64 55.56 26.78 24.50 29.95 29.05 33.19 27.14 0.00
ChatGLM-6B  31.83 31.71 52.29 26.50 16.00 27.54 28.10 54.04 47.74 2.54
Vicuna-13B 29.36 21.14 71.24 21.94 23.00 31.88 27.14 33.19 34.67 0.00

Alpaca-7B 20.03 24.80 36.27 17.95 6.00 20.77 20.95 24.68 27.14 1.69
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A Systematic Evaluation of Large Language Models for Natural
Language Generation Tasks

Abstract

Recent efforts have evaluated large language models (LLMs) in areas such as com-
monsense reasoning, mathematical reasoning, and code generation. However, to the
best of our knowledge, no work has specifically investigated the performance of LLMs
in natural language generation (NLG) tasks, a pivotal criterion for determining model
excellence. Thus, this paper conducts a comprehensive evaluation of well-known and
high-performing LLMs, namely ChatGPT, ChatGLM, T5-based models, LLaMA-based
models, and Pythia-based models, in the context of NLG tasks. We select English and
Chinese datasets encompassing Text Summarization, Dialogue Generation, Story Gen-
eration, and Data-to-Text tasks. Moreover, we propose a common evaluation setting
that incorporates input templates and post-processing strategies. Our study reports both
automatic and manual metric results, accompanied by a detailed analysis.

1 Introduction

Recent studies have emphasized the importance of scaling large language models (LLMs),
referring to both the dimensions of the model size themselves and the amount of data used,
resulting in enhanced capability of the models for tasks downstream (Chung et al., 2022).
Numerous investigations have been conducted to explore the limits of performance by training
increasingly larger pre-trained language models, such as GPT-3 175B (Brown et al., 2020) and
PalLM 540B (Chowdhery et al., 2022). Although scaling primarily involves increasing the model
size while maintaining similar architectures and pre-training tasks, these large-sized PLMs exhibit
distinct behaviors from their smaller counterparts and demonstrate surprising emergent abilities
in solving complex tasks (Zhang et al., 2017; Frankle and Carbin, 2019; Zhang et al., 2021). An
example of this is the contrasting performance of GPT-3 and GPT-2 when it comes to solving
few-shot tasks. GPT-3 demonstrates effective problem-solving abilities by utilizing in-context
learning, whereas GPT-2 faces difficulties in this aspect. As a result, these large-scale language
models (LLMs) has become a huge research topic in current NLP area. In existing literature,
remarkable LLMs such as ChatGPT?, ChatGLM!, have been widely adopted as powerful Al
assistants, benefiting from their exceptional generation capabilities.
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We hypothesis that a language model’s performance in executing natural language generation
(NLGQG) tasks is a crucial factor in determining its excellence (Dong et al., 2023). NLG tasks
involve LLMs that are capable of accepting diverse types of input, such as texts and tables, and
generating coherent and appropriate output text. We intuitively think that generate fluent, coherent,
and consistent texts is the foundation of a language model, so as to large language models (Raffel
et al., 2020). When some research institutions release their large language models, they tend
to evaluate these models first. Community workers are also interested in testing well-known
large language models. However, most of these evaluations focus on checking LLMs’ ability of
commonsense reasoning (Davis and Marcus, 2015; Wei et al., 2022), mathematical reasoning
(Saxton et al., 2019; Wei et al., 2022), code completion (Allamanis et al., 2018), etc., but ignore
the basic NLG tasks, such as dialogue generation (Chen et al., 2017), text summarization (Dong et
al., 2023), and story generation (Al-Hussain and Azmi, 2022). Besides, Some researchers pointed
out that the performance of a large model is determined not only by its size and architecture, but
more by the quality and quantity of training data. Based on this point of view, researchers open
source and propose that some smaller-scale models trained on more and higher-quality data sets
can achieve the same performance as models with more parameters than them. For example,
LLaMA-13B (Touvron et al., 2023) outperforms GPT-3 on most benchmarks, despite being 10
times smaller. This notable discovery makes us curious about the performance of models with
different architecture, data size, and mode size, trying to figure out which factor is more important.
Therefore, we aim to address this gap by conducting a comparative analysis of LLM performance
on NLG tasks, considering different architectures and scales throughout the evaluation process.

In this paper, we present a systematic evaluation of existing LLMs for NLG tasks. The main
objective is to enhance our understanding of instruction and prompt design by conducting a
comparative analysis of these models. Initially, we provide an overview of classic NLG tasks,
including their definitions and associated English and Chinese datasets. Subsequently, we devise
a model input template that includes instructions for each dataset. Following that, we introduce
various LL.Ms, considering factors such as model size and architecture. Finally, we present the
results of both automatic and manual evaluation of LLMs on NLG datasets, and discuss the
strengths and weaknesses of their performance across different models.

2 Natural Language Generation

In this section, we will introduce the definition of NLG, and its sub-tasks with some corresponding
datasets that we will use to evaluate LLMs.

2.1 Definition

Natural Language Generation is the process of producing a natural language text in order to meet
specified communicative goals. The texts that are generated may range from a single phrase
given in answer to a question, through multi-sentence remarks and questions within a dialog, to
full-page explanations. In our evaluation, we mainly focus on text-to-text styles. In general, the

task of NLG targets at finding an optimal sequence y<7+1 = (y1,¥2, - - ., yr) that satisfies:
T
yeri1 = argmaxlog Py (y<ri1 | 2) = argmax » _log Py (v | y<t, 7) (D
Y<T4+1€Y y<r+1€Y 14
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where T' represents the number of tokens of the generated sequence, ) represents a set containing
all possible sequences, and Py (y; | y<¢, x) is the conditional probability of the next token ¥,
based on its previous tokens y<; = (y1,¥2,...,y:—1) and the source sequence = with model
parameters 6.

Next, we will introduce some classic and widely-researched sub-tasks of NLG, with several
corresponding datasets.

2.2 Text Summarization

Text summarization is the process of condensing a piece of text, such as an article, document,
or news story, into a shorter version while preserving its key information and main ideas (El-
Kassas et al., 2021; Dong et al., 2023). Text summarization can be performed through two main
approaches: Extractive Summarization and Abstractive Summarization. In our evaluation, we
utilize multiple abstractive summarization datasets, specifically choosing two renowned datasets
for the English and Chinese languages.

* CNN/DailyMail (Nallapati et al., 2016) is a large scale English summarization dataset
which contains 93k and 220k articles collected from the CNN and Daily Mail websites,
respectively, where each article has its matching abstractive summary.

* XSum (Narayan et al., 2018) is an extreme English summarization dataset containing BBC
articles and corresponding single sentence summaries. In this dataset, 226,711 Wayback
archived BBC articles are collected, which range from 2010 to 2017 and cover a wide variety
of domains.

e THUCNews (Li and Sun, 2007) is a Chinese summarization dataset, which comes from
filtering the historical data of the Sina News RSS subscription channel from 2005 to 2011,
including 740,000 news documents.

* LCSTS (Liu, 2020) is a large corpus of Chinese short text summarization dataset constructed
from the Chinese micro-blogging website Sina Weibo. This corpus consists of over 2 million
real Chinese short texts with short summaries given by the author of each text.

2.3 Dialogue Generation

Dialogue generation refers to the process of automatically generating coherent and contextually
appropriate responses in a conversational setting (Chen et al., 2017; Ma et al., 2020; Dong et
al., 2023). The ultimate goal of dialogue generation task is to create responses that are relevant,
informative, and engaging to the user.We utilize two English dialogue datasets characterized
by clear emotional flow and topic constraints, as well as one English dataset that incorporates
speakers’ personalities. Furthermore, we employ a Chinese open-domain dialogue dataset for
evaluation purposes.
 DailyDialog (Li et al., 2017) is a comprehensive, human-authored, and relatively noise-free
English dataset that captures everyday communication styles and encompasses various topics
related to our daily lives.
* PersonaChat (Zhang et al., 2018) is a persona-grounded dialogue dataset which contains
10k English multi-turn dialogues conditioned on personas, and each persona is described
with at least 5 profile sentences.
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* EmpatheticDialogue (Rashkin et al., 2019) is a large-scale multi-turn dialogue English
dataset that contains 25k empathetic conversations between a speaker and a listener.
* LCCC (Wang et al., 2020) is a large-scale cleaned Chinese conversation dataset.

2.4 Story Generation

Story generation aims at automatically creating coherent and engaging stories (Al-Hussain and
Azmi, 2022). The input of story generation task can take various forms, including beginning
(Chen et al., 2019), outline (Fang et al., 2021), prompt (Fan et al., 2018), or abstract (Fang et
al., 2021), etc. Advanced methods or models of this task typically involve defining the story
structure, characters, settings, and desired narrative elements (Martin et al., 2018). We employ
two datasets in Chinese and English, where story beginnings serve as inputs. Additionally, we
utilize an English dataset in which story outlines are provided for evaluation purposes.

* ROCStories (Mostafazadeh et al., 2016) is a compilation of 100,000 short stories, each
consisting of five sentences, that display a general sense of understanding. These stories
adhere to a daily theme and incorporate a variety of common-sense causal and temporal
relationships found in everyday occurrences..

* WritingPrompts (Fan et al., 2018) is a large English dataset of 300K human-written stories
paired with writing prompts from an online forum.

* LOT (Guan et al., 2022) is a benchmark dataset for evaluating Chinese long text understand-
ing and generation.

2.5 Opverview for LLMs

Typically, large language models (LLMs) refer to Transformer-based models containing tens or
hundreds of billions of parameters and trained on extensive corpora of texts (Zhao et al., 2023).
These LLMs demonstrate significant capabilities in understanding natural language and solving
complex tasks. Furthermore, they have showcased their ability to perform new tasks based on
textual instructions or with just a few examples (Chung et al., 2022). The emergence of these
few-shot properties is a result of scaling models to a sufficient size, leading to a line of research
that focuses on further scaling these models (Rae et al., 2021).

Previous LLMs, such as T5 (Raffel et al., 2020), GPT-3 (Brown et al., 2020), OPT (Zhang et
al., 2022), and PaLLM (Chowdhery et al., 2022), primarily emphasized scaling model size rather
than considering the quality and quantity of data. However, recent studies have demonstrated
that, given a fixed compute budget, the best performance is achieved by smaller models trained
on larger datasets (Hoffmann et al., 2022). Additionally, most of these models are not open-
source and can only be accessed through APIs for inference, which poses inconveniences for
model evaluation and usage. In order to address this issue, numerous researchers have proposed
excellent open-source architectures and trained models, including GLM-130B (Zeng et al., 2022),
ChatGLM (Du et al., 2022), LLaMA (Touvron et al., 2023), and Pythia (Biderman et al., 2023).
Furthermore, advancements in fine-tuning techniques have contributed to the success of deploying
these models with limited resources, such as Lora (Hu et al., 2022) and P-Tuning (Li and Liang,
2021). Therefore, this paper aims to conduct systematic evaluations of these models and their
fine-tuned versions, categorized into four groups: ChatGPT, ChatGLM, T5-based models,
LLaMA-based models, and Pythia-based models.
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2.6 ChatGPT

ChatGPT? is a large language model based on OpenAI’s GPT-3.5 architecture (Brown et al.,
2020). It is designed specifically for generating conversations and answering user queries.
ChatGPT employs large-scale pretraining and fine-tuning methodologies, utilizing vast amounts
of textual data to learn statistical patterns and semantic knowledge of language, and perform well
in zero-shot and few-shot settings, and can understand the input instructions.

2.7 ChatGLM

ChatGLM? is a freely available dialogue language model that operates in both Chinese and
English languages. It follows the GLM architecture and boasts an impressive parameter count
of 6.2 billion. ChatGLM-6B incorporates similar technology as ChatGPT, with a specific focus
on Chinese question answering and dialogue. The model undergoes extensive training on a
dataset containing approximately 1 trillion tokens in Chinese and English. The training process
includes supervised fine-tuning, feedback bootstrap, and reinforcement learning with human
feedback. Despite having only 6.2 billion parameters, the model demonstrates the ability to
generate responses that align with human preferences.

2.8 T5-Based models

T5 (Raffel et al., 2020), which stands for Text-To-Text Transfer Transformer, is a transformer-
based language model developed by Google Research. Instead of training separate models for
different tasks, T5 is trained in a text-to-text pattern. This means that it is trained to perform a
wide range of NLP tasks by transforming the input text into a standardized format that specifies
the task to be performed. In our evaluation, we select two new fine-tuned versions of TS5, namely:
Flan-T5-XXL* and FastChat-T5°.

Flan-T5-XXL Flan-T5 (Chung et al., 2022) is a fine-tuned version model class of T5 that has
been trained on a variety of datasets phrased as instructions. It has shown impressive performance
on several benchmarks, demonstrating strong zero-shot, few-shot, and Chain-of-Thought (CoT)
(Wei et al., 2022) abilities. Flan-T5-XXL is the largest released checkpoint of this model, boasting
a parameter volume of 13B. It inherits the extensive knowledge base of T5 while also being
capable of understanding natural language instructions and performing the corresponding tasks.

FastChat-T5 FastChat (Zheng et al., 2023a) is an open platform for training, serving, and
evaluating large language model based chatbots. And FastChat-T5 is an open-source chatbot
trained on this platform by fine-tuning Flan-T5-XL (3B parameters) on user-shared conversations
collected from ShareGPT.

2.9 LLaMA-Based Models

LLaMA (Touvron et al., 2023) is a collection of foundation language models ranging from 7B
to 65B parameters proposed by Meta Al. Unlike other famous LLMs, LLLaMA is only trained

Zhttps://chat.openai.com/

3https://chatglm.cn/
*https://huggingface.co/google/flan-t5-xxI
Shttps://huggingface.co/lmsys/fastchat-t5-3b-v1.0
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on publicly avaiable data, making it compatible with open-sourcing. Numerous remarkable and
impressive models have emerged as a result, built upon the LLaMA framework and trained using
diverse datasets. Among these models, we have chosen a few prominent ones for evaluation:
Open-LLaMA, Vicuna, Alpaca, and GPT4ALL.

Open-LLaMA Open-LLaMA (Geng and Liu, 2023) is an open reproduction of LLaMA trained
on the RedPajama dataset (Computer, 2023). We leverage the 7B version® of this model for
evaluation.

Alpaca (Taori et al., 2023) is fine-tuned based on a 7B LLaMA model using a dataset con-
sisting of 52,000 instances of instruction-following data. This dataset is generated using the
techniques outlined in the Self-Instruct paper (Wang et al., 2022), which aims to address the
limited instruction-following capabilities of LLaMA models. To create the training data, the
authors initially generate the data using OpenAI’s GPT-3 and subsequently convert it into 52,000
instances of instruction-following conversational data using the Self-Instruct pipeline. This
dataset is referred to as the Alpaca dataset. The Alpaca model is then fine-tuned to generate
responses in conversations similar to ChatGPT.

In our evaluation, we utilize Alpaca-Lora-7B’, a low-rank adapter for LLaMA-7b fit on the
Stanford Alpaca dataset, and Chinese-Alpaca-13b®, a Chinese model version of Alpaca.

Vicuna (Zheng et al., 2023b) is fine-tuned based on LLaMA models using user-shared conversa-
tions collected from ShareGPT. It is an auto-regressive language model, based on the transformer
architecture. So it is basically fine-tuned with ChatGPT conversations. We utilize two versions of
Vicuna, which are Vicuna-13B® and Chinese-Vicuna-13B1°.

GPT4ALL (Anand et al., 2023) is a fine-tuned LLaMA 13B model and the GPT4All commu-
nity!! has built the GPT4All Open Source datalake as a staging ground for contributing instruction
and assistant tuning data for future GPT4All model trains.

2.10 Pythia-Based Models

Pythia (Biderman et al., 2023) is a project by EleutherAI'? that combines interpret-ability
analysis and scaling laws to understand how knowledge develops and evolves during training in
autoregressive Transformers. We utilize two versions of Pythia which are Oasst-Pythia and Dolly.

Oasst-Pythia'®  is an open assistant model developed by the Open-Assistant project. It is based
on a Pythia 12B model that was fine-tuned on human demonstrations of assistant conversations
collected through the Open-Assistant human feedback web app.

Shttps://github.com/openlm-research/open_llama
"https://huggingface.co/chainyo/alpaca-lora-7b
8https://huggingface.co/shibing624/chinese-alpaca-plus-13b-hf
“https://huggingface.co/eachadea/vicuna-13b-1.1
https://huggingface.co/Chinese-Vicuna/Chinese-Vicuna-lora-13b-belle-and-guanaco
https://home.nomic.ai/

Zhttps://github.com/EleutherAl/pythia

Bhttps://huggingface.co/OpenAssistant/pythia- 12b-sft-v8-7k-steps
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Below is an instruction that describes
a task. Write a response that appropr-

DT RMARESHI U . %5 HEH R EE R
FTRIRMES,

iately completes the request.

### Instruction: { } s UL { }
s Input: { } i AN { }
H### Response: i [B] 5

Figure 1: Input templates for English (left) and Chinese (right) datasets. instruction and text
will be replaced with content corresponding different datasets.

Dolly'* is a Language Model (LLM) with 12B parameters, designed to follow instructions
accurately. It has been trained on approximately 15,000 instruction/response fine-tuning records
known as databricks-dolly-15k. These records were created by Databricks employees and cover
various capability domains sourced from InstructGPT (Ouyang et al., 2022). These domains
include brainstorming, classification, closed QA, generation, information extraction, open QA,
and summarization.

3 Experimental Settings

3.1 Dataset

In our evaluation, we aim to showcase the generation capabilities of LLMs in zero-shot scenarios.
Therefore, we refrain from providing any additional information to the model for each of the
aforementioned datasets. Specifically:
* For datasets of Text Summarization task, we input the text, document, or article to allow the
model to extract key information and generate concise summaries.
* For datasets of Dialogue Generation task, we input the dialogue history, enabling the model
to generate appropriate responses for the final round of the conversation.
* For datasets of Story Generation task, we input the story beginning, outline, or prompts to
provide the necessary context for the model to generate coherent and engaging stories.

3.2 Input Template

Because LLMs that we evaluate possess the ability to comprehend instructions and perform
corresponding tasks, so in order to ensure fairness, we develop an input template that is applied
to every dataset for each task, serving as the input for every large language model. This template
consists of two components: the instruction and the input. Figure 1 illustrates the templates
designed for both the Chinese and English datasets, and Table 1 shows the content of instruction
and text for each dataset.

3.3 Hyperparameters

Although each LLM may have its own optimal decoding strategy, for the sake of fairness, we
have standardized these hyperparameters across all LLMs. We employ the Top-k and Top-p
sampling, with k£ = 40 and p = 0.75. Additionally, a temperature value of 0.2 and a repetition

“https://huggingface.co/databricks/dolly-v2-12b
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Dataset Instruction Text

This is an open-domain empathetic dialogue completion task.The
input is the Dialogue. You act as System in the dialogue. You need to
Empathetic | fully understand the situation and combine the speaker’s emotion to
Dialogues complete the dialogue with natural content and a way closer to human
speech. There is no need for any additional notes or clarifications,
you just give the response in English.

Dialogue Context

This is an open-domain fopic-aware dialogue completion task. The
input is the Dialogue. You act as System in the dialogue. You need
DailyDialog | to fully understand the topic and complete the dialogue with natural | Dialogue Context
content and a way closer to human speech. There is no need for any
additional notes or clarifications, you just give the response in English

This is an open-domain personality-aware dialogue completion task.
The input is the Dialogue. You act as System in the dialogue. You
need to fully understand the personality and complete the dialogue

PersonaChat with natural content and a way closer to human speech. There is Dialogue Context
no need for any additional notes or clarifications, you just give the
response in English.
X — IO SO BN AR S5 - B AR SERIRTIE N
B RAERNIE R IHEARYL . IRRET 2B VIEE KIETE,

LCCC I BRI B AN B T AR BEIE AT ZUSE RO 3%, AN | Dialogue Context
BEERIEEAIN S o AFHFEALMESNOEREE W, 17
ATFHPLALELS -

Table 1: Instruction and Text for each dataset.

penalty factor of 1.15 are imposed. Furthermore, we specify a maximum token length of 128 and
a minimum token length of 10 for the generated content.

3.4 Post-Processing Strategy

Through case study, we observe that despite emphasizing the exclusion of any additional output in
the input, regrettably, most LLMs still generate redundant information in their output. Therefore,
we find it necessary to apply post-processing to the outputs of these models. To ensure fairness,
we adopt the same post-processing strategy for all LLMs. Specifically, we utilize the keywords
“### response:” or “### [AE: ” for segmentation. If the segmented content consists of a
single line, we consider it as the final result. If the segmented content spans multiple lines, we
use “\n” as segmentation keywords and select the first sentence with a length not less than 16 as
the final result.

3.5 Baselines

There have been numerous previous works on datasets we used, and these works have achieved
good results. Therefore, despite the fact that most of these works have proposed models much
smaller than LLMs and have predominantly utilized supervised fine-tuning methods, we still
compare them with LLMs to highlight some characteristics of LLMs. For each dataset, we select
several recent works with better performance and report their results.
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* For EmpatheticDialogues, we utilize EP-PG (Li et al., 2022) that first generates event
transition plans and then obtains the final response, and MoEL (Lin et al., 2019) that are
consist of one emotion tracker and n emotion listeners.

* For DailyDialog, we utilize PLATO (Bao et al., 2020), a pre-trained dialogue generation
model, and DialogWAE (Gu et al., 2019), a conditional wasserstein autoencoder (WAE)
specially designed for dialogue modeling.

¢ For PersonaChat, we utilize PLATO as mentioned above, and CTRLStruct (Yin et al.,
2023) for dialogue structure learning to effectively explore topic-level dialogue clusters.
clusters as

3.6 Evaluation Metrics

Automatic Metrics We utilize several common automatic metrics for NLG tasks. PPL is
used to assess the difficulty or confusion of a language model in predicting a sequence of words.
BLEU (B-1, B-2, B-4) (Papineni et al., 2002) is used to assess the quality of machine-generated
translations by comparing them to human reference translations. Meteor (MT) (Banerjee and
Lavie, 2005) considers the accuracy and recall based on the entire corpus, and get the final
measure. Rouge-L (R-L) (Lin, 2004) calculates the overlap between the generated output and
the reference summaries or translations using various techniques such as N-gram matching.
DISTINCT (D-1, D-2) (Li et al., 2016) quantifies how many distinct or different N-grams are
present in the generated text, providing an indication of the model’s ability to produce varied and
non-repetitive output.

Besides these widely-used metrics, we also develop a new metric called PostProcess Rate
(PPR), which means the proportion of samples that need to be post-processed to the total number
of samples.

Human Evaluation We conduct a human evaluation on open-domain dialogue generation. We
recruit university students to evaluate the quality of conversations. We follow up previous dialogue
generation efforts (Yu et al., 2022) and employ several metrics to evaluate the dialogue quality :
Coherence measures relevance to the dialogue context, Informativeness evaluates information
provided, and Fluency checks grammatical accuracy. We also check for Hallucination| and
factual errors.

Note that the Coherence, Informativeness, and Fluency scale is [0, 1,2, 3, 4], whose higher
score indicates a better performance. Moreover, the scale of Hallucination is [0, 1, 2], whose
lower score indicates a better performance.

4 Results and Analysis

The automatic metrics results of LLMs on the four datasets are shown in Tables 2, 3, 4. Since
Flan-T5-XXL and FastChat-T5 do not possess the ability to generate Chinese textual content,
we do not report their results on LCCC. Although automatic metrics cannot fully reflect the
performance of the models, we can still draw the following conclusions from them.

First, apart from ChatGPT that has the largest scale of 175B, the two T5-based models
consistently outperform others in terms of the PPR metric. This indicates that the generated
content of Flan-T5-XXL and FastChat-T5 largely aligns with the instruction requirements stated
in the input template: “without any additional output.” Interestingly, both of these models follow
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Model | Scale | Arch | PPL] |B-1 B2 B-4 |MT |R-L|D-1 D-2 |PPR|
EP-PG - - - 1674 694 239 |- |- |219 825 |-

MOoEL 23.IM | DO | 33.58 |- - 290 |- |- |106 429 |-

ChatGPT | 175B | DO | 1052 |7.35 240 052926 875|471 27.75 | 0.00%
ChatGLM 6B | DO | 1173 | 605 1.82 027858771357 2282]12.61%
Flan-T5S-XXL | 13B | ED [ 19.97 |562 240 061|538 | 741|566 2497 |0.00%
FastChat-T5 3B ED |925 |733 235 045|850 862|355 2081 |0.12%
Open-LLaMA | 7B DO | 1590 |8.50 297 0.63| 643874393 1791 | 40.05%
Vicuna 13B | DO | 1431 |6.18 193 035|891 | 781|409 2584 3886%
Alpaca-Lora | 7B DO | 16.10 | 795 252 040|734 |6.69 | 759 39.58|0.24%
Chinese-Alpaca | 13B | DO | 1205 | 651 1.86 035 | 7.53 | 6.64 | 532 29.14 | 0.20%
GPT4ALL 13B | DO | IL14 |520 147 024 875|678 |3.94 2560 | 1.81%
Dolly 12B. | DO | 13175 [ 829 2.64 046|691 | 796|746 42.69 | 58.61%
Oasst-Pythia | 12B | DO | 871 |548 153 026|879 | 6.92 | 3.38 21.18 | 0.04%

Table 2: Automatic evaluation results of LLMs on EmpatheticDialogues. Scale stands for the
model size. ED and DO respectively stand for encoder-decoder and decoder-only. Arch is an
abbreviation for Architecture. The bold numbers in the results represent the best scores, whereas
the underlined numbers indicate the second-best scores.

Model | Scale | Arch | PPL, |B-1 B2 B4 |[MT |R-L |D-1 D2 |PPR|
PLATO - DO |- 39.70 3110 - |- - 530 29.10 | -

DialogWAE - ED |- 3230 - - |- - 3130 59.70 | -

ChatGPT | 175B | DO | 11.41 | 7.58 271 056 | 10.13 | 8.17 | 10.98 47.20 | 0.00%
ChatGLM |6B | DO | 1752 | 10.54 3.86 093 | 9.14 | 11.91 | 9.60 4269 | 12.05%
Flan-T5-XXL | 13B | ED | 1631 [ 385 1.61 042|664 |552 | 1454 47.59 | 0.00%
FastChat-T5 3B |ED | 1027 | 745 259 050|915 |7.86 |9.58 4116 | 0.50%
Open-LLaMA | 7B | DO [21.23 [ 6.72 231 046|594 |559 | 1165 3872 | 64.36%
Vicuna 13B | DO | 7866 |6.13 211 042|889 |696 |10.15 4518 | 3855%
Alpaca-Lora | 7B | DO | 2863 | 640 216 000|604 |502 | 1749 61.66 | 3.41%
Chinese-Alpaca | 13B | DO | 2223 | 652 218 038|749 |593 |13.06 51.02 | 2.01%
GPT4ALL 13B | DO | 1472 | 484 124 013|772 |577 | 1024 4353 |2550%
Dolly 12B | DO |5829 [6.09 201 040570 |[425 |14.14 5233 | 74.80%
Oasst-Pythia | 12B | DO | 10.68 | 540 145 0.19|7.62 |6.09 |923 3891 |1647%

Table 3: Automatic evaluation results of LLMs on DailyDialog.

an encoder-decoder architecture, while all other models follow a decoder-only architecture. This
suggests that encoder-decoder models demonstrate superior understanding of input instructions
under the same model scale. We speculate that having an encoder allows the model to comprehend
the input content effectively, thereby executing the corresponding task more successfully.

Second, Alpaca-Lora consistently ranks either first or second in the richness of output content.
Moreover, the models using the same architecture as Alpaca-Lora also achieve higher scores in
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Model | Scale | Arch | PPL| |B-1 B2 B4 |MT |R-L |D-1 D-2 |PPR|
PLATO - DO |- 4060 3150 - |- |- 210 1210 | -
CTRLStruct | — ED |- 3160 1190 - |- | 1610|320 1140 | -
ChatGPT | 175B | DO | 1097 | 636 237 0.52]9.78 | 842 | 9.10  40.65 | 0.00%
ChatGLM 6B | DO | 1389 | 598 207 040 | 885|867 |685 3486 | 12.05%

Flan-T5-XXL 13B | ED 51.50 | 6.51 253 043 | 6.15| 7.46 | 1223 39.82 | 0.00%
FastChat-T5 3B ED 10.61 | 553 200 043|898 | 794 | 730 33.66 | 0.50%

Open-LLaMA | 7B DO 15.69 | 443 1.16 0.00 | 5.86 | 543 | 7.83 2890 | 64.36%
Vicuna 13B | DO 12.53 | 320 1.01 0.14 | 7.30 | 4.82 | 5.88  30.12 | 38.55%
Alpaca-Lora 7B DO 17.20 | 419 121 024|629 | 440 | 12.28 50.33 | 3.41%
Chinese-Alpaca | 13B | DO 1495 | 493 1.66 029 | 7.70 | 6.21 10.18 44.62 | 2.01%
GPT4ALL 13B | DO 11.68 | 274 0.55 0.07 | 6.52 | 439 | 7.56  35.23 | 25.50%

Dolly 12B | DO 29.76 | 4.51 139  0.24 | 5.02 | 459 | 10.55 41.62 | 74.80%
Oasst-Pythia 12B | DO 9.57 334 069 0.07 | 658 | 466 | 648  28.56 | 16.47%

Table 4: Automatic evaluation results of LLMs on PersonaChat.

terms of D-1 and D-2. This indicates that LLAMA-based models are capable of producing more
diverse and less repetitive content.

Last, ChatGPT, the model with the largest parameter scale, performs the best overall on all
four datasets, securing the first or second position most frequently. This suggests that increasing
the parameter size and training data volume of LLMs is consistently one of the most important
methods for improving model performance.

5 Conclusion

In this paper, we conduct a comprehensive assessment of several existing large-scale language
models (LLMs) in the context of natural language generation (NLG) tasks. Our evaluation
encompasses English and Chinese datasets to examine the multilingual capabilities of these
LLMs. The results and analyses from both automatic and manual evaluations of LLMs reveal
notable trends and phenomena.
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Abstract

Information retrieval (IR) aims to seek relevant information in response to user queries.
Existing IR systems mainly rely on the “index-retrieve-then-rank” framework, which
models the complex retrieval tasks as a multi-stage search process. Such a decoupling
process improves the efficiency of the system, making it possible for retrieval system
to handle billions of documents. However, it also increase the complexity of the search
architecture, making it difficult to achieve end-to-end optimization. To address this
issue, researchers have begun to explore a new paradigm of generative information
retrieval. This new paradigm encodes the entire corpus into the search model, en-
abling end-to-end optimization and eliminating the dependence on external indices.
Currently, generative information retrieval has become a hot research direction in IR,
and researchers have proposed different solutions to improve retrieval effectiveness.
Given the rapid progress in this direction, this article provides a systematic review of
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generative information retrieval, including basic concepts, document identifiers, model
architectures, and model capacity. In addition, we also discuss some unresolved chal-
lenges and promising research directions, hoping to inspire and promote future research
on these topics.

Keywords: Information Retrieval , Retrieval Model , Generative Information
Retrieval
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=" log P(ri|GRy(d;)) + 3 log P(rj|GRs(q;)), (1)
d;€D q;€Q
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KEDocID, AR AL ST REHFA TENERZENFIR; &a, ERERRES TR
FIMERIRME, WSUERRMERG I . Hib, FRERRKSH%RE, EEREBLHEEIERZED
AT R AR A S AT IR - ARG A T Zu5EeE, 5
AW T BEEZISIHFZEL2TE S B, EARSF, TR AE U R B A]
&, IR FIHE RO M E SRR EERN LN E, 253 EDocIDRIR - AR LUk
RIRE .

e DocIDZ/R: DocIDFE/RALM I RMEIR TG REIEM . — MERAIDocIDRIZ AL & o#
HMEMXEEEEEE, BERERE S UETEM, 7 HEGEREUX 5 AR E S
o B, XDocIDFFIE RN Tt — P A G RE R EER

o RREIZRH. BRIZEF A SR RNES - I, SFAESRGRR P R GR, ()1t
TR HE R T8 B8 R AN B - = B T 00 A U R 6 55 G i 2% AR A 25 R A
AN FERE 2 DR R A -

o WMAAE: EMARRERNAR, BHSHESEIEMER, BEPEIERE . BOREE
AR BEERAYIGETT, BUA RSSO RS . B R —E L E NG
INETE 2R i) LR B AR 2R E IR RHED LHITERE - IR, AEld —ERER, MRAESET
FREZTRE. Hit, OF50EREE SRR R B AN T A U R AL H AL AR AN
MR Z MG ERER

ALWIGER I TR - B, EF20H, BAEPBERHKAERRRER. RE, &
BT, BAENEEANRROEARS . FIK, ER4T, BETAHECT PIRATRN A
AR FHIDocIDHRIR - WA U MR A B =N HHNA - &5, EHRTTHITIeH g
PRSI ERT S 7], FRAESRS TN A SO AT B4 -

2 fRGRKER RN

FEEANMAERAE SRR, BAEZE PSS R5]-4 - B = PIROTK S
MEZR, SXMPEEF 2 N TIE LG R R GTH (Ma et al., 2021b; Ma et al., 2021c) » %2814
S HIRBUTRE I - SOSIR AR EAFRE R, AERRRES M T REUR L. £
R B, FEERN O HT B R AR B ARG M EMEME, AR BEIEETR
FUERATER, FARGIEMRAENESOEE & PR —H A ie 5 P 5 B/ R ITE
WM - e, AEAFNE, WEIES A R EAS 2 #5057 EANREA (L AR 5
PR, BRI SRRSO HES R AIAIT - MR3E = 5 SO RR LR EI SR AE, IR
HIGRHEZEA] UG R FIE 2R (Guo et al., 2022), RIFRERZRIEZEFIFTH 2R RAESE -

o WAL ZIE H 2 T EHER TR R S 76, BRI S5 REGEAREMSUESIE,
A 5 TR I AT AR R 6 1A A A SO R A — MR, 3 SR VAR AR IS A A3

ST IH R OO I) - (URME AR R T IXINTF-IDFAIBM25 C42 7 5L B 32
KA, T 88515 JIEECRE ), WRAE A BB IRER T K1 [ 2 B FH B # B A R A AL A (Zheng
and Callan, 2015) - BLAh, BEETOIIGRERBIAZ R, B0 ST IR0 506 FH F0IZRE SR 2Y
T EHER T R IAE, F120, DeepCT(Dai and Callan, 2020b)FIHDCT(Dai and Callan,
20202) F| FABERTERE - F XL AATIR R, 5 TR TR -

o MERERENEFH I HZARERENMER R, R ISR EREEHITERE
R, XERRTEHTEAEE LICE TS, EERZEfR AR 2R, Hi
H T A MEARE SRR REB MEGE . — R WA 5K M AU RIS (Cai et al.,
2022) AT WSR2, i kB B P L R AR R AR B AHI BIRE ST o A —FhOREE
&K S H(Lee et al., 2019, 7EREMBEFZEBEWM I Z AL EHE, A
SEH A RE BRELA - BEAh, FNIRFEIE(Vakili Tahami et al., 2020)t# A FHERRES,
BT AL B AR R AR i R R A E T IS R R R E B R IRCRAIRL
R BRI R, 7ERIEHERE -6 F G ) ST 2R BT T TI4R 2 A 3K
HI(Wu et al., 2022) - XL EFHTIZE S HEMEROFEE LT UER, ERAZE 4
SIXAIEREAR (FHRICR) FAREAR ORMERICES) |, MR ERRIERE -
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EEERRENERFNE, CERH T AMERDRE &4 € Bl 5 Bk R RE .
F ARG HE ) & 25 (B A (Salton et al., 1975) ~ IR R EA (Robertson et al., 2009) ~ HE
75 )8R (Liu, 2009; Li, 2014) FI#ZHEF Y (Ma et al., 2021b; Ma et al., 2021c) - [ & %S (8]
iR (Salton et al., 1975) K XA B MR R A&, BT ITE ZE LU RIEMAAE M - B
FRR B (Robertson et al., 2009)# FAMEFRAEZE G 1T SORFNE ) Z (A A KR - HEF%5)
B (Burges, 2010) §7E2%>) — MR SURFIE ) PFFERLST 2V E A TAME XM B0 HE T RS, 8
R LA 2 ) BAERIEIMC AN BRI HE P R £ . F S HE TR (Liu et al., 2017; Ma et
?é 2021b; Ma et al., 2021a) A VR % S BOR % > OB E IR R R, IR EA T8 UHE K

RETUKERRERELFIRRRET O 2N, R, EARSGEMEE &M FE
iéﬁ%&;@f%ﬁﬁ%@ﬁ%%éﬁﬁt%, BRHI T ER S ZIEE S, Fit, @BRKERERFERER

EE o

3 AMARRPEREE

AR, D = {di,dy, ...} FoR— P ARMRRICHERE, Hfd, Fom—P 0k
Ve BEBNEESGQ THIEW FIIERED, R RERE H IR 2R —HME %0
fJDocID (Tay et al., 2022) - & FA, FATRKFEEERRGIFIRRAMEARBRIERN, DK
SAIFERT A AR -

3.1 RI|FRERKE

MR RERS, RETREBETYIZRETEAA, TR R ook 2 0 R A8 7 HE Iy iy AR
—MRIME, KRR ESHEE NN BR—REREIER, HEFERAFIIEIFI (Seq2Seq) HI
IRia-RR S84, DUSEELR 1A R A um 23 2% >) o 2 Bl E L 1F 2 R # 2 T Transformer [
2R LI IR AS-FE RS 2R, HLUIT5(Tay et al., 2022; Wang et al., 2022; Zhuang and Ren,
2022) - BART(De Cao et al., 2020; Bevilacqua et al., 2022) -

TERGIM B, A AU R R R i 7K 2 2840 mh i B R B 1R AL o — DRI R AL 55
ZAESS BTEY>) UMd; BN S HA R SOID vy Z [T R B R 2 o — A 12 5 FH B SR
seInputs2Target (Tay et al., 2022), & LURIECHETE RN, H LI EEEMIPIDocID 7E 4 H,
1A Teacher Forcing S8#% (Hao et al., 2022) #1715, RAPMERS RHIREE, WF
i

Liirg"(0) = 7 log P(ri|GRy(dy)). (2)
d;,€D

HiD FREGENNERE, GR BrENIKRERESR .

WA KT REIEMEEIFI A ARAR AT L AR (1) F—RRETIIHARER —1T2
FHOID, EFEFEETHFAIDocID (Tay et al., 2022; Zhou et al., 2022b) ~ £ #iAfTDocID
(De Cao et al., 2020; Chen et al., 2022; Bevilacqua et al., 2022; Chen et al., 2023) DL %
TURLHIDocID(Zhou et al., 2022b) - (i) 5 2K B 7E & L M\ TR EHH R DocID A IE SRS -
M ANAERT O, DGR R S EDocIDZ A F LBk (Tay et al., 2022; Zhou et al.,
2022b; Chen et al., 2022), BIUNNIEE SO R AR LR (Flangd% « A) FF%E) (Chen
et al., 2022; Zhou et al., 2022a) FIBEEEEE (FIAIFHSCA) (Chen et al., 2022)

KRR B, RGN ER M B VRE 7 46 € i A\ B 1R B — B LR A 5% B3 28 S0 B HE 51
o A, ARG RERNHAERT I BEAMAFNIGRESR!, @it 5RIFER— 1M EaEmAE
g € QHISCHIDFAF & o JEHEHOL T, XA VR HE A28 B VR RIS SRR #1711 2%
FRAEFS R R EUE SR -

LY (0) = ) log P(rj|GRy(q5)), (3)

quQ

HoRBMES, rjifthgE M HIDocID - 1&i%EDocIDA] LU it f# FHbeam search (Koszelew
and Karbowska-Chilinska, 2020)138, M52 —MEEMHE KB SCREHEA S5 -
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3.2 ZFEJREML

WA R RIEREER A EEEE. () B FERELIIEGRERFTERE, KRG
FIGERGETRR . (i) MR EAE LTS EETINGEGREIRHITREIFRE . LK
ST, B MRS ERI_ LT —MORRS, JUHETE M B A FRARE - SO B R
TR R R B (Wang et al., 2022; Tay et al., 2022) « B, GRAVH FIZERE AL ES
23], B ER N

Larrp(0) = ) log P(ri|GRe(d;)) + ) log P(rj|GRo(q5)), (4)
d;€D q;€Q

I B PR R A RUEFFIDocIDRILISRE, TR IFIRRRES -

ER R, ERRMBEMEINIGERES, N TSR RARE, —Sps
KA T B B4 R (Wang et al., 2022; Zhou et al., 2022b) A5 A Hh 2 18 R0 38 25 18 51| 3¢
MDA RS ST; oh, AR A TIZRESS (Chen et al., 2022) SEEUHE S| SCEID R
KRR
3.3 MY

TESE R G R T R I 2R 5, AT DUZE HE T B B DA 21 vim 79 07 =CAE FH B R R 48 E B
BRI . BAME, S IR E BN RS « FOPRe a7 20 5 B V334 5L

44 5 WIS g, BIDOCID: 7 86 o By 25p M i, ELBI A i — PRGOS TUZ5 (Bndoof-
Sequence, EOS) #ric, BF,

Tip = GR(Qj, 75,0, Tj15 - -3 Tjp—1)- (5)

ORI, AESERRERE R, A RARR R AR A 2 R Oy BN LR R R ETE AR, PR A A
H AT HEE — 1 TERDocID « 9 1 5 fRaX ki, AT DR A S 20 AR SR 2R S (De Cao et al.,
2020), LAEREE DN ERATDocIDHRE T i 5, RIEEASUHEE& H BFTA DoclD -
BARmE, —MCr] UF A e @ SL B, H AR R Ran Jy TIE S M s B8 AR R B B
0 RTFRIS PR A, BT R RoRE MR S 2145 € T R AT ET & L ETE AT
FPRESE . SEEFBOL R, HTEMDocIDARI S XS, T AS et EH TN E B N7+ -

4 DocID FR

EAEBRRRF, AR REALE T Seq2seq RS | ZE4E BV SCRY N 302 [8] 33 57 sk
SR FR, XETRY BT CEIE XA I DocI DAY F/F BRI - X B, S ONEER
BT AR IDocIDFR /R FIR LN B FNELETE XL, X BEEKRDocIDEFIENEE « BIEH T
FREWBE X A AFE K - ZEARTHF, BATNBH I ERAAFEEEDocID, 45 & & TFHF
K DocIDAIFEEF 1A DocID, LA N XX H I DocID /7 iE AT 1A A

4.1 ETHEFMDocIDERITIE

HFEFHIDocID A4 T AT E RDocID 7%, AT LU BEY LA B A 1E E X
MVEESR SN - fEE mBEITTEE (FIanE—r - 1 XFEE W) RER T, XEh%Ee
WIER B RIFHIMERE . — MM S ZETEHFENDocIDER LA 4 h ZFEZRE! (Tay et
al., 2022), B[R FDoclD ~ FHF EDocID FiE XL L5 . DoclD -

o JRFDocID f#HME— BEEYLAVET FRoRm30H - BRME, EplEUeRER B0 a1
RSO — DMogit 6, &&JE, MRS I HZE KNI REREZ AR DO EE - X
MITEREBM AR, (B R e OERE M K, SRR E R 23 -

o FHFEDocID MR T B R 47 B A B SRS ME— 3R AE - HA DRl Z P fi# i DoclD
FAFE BRI, TE BR K Blsoftmax i Hi 25 [ kAL - 7 4F B8 DocID 7 £ 5 R
FDocID F{ARIXAIAET FIE 8/ Al 01 B F 5 8 DoclD,  # BiP M W AR, 15 %
fii FH P — ELEEHLAIECF DocI DT BB RS AL AL -
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o BN DocID RS SUFRIA e 4 il — DB FIEUCF 4 & VBN SCRAID - H H bR &
FRSCEPNIE SR, B AEARE A H R RSO 1E LS B DocID - DoclD HIZEHE AT LAE
BAEG P RRIEH RO R DR H o 140, i#id k-means REMEATDocID AJHER FETE XL
AR SR R = i 2

4.2 ETFHEFIDocIDER

T HIDocIDFR 7R /7 ¥A R fal it B R A SO B E TR F2 EDocID, B 2 T30
ERE UE BT ER, S O R A RE KR REI . 5ETHFREMEL, %
TARRI VA LUE BRI 5 TR 7 U kiE SR - BT, R EABZET BIARDocID 7
FEFEETIE - ZETURL FZTN-gram 7% -

o HTHRAMDocID B H i A ST BIFR I E S HDocID » ralil 2 B R Bk m £ 5
FIFEE, 4R T ORI T &5 BRI E AR - tboh, FEFELERE (e ER) F, 5
AR ME—), EIHAERDocID & — M ERAR RS « XM IEEAR T R E S ST
WIEBZ R (De Cao et al., 2020; Chen et al., 2022) . R, StaEHEFTE SCREEE &
F & IR -

o ETURLKIDocID 5 4% N A TTURLVE RN HDocID - —f%€i}, URL ZME—HS
TFAREL, AT DU i vER 3 5 A L A SRS AT 50 BE - SR, S5ETIREMTIEMLEL, URL By
o i S BARES, BT RESI ARSI (RN URL H Al REEETLATFEL) (Zhou et
al., 2022b) -

o ETN-gramfJDocID F|H I HEEE HILN-gram /E/H DocID - N-gram % 538, {H
HEREE, NUFEGINOTEEIGE . WA, EHEENE, TREEGHARARER,
T EZfEHFM &5 (Chen et al., 2023) -

5 BRI

RRERI IR RIS T &R R E ARG, SR REGEEEREEIER - S0
FIAE AR R TAE(Tay et al., 2022; De Cao et al., 2020; Wang et al., 2022; Bevilacqua et al.,
2022) 1t FHYmAS &- MRS 28 45 M 0 AR U TV ETREL . HEl MR E TIER R E MR R G
MENEHER - RIE, BRBEGEMERE SRR T EZOME S, FALX BB RHN—T
AR LB L5 7R A R R PRI AR - 7EATT, Tl 1E S A A gw i &g i 2 70
(X RS 2R B SE I A A R R

5.1 Gt as- 1A as 28t

Ut 28-FARD AR 2R 2 SEIAE AU R I H e fse - ZEIXMxET, MidZs I A S,
FHEGG R B R, Mg ER - RE, BEESETEmS I B R R ER - A pUHE
RifIDocID » BARTIE, IR BRI Be i A2 T (i) ZEYIEZRI B, 8 {3 F A 1R A4
RDocIDEFEAFH TN - afdas S A BB EH TR, fEiSe4s LA A7 =T
%, HRIERFDocID -« Y4k BARNLEES EM AT HPENL T, &ARMER B FRDocIDHIMEL
SRAETE . (i) FEEER B, Rmiges-ig e AR 2 B E NN, HRIE S RAIAE K SCR 2 6]
HIRE RS2 A B DoclD -

5.2 {URTEISZEH

PR T gmttas-MRad asofty, (U as2R ha] IH T A SGURRES - FE L, URIE4E%R
MESHERESEI T LE T EEEM . EXMRET, BAFIA2 PR M A E E K
FERERIR « A, DA 23 R TR SR AR RS B By g A B S (I 3R B A2 D ocID
BATE, G BAEEM B r TR~ () UGB, SREURIELS € I ER s CER
R EIRIERIRAS A BIE R R DocID - %% B bREIFE 2 S R R B ARDocIDEYRLIRE T - (i) 7E
EER B, (U SRR B BRI, FHARIE N ISREE 22 2 AU D ocID -
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6 B

AR RRRER P EE ARV RERAERE, ANTEINARESE (RIS
) FIERZERNZ HER R . BN, V0 NI IR A BT 2 5 R e 4 & X0
£ LptRe, Bl —ERER, FCRTAEET FIREE T

FEEMARRET, WA (USEHERE) FIERERN (DOERESE) R0
AGUEREM AT RIERIR N E A -

o REIA/NENREMARRER P A2 ZHEE, B35 T4 A DocID H1H 22 [ 45 2844
MREMWE - —Bokid, BEESSHAVRAEAE REN M E s BN AR LA EE
PRV SRR AR - IRTT,  BOR AR AR | SRANE TR 75 25 & i) 1T S B -

o ERLER/NMEIERR ARG A] U MECE - BORBTE B B & B8 28 25 (] Al B
SRR AT RE AR R R T2« EHMEHATROERE T RER 5 ST ERL
A RRAEAN SR FAE 5K BBk -

6.1 WHFZME: ERARRSEHERRIINERS

FEAEMARRET, RIIWEEEAGR—MRER, PrE 5IEREMR K I(E BB
M E RN MHERR SR - MAEGRNZNBRS-RR-AFFRET, SN RENERRS]
SEIREE BIRERE . X E, BOINMERN LR RET P F N 772 1] 5 STk
DRI SRR G| BT BN A 22 (R Z TR SR 2R

o AR Preh i A7 2 (B EZEMUR T AE BB A B SR A I« A2 R E 6 S e
Grd 2SR, P EMEE . BORRISEALE 7 Z B L N - bR T RS
2o, ERGURRAEREE TR ARl TR BN R RS, FIanE M AFMERS] -
XA AR T A A R AN B R E Dol DA A B «

o BERR. RAMRRGE, PIWMERRMFEERR, KT IMER S A EMAELS
RS  IXERG TR N EBGRT S & R NI RS % -

- WBie R EFEHEHARRS], RATBRS A S TR0 - BRI NURTES
o ME— R I A B CR DL R SO B AR B . RE TR N = RS RS 1R
/NI 2R AR TR TS R )R T o

— FEIRR: R E RS BOREES [ 825 [ FOR ORI o XSk A\l H A1
FERGIH, BRI R R 5 s & R RG] - K51 PR N7 2 A BUR T SO 4L
EMEERARLERE - TR HE SR mAER PR AR T EE L WNFSAE

LR ARE ANV RN, FEAAAEAREIA N BRI NI R 2
A o — 5T, SEINERTE A NE 2 H R RERIIR T, BOR BRI S e A )-SR 1
AL RER T DocID /7 T B8 HERAVAE ST - A—7 T, BRHIERERER A E EE IEER,
RGNS B A S PR b R SO AR R AR SRR, o SRTT, XA PERESE T2 LI it 2Kk
PO« BORRIBERIAE I SRR R A VE FE R 2 N AT R B0, S B0 SRR [ BE AN e
BRAEE R o KR, SEINERE R/ DR INREAENEIEE, SEONGRAIHERRR F A -
BEAh, FEE R/ IR ZE R/ MR K, TERESO B PR FTRE S AR 2 B2, T
M Z P BRIy B3

SRR, KRR B A U R AR, 52 RN AR PP (0% € R, EFEA]
PO BEIR B[R] BRAIAD T 5 B TEREZKF o AN, ESERTARN 2R B RT, AIRERZE
I e B N AR K INE PR A TR 2R R/ N SE B BT AR - M, IARNAREFRER
WERVERIPERE, O T R RO RIE L AT RE S AT AR

7 PhEANRE
X =T, FAHEERARRILDEEZD, HEREBAERRIFT T Rt —2a N
(B AL -
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7.1 HREZER

YR AE R RETLA A 2K AR —FHRRAET R =1 P RARE, IR E
RREEMAE S FERARERRE-AR ML, THEEEEEAFNE . SHFER, RE
XETTEAE—ERE LRI TS, B IEBER KR ERR T EEEEMBRR T
(IBM25 (Robertson and Zaragoza, 2009)) - —NEZMFEEBETERRGRAEBEE
GRRMENEI RN, RSN EREFEREDERESNRR, XUERAEESXRRTNE
RARIZS 8], USSR A A HEF RE

A2 RS R AR T BRI T TransformerZ844 , JRTM, TransformerZ& 4 77 78— LE[E A HIFR
Hil, HAE AR B RRRE o Rk, BB M g 28 DU X MR ] X B, AT UM
W& WM Longformer 4% 45 14 (Beltagy et al., 2020) ~ £ REMEIEZE(Yu et al., 2023) L I 5KIER
71(Ding et al., 2023) % FIAFRGRFHETLATHI AL -

7.2 ¥EE¥RDocID2:>]

FEEMRARRS, OEPRRI Al F BRI B S A2 - E56, HATEINBERTS BH
W R B % ) DocIDsHI R « BEJE, FIH 2% > 2B DocID R 7R #3301 /& 1 A DocIDs 2
[AIRIBRE SR 2R = 5 — R RT AT 22 ) D5 IR R i B0 o >) , X RERR A AT IE AR S — HOME R
A RIS A A DocIDER 7 B 27 ) AR / B8 5 DocIDs 2 [B] FBR AT 5% 2 o X AT ATRIAL 2% 3] ke
REBELSCR, HFEEE—PEEEMGUICRERTERE - IR, FEREIP D IR 2
“ERZ M E RN, IR, B EEIFIR 2 5] 5 DocIDsE R 5 1A MM
#h BT K BB 2 AN -

7.3 EXR

L ETAE R R TR KRB ORI Z R = R 3T 98E, BanMS MARCOH B3R
e RBBIGEIER - Wikipedia T FISEAIG RS, XRRRBOZ S BRIEA K, RN SCHEEME
XFEE o IRTA, SLPRAO R SO EMEGE ER A, BSOS TRIEAETAOBE o, anfar R K HRR
SRS AN B ASHTHE RS R R 2 2] 5 DocI DA AUE — 1N EE APk -
8 B4

A AEREVE BRRHT T REMEGER, KAITWEMIRASG EERA T “R5|-HH-&
H BMEZE . A RGURRF AR — R @R N R IR, XM R RIS EENS SCEL T
v AL, TEER T XM R B BREN - A S A RGUE BRI AR E - 2O EM R
MES T TR, R, R T R R BB AR B R RO A ), A BRI R R
HeRTEHAERIIIIF

2% SCHk
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Large Language Models and Knowledge Graphs
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3Beijing Academy of Artificial Intelligence

Abstract

As an important form of knowledge organization, knowledge graphs are widely recog-
nized as one of the foundational infrastructures for the next generation of artificial intel-
ligence technologies, receiving considerable interest from both industry and academia.
Traditional methods for representing knowledge graphs mainly employ symbolic repre-
sentations to explicitly describe concepts and their relationships, with clear semantics
and good interpretability. However, these methods have limited coverage of knowledge
types, making it challenging to apply them in open-domain scenarios. With the devel-
opment of large pre-trained language models (large language models), most researchers
have considered parameterized large language models as knowledge graphs. Thus, this
paper focuses on the research of the life cycle of knowledge graphs in large language
models. Specifically, we summarize the related work on knowledge modeling, knowl-
edge acquisition, knowledge fusion, knowledge management, knowledge reasoning, and
knowledge application. Finally, we anticipate the future development trends of large
language models and knowledge graphs.

Keywords: Large Language Models , knowledge graphs , Neural Symbolic Learning

B R EVRET SRS CE, HETI-ET60L, M/RE, FE, 202348 H3HZESH.
2. WRLRA
(c) 2023 FEPLEFEEESTHIBETELWELS

67



HEEE

EACL ®EMNLP COLING mNAACL HACL ®mEMNLP COLING mNAACL
90 140

120

20

30

20

-1 I

0 0 .

2019 2020 2021 2022 2023 2019 2020 2021 2022 2023

®
)

@
3

IS
S

~
S5

Figure 1: Konwledgetd %18 & Figure 2: Language ModelfH %18 &

1 5§

19774, EHLEEPATERES W L, BREREE ZEEL FREER Y T 5RT
R HOBES, TASL T EmH TAREAE N TR G B E ZEH [ (Feigenbaum, 1977) - FF X, FEE M4
FARRARE, HET IR E R REIRFITLREGE - o THEIRHXEER, R
PRE R RAPRCA —THEVIFE K, XA FHIR TREMFIEH TPk, B REIRFRT
2o FIHERE (Knowledge Graph) 1E&—FIRN A AR FIH TR ATER -

A B HGoogle T20129E 52 i, 2 R SCHFF MIE LA EHA ML EHE, WmiditEaeE
RIRSWIFNRE . BARRUL, FH B & —FhHeBsE A A8 AR A EZE, BERD=
LR ERTE LRIL, DIE MRS B NEIRESH, WARRAEFFIRSEF S E R, SR
FYEAT R R - Ve, SRR SR ANE O B R KRR AR RG (L Eet al.,
2018) « FTREIERAMIED) T8 LW « HATE SO - BORESHERERNEAR, EHIANE
T—RATEHREBARPEMEEZ —, 28 T FFEARRR 2R E -

REFIRE R AT S ERFET AR R, BERAFIRIEN SR (ansefk - S -
BHMERE) ISEEARFFS, FLUEMEHELSHSR, BEfFSICE (WR3IFRR) M
HEE (AmEiAEE) SR TEEREFIE T RALS - 5 ILRRTTER B ik
FIR, BEE OB R SR S, BHEHARREIR, B REZECEHIEIEMNTFEE
i AN T 9% 5 R 7 2R, X AR F AU N 5 5% -

IR, RABENZGESHEE (KER) MRS T AR B AU |z RE . K
IR DO B TCREEIE o Baifs i EniR, IR AR LIRS R 7 S BT o . A
KR TAEREY, KERME T FENFIRER, B ES%AR(Liu et al., 2019) « #5450
P (Petroni et al., 2019)FIH IRHIR(Li et al., 2022)5, HSEAI R & TRAMFIREILRE
SRRy, KEMTCFRELE R, e RGN AT AR 5 - AR K0 54 0 R A
B ORI RS IR KRR AT @, S T —E SR - B, RICRETSH
A R AETY AR R R B v A= o JE B A AR 5

AKOCR IR R (20199 F2023%F ) H R EF 4 B 4 E & W
(ACL~ EMNLP - COLINGFINAACL) HIBF5E@HE#HT T o4 - K1 ME2 SAlERT
51iR KRS AE S EAM R fNe X EE BB S LEE RS W T EE . B, 5
FIREREFTE S RAUE K PR R RN, X R BAANREREFNE S A S e BN S A
BT B R T R R, RO A, (RIS S B T B 5 AT TR R R R S S 5 T S A
T BRIES ARSI RIEREA -

RIS, 2 SR SR A T 1 A i JB B 1 PR 5 ACL20193 ACL2023 118 30# AT T 4t it
EFEFRES - FNRRE . FREE - FREHE . SNRMEEMFNREN A, RSN - Eid
Bl BI eIt G5 SR m] DL B, % R0 o A8 o B A A& 2R A BT 2 00 HY B B B 38 K 3
HARFEMIBIKRE SENA - 1A, B4R TACL202318 XA = B, M H A LR
©2023 TEWTEES¥ KRS
I (Creative Commons Attribution 4.0 International License) ¥FA] iR

Y55 HE BESRIETACL Anthology (https://www.aclweb.org/anthology/) - {HIFFEREMIE, 2020ENAACLS
WARAF, COLINGRWEBMEREN—IX, HEZEBA{XA T ACL2023H18 CR S -
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Figure 3: &R EEA: dy RHEAGT T Figure 4: ACL2023 =

F|“Knowledge” ~ “Language Models” &R 51 TR KE, RIFFIREIERE S HBAE
ST A R EEHAT -

RARTL R B AR ENR &g, RSB0 i R A &R ERE AR 2 Hi BB 5T
oo FHERT, AOCRETREAEIRERSE A AN IR RR, B8 a0 7 RE
FBIFERIVARSE « FRAREL - AR S ~ FIREH  FRHEEAIFIR N AT BT 5 R -

2 HIRERE

FIAERE, WRRENR A AR ER, BEME— DA BARAIRA TR o %A
ST ARPIRAE R - BB TS - S B A BT S Z B AHE LR R -
HET, SSEFIEA SR E A ) amA R A . R, AR 3 A R T ORI SR AR
AR ABERN S5 AN R AR A A B 5T

SRR RTE R EARE RN AR EATE, B A SRS - B ENZ s R R R
S ZI B 2 AR S AR A « Jullien et al. (2022)5 3R 7R 2 ) AN 7 IR0 KRR )
BEEENIH o KL, Peng et al. (2022) A TIRRZEIIFGIATTEE, AR AT H B Rk
SHIR, DEFEEEIRAMES Z AR R . AN, Wu et al. (2023)[FIFERARIRE S %,
TERMES - B SR RRN, F— BN T EEZ ERRR - X5 TIERE, KK
BUFE— e TR L RERS IR SR A R, (B7ER RERTT 7 7E — & WX, I HirE Ll a] 58
S B| KRS L] 2 )R

BHAEETERFBEHEERNIAERTT, B AR E R - B IT LU Z B B SR
RRZNE P R A EY OSSR . BN EEAREE, BRI KRS TIERET KSR
FEEMRAEE (S - BraEasEE (e kENE) e WSz EE
MRR) ZATTHBIFR  FHERA BB H KSR B 33 I R 46 SO A 4 BT Y 5 4
K. He, Edwards and Ji (2023)f# i KIRAVEBISCARR IR, HELERE IVLEIR G LA
fE, WA HFr B S 2R - R U B 72 N AL 4 SE 5 T 48 e —
W R TEILX—HIR, Tang et al. (2023)RHAERFEITE, 55 KERI EE H ] A5 [7] 21
IR . BRI e N — A R B a9 B 2 B ARSI R R, Li et
al. (2023)F| IR /R2>) 5| SRR AAE S E 7 TR RS R EGZ AR R I, 0]
LB NS KERMER 70, HA T TFARRA S AR R RE, Al A& ARINFIRE
5 (Zhang et al., 2023b) - HAIZET AR SR EREBEEZEXENFRR, TENELHE
KEFERRFAITEERE . [N, BTEERERERME, ETREE BN E AR %
Jo M LLERIE -

3 FRIRE

FAVRIRER & L N ARSE AL P I ESAD AL IR « IRGE ANTHOAIE AR, ATREIRAG A0 A0A
SONTE S AR EFRRARIEIRFR - I, TR B T R TE S S AR
TH AR B H IR R R IR B A R 5T
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BB FEHIA TR < AIEEE M DL TS 2 F] Bk REE T AAR - BTIE S AR R
TR FFEE BIFRE T 20, DRIt 5 8 A Y ZR AR T R R R BGX Se 1R o 40, Liu et al.
(2019)i B A ZFEFEMAIMES (WAL - AL RAI%) | EIGNEEE
AR BB RS, BRI b 515 S 45 H R A0 AR - TJain and Anke (2022) 158
I RHAICZ B ) B ALR RN BB S TR, SRR KARZ P BiRNC R R AR - F R
R RN, KEERRRERRTEE T —ERERREMaIEANR, I B iiE — ik
R ORI, KELES T BIRTE SR AER ILEBUR, JF B EE S 250 H A58 4 (Rogers et al.,
2020) -

A FIR TR 5 5 E SR FIE R R B S ER - TR ARE R AT LUH B ES 1)
F#iE, HFBENGERF T ZHEE, B TR HR PSR NE & R A TG T . H
R EREREHEEN T S ZELAMA  (Language Model Analysis) (Petroni et al., 2019), E¥f
= A R E R A F AR BRE S ESWER, B R E R R TR
HEAL SR VAl ARt FRNR P E IR E - ZELAMARH SR AR b, B EH T — 27
MR, 0B EBIERIE(Jiang et al., 2020)F11# A 2L £1F HIE /R E(Qin and Eisner,
2021)%, JE AR IR IR TR B AR A R A — P RN KRR B A it SRR - RESRBFT R, K
BEE T -2 RENR, EREGERZINZMERTI, S E A R AR RS H A
TEMT, PR FEAMR AR SE 5 75 22 BN P i A B AL 7%

FARFNRETE AMTEOAZ R R TYE I A AR & R EENR - 78 F IR AR ZR I
FUH, EERATINGRIJTE . /M, SHFIREEEARR, BT IRIRMZEELK
MELLH BN ML TES WA THER, FIRFRA RIS TR E R AT 90X AW B2
K (Zhou et al., 2020; Li et al., 2022)8A) FHEF % 77 (Lin et al., 2021), #4557 KA TR
AW A F 2 WA EF IR T EAEE S, SRR R B B a5 B H R E1H o EAh, Bosselut et al.
(2019)E T U KRBT EUE RANIR, West et al. (2022)R 18 52 > SRBS$E 7R KT A BCH iR
MR, Wang et al. (2022)@3 AL EBANERILIRTT A, B KRB E R ERERFG T
R = BT R FR - M RPPT R, R ER T —ERENFIRFIR, [HEMER
SrATIILE P BE S BURII R ZZ - R, A fer 2 W0 17 Ay AR o AR AR R BURE 7 & — M A

[ -
4 FREE

HIARRE BAEXNTARIRIR « AFEE S ARG ARETR G, s 2a SR B
TS EHMEE . HTIREEEEE HA RIS AT ER), Hit At A5
—, NMSEECT FETEMIT R F, anfer & A0 LA R R B 1 2 18] 5 R BR AN
AR T AR R B R . RS R RE, FIRR S G ARG SEIR & - BE,
TR 5 B A RS A0SR B R A B R BT

KRG RGN EEZ DR AR REHETEE, RERETS . BYHEAX R H#HTE
o BT ORI ARG 32 B0 T T R AR R i [ &R0~ FRER D AR R &
Z IR E A AR R & BRE - BRI, FEER X R AT RO A 5 1R R R U AR B )
ERN, MMFEREEARARE A (He et al., 2022a; He et al., 2022b) FIEE A AR A (Guo et al.,
2023) - MHRIIFTER, EAKRMEGESS, KB FEATERERNMERIR, TEZHIMN
FBREMARGRITEA 5 - B, SRERET R ARG 75150 Tt — PR T AR 5%
REHHENE

SR R A S FE T PSS R AR BT A 9 AR S (SEARSER] R R SLH)) S TREA T
o RTAREREE, SEFIRLEE R KA ETIE LILELR T o X7 1A RS AR F1iR
T RS R R AR GE A B, T T B S5 [ 2 1A A RE L R SR Ay S 51 2 [ A T SR B 5%
R N TRBEFREFIREERE, KRBT EF RIS R T E T ZHEENLFIEE, F
WAWR -~ ik~ BHEMENELR, DURBGE L FEE FEYE M 2 (Tang et al., 2020; Yang et al.,
2019) « AP, Zhao et al. (2023)F&H T —FRF LGNS FF RSN ARG S HFHTTHE, K
THE A B ) SE B 2 S A B AR TE e T FE 50 HH 4S9 2Z (A1 A 35 SCRER - B i B SE491 %t

VRIERBOTVER] Ly B ISR ERTCN G - BUIGERRGEE S, REGREZ SRR, HIRIESH

B KRR, FERNRMERAESS AT IIGR, Gl BRI PG X AR EIRRE R , TTNGRIT IR E H A A B2
EE IR IEE N, AT ER SRR DR, 5 HEMERAET .
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FFOEE M T FIR BRI E R - AT, WA AREEPFERERNKEEY], X
SESL I AR RS AR B U — DN EUR S, SR FEERIEIE R - B, W E ROt AR RS
HKErEREES, B—IEAREIERES -

5 FHAEHE

FRE B AESE I FIR B R AR, DR BAREIR A mE AR R o R T E
M E SCREHR I gRR S FNR, LB R T A - AEREA T, FIRZ Y X
FE AT AT SR B B S  F,  ZR0RE 43 il A 48 T KB B AR RE S AR AN TR G A
KB -

FIARE AL PR R R KA A <S0iR (R RE LB AN DT RIHLE] - B BT ERISINHR, KiE
=B A R ET IR 24 BE (Feedforward Neural Network, FFN) #22| 7 HHRAF#EAIER (Geva
et al., 2021) - BARTE, A LU Transformer 1§ 15 44BN — MEETF (52 (Key-Value
Memory) o fEX/MFEMEEST, BDFEITHE W& TIRAEA TS S SRR, T
BVERBAIRIES, TR R FE A B EE FHRE s A e, KREZEAXPFIR MR .
FH R BB T I SRR 4 B X — 45 1R B A T 3CHF, FlANDai et al. (2022) 1 VAR 7RSS UE T Fi
15 B IR E PR S E S AR R R E A TT, TMMeng et al. (2023) M1 M Rl SR 5 HX
FRY AR BRI UE T AT U5t 24 AR 5 B ST RR A SR TR - M SR A O B AR KRB A ) R S B R T
—FETROALA, R T AR R SR T B ERR R R - SR, H RTET T E 2
TERFREERWENR, N TEMEAFNR, BRI ERFEE—ERRRME -

FMRGRHFE B2 X RS & 7ETE B A SET I FHR AT SRR BT - RSB B R 2 AE
FERTRERE SRR [EI A DR A EIR AR IR o B JTIRRT Loy B N 48 7150 € M %0
R TTE o B T ER T EARW B4R, it IZR— DM LS, B B oA
S SERIE - BAARYL, BMSERMIESE RSN ERE, 0 RTEH R
R W I Rt R, AR5 R R0 VR B R AT B [R] SR s B AR RTR IR IR (Cao et al., 2021) - HHT
KSR ZHAEE R, OIS RATE M TTE IR R — ki . E ARG T AR —
TeREFE B, BTEREEMMBEEESERITE . %2 7%EF ., BiX Transformer R
IR B EIR A R AR, BB EE X NAE - 8RR RS A FRR R,
A LRSI B T AR SR EMR A2 TT, R H X B B EH T IE I (Meng et al., 2022; Meng et
al., 2023) - HHIE MAIRGRE T ES ZnH R E0R, EAHEIIEERIR - B -
BEINREREIGOL, FAE—LRH .

6 FRAEM

FMREE TR R T ERAMEA SR PR S RAIR « Eid 5mREE - FHRRBGRI AR
G, AT — DA HBENREE - R, BT EERR A S A AR, RN T B EL
RlE JTIERIEAM AR AR - B, FESRAMEHEPNTBORZMEHIIRPRE SRR . K&
BN R TTANEREE 2 B R E AR, (RENRNER CE MRS IR, KE
B FRRE R . Ht, PR AR B TIRRE R TIEEAE S, M A SCBE T8
#EHE (Chain of Thought, CoT) $/R . B, 7T H S8 B 4ERE /48 KB AR RN 7 T #Y
L PR

B RS NRBRE om0 — M7 =, Ko — R T RE, RS
f X S [a] I LR 1S AR 5 R - LR B ROR @ o () KR R oR /D BRI AR i BT AR
TR AR RN B R R HE R AR, I 5| SR HY BE VETR A 45 58 (Wed et al., 2022) - FHFEAR
FBYERE (Zero-shot-CoT) 2 BAUERER—FATAETE, @ 7E R LS B IR RIEA], W“Let’s
think step by step”, BRI AR A B — 1812 () @ g JR 45, AT 7 A2 2 28 (Kojima et al.,
2022) - TEIXE:A -, Wang et al. (2023b)ifEt BiatE (Self-consistency) J7ZNHG#H T B 4ERE
VOTERM A ZEER BN B A AR, REEEZHERIENREER, UiEm R Y4EhE
FITERE o bR D7 R o 18] SRR AR BIORE /s v R DRI RS AL A Rl (B EE AP 3R, EAE K
FIUETE 2 MBS R, SECNERAA T SEFHEREEE - FIt Wang et al. (2023a)%&H T AR
# (Chain-of-Knowledge) #E/m/71%, it A AR ZUH = LA LM AIRIETE R 5| 5 KA GHTT
I, A &I SOREIAR S ERE - 1 B I8 N 7R T A B 23R S5, Yao et
al. (2023)F&H T B4R (Tree of Thoughts, ToT) 77¥%, KT E AN A B4 B B 122517
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PPAERIRE T —B TR, H EALER AT LA R m e, UKMERRE . REF
MRS R AE— B RE S L P DU AR TR e ), (BB BB S, AT RES BRI
2o M= TRHSEM AR R AT DU — 5 FHERRERE - I, TR ORI 5 G5 F FeAiE A Rl
&, DUMEARRERGERS AL Al AT 58 H B R R EIT AR -

7 SRR

AN HZ TR FNRARN T BIRME SR A R AR « KRR RS T B IRE 5 3
RETTERBILT ERWPES, HAEEMREE FoERA AN TG 7B AT E R
7E BIRE S BN B INE S ERUES T IR A -

BRESEBER BRI BV R AR —FEBEERTES - BRESEBESEHRE T
Ko HRIESE « UKD RZTR SURBE 2 TSRS & 15— 00 803 TR B /)T
T2 o FHXHZAESS, Sun et al. (2023)F2 H T —FPEET R Bt HE B 7 ok AT UK 53 2K - 1%
THER R TES | S KRR S - B RERBER, it — PR T X S 2l it
SCRHATSr K - Zhang et al. (2023c)il it EW M ERZ IR, 515 KR! 5SS S IF
DRAES - BT HENE R AZ LTINS - BRI EESK RGURIE SRR LS
IR ERE R, REENLAE HRE S EBREE A EZIE - Tan et al. (2023)FF KB B & #40
PERNFNRE, WMEEERGETHIRNEES LAPEGE - Huang et al. (2023)32H T —FET
ERRGHE RS, BEHEENERICRENRBER, WEAE g ERER,
Pem BRI BRSSP RITERE . T KRR RANZLEEST, TETER 4041 Fh AR s R H D ril
GREQUEIT AT LSRR HEFY Bl (Yang et al., 2023), {EFEE R HRTE SEMES, WET T HIFR
ST~ ZERRESEES L, N —E PR -

BRESERMBENEERER - FEXES E T OEMNERENAR . EEFEHEE
BESS: FIVRAMARS A ERIES - IR AAESS B 12/ 5 A U R $ A5 Fe
Gl o N, Liu et al. (2023) A KER AR IIZETE, LIESRHEBRAIN2ES] - MiZhang et al.
(2023a) M58 15 FH FE 7R 1RRAR AN == 2 3] 5 ARG | S R Se L an B 55 - PN RUE
F e ML IR A BOUR AT S, LUERRUCEC B AR HEA - 180, Yang et al. (2022)F i )34%
ARGk 5| 5 AR B sh & KRS - M Yang et al. (2022) 1A FH KT i £ 50
S BIEEFNR, BRAERMEETE R EMESE AN A - BT R B &5 KR4 ALRE
TIFOE ), PRIAEVE 2 A RS T R H B S LB (Yang et al., 2023) o« AT, HRERA
AROURES, BTk BT AR A RS R R, XFECT ArE R . i, ARRK
TR 1 2] D e [RIRR RS O — > B E R PRAY -

8 RAS5RYE

AR T KRR FRENS A oy BB, IR T RSB R R« FIRER
B F0REEE < BREFR « FRIEFRAEIR S S 2R I 5 3 R

T KA RS B S N TR 22 S FHRH IS OV U F i, R RE R TGS T7F
B R - N, KIRR AR — SR AP (AN RR & - B8, RS> B X ARFEESS
1), XAEEFIRAARARRRDERME . Hik, KEEN 2522 FriE <L) w SRR,
SEERAERE L . &E, KRB EIRIsh 2> 77 S Hih = TRt - tHiz
T, FREE LR AT AR, B AR AR IA R T IS RO S T AR P
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Abstract

The “intelligence-goal” orthogonality and “instrumental convergence” theses require a
deep coupling between capability and alignment for the development of general intelli-
gence. At present, large language models are developing rapidly in terms of capability
(intelligence), but the research on a more challenging problem, value alignment (good-
ness), is relatively lagging behind. This article will introduce the basic concepts and
necessity of alignment research, briefly describe its social and technical challenges, an-
alyze the main technical routes and methods of large language model alignment and
discuss how to evaluate large language model alignment and future trends.

Keywords: Large Language Model , Artifiicial General Intelligence , Al
Alignment , LLM Alignment
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Model, LLM) A& B , FEHRE 7 ANTXEH AN L& 8 (Artificial General Intelli-
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& (Scaling Law) Z:Afi EAKIT R RNIESEE, HENZ L2 H — LAGIH R
fE(Bubeck et al., 2023): 7Eiff & 5 &8 DG NGPTEE, kT RIMHEKAIES T
ZHN, TEES S HEEL BT L O RSSO, B AR ARE B EL A SRR .

S5RESEBEARMBE S AW B ERERE . AT KRG S RALUAR B R HI 2 2K
R Nz FOGE AR AE A7 ROV FE BUMP ) B TR - B 58, FEESEA RSB XS 77 E, B
R (Weidinger et al., 2021), —HH, KESEEER L XAHFEEZMRAUNFELE,
AR GREE A AE R DL~ B0~ 75 2 0 2t B B0 SO A, 7 AR AU A R )1 R K
BHREAMERGEE, EARRE . BERME . REEELE; A—m, KESEEKHHA
W RSN, WRE SR FEGE AR ATEENE, HT AR B R & i A §Ext
i I HORVBAE R, RVLE KB S RA AT REH R IME - BEREAHE - BLE AR
M - OpenATFIPARH 5T A4 I (Eloundou et al., 2023), EES0%MF 8111, HITAEFAEN KIEFE
H10% R R (RI&2 2 ESBAm) | 19%898 AR, H50%M) TIFES 2% FK
EEEAMm, HIGABGS, KBS -

Bk, fEHmARB e T E, RE N O RN 57 BAGIAT fE 7 ok A K77 T2 KU
(Existential Risk, X-Risk) , BRI ARFRFE GEKFRIAIRHE (Agent) & HEE
MEWR (Goal) , HiZBIE ARBTHIEMA—E, A TEIMACHER, AR SR
HEZREIR, KM ERRST - BHET, IMERRSFEY R EN B AR FHITHR I F
(Disenpower) , M]3 S b 5 BN K AEFF IO (Carlsmith, 2022) - ET LA L, EE
TR R AE A 7R (HSkypeBX & Q46 AFIM G B T 2EBr 8% S F0I57) T20234E3 H22H
R EEATSLI A FE R, ZRFTHAISLE % ¥ 5 111458 LGP T-45 58 K AT Y
Z060 A, BE2023FTH6H, WM EEZABECELTI==TA, ELANAEHEERIX
K15 Yoshua Bengio ~ 581 H/CEO Elon Musk% A o A {5 H 2 21 F i 3% 5 AN & ge w2 M
(Asilomar AI Principles) : “SE#tH) AN TERERREMRMBRE o 50 EA)—IRIRZIZSL, NIZ LA
TR B R DA BRI T RITE B « B RIGRGE, HEMRKE SRR EZOBRI A Y
#2Z—, Geoffrey Hintonth ik T X AREAGIFHEIL, FEH T HAIZ 29001202355 H30H
KICHIATZ EF I . ZFEANE S —aIE (220 810) | SRIEATZ 2 NI% A FF IE KT
T~ IR e -

SAGLE & 5 HX-Risk, HEjAFAEF W - 5Geoffrey Hinton- Yoshua Bengiold] 7F 5
BB R E K Yann LeCunik 7y H Al K K& 5 & B BOR H A GEELIAGL, A2 5 HX-
Risk. 202356 H22H | & & B 18 2“2 5L B 18 27 (Munk Debates) # 18 T B R iK%
# Yoshua BengiofIMIT#(I¥Max Tegmark{EHIETT, ElREHKEHE Yann LeCunfl L FEH T
Fr#ii%Melanie MitchelllE S, BUAIBTFUAN A e fe 544 ACX-Risk B R AT T #8182, B
WHIER T AR ZER67% vs 33% (RN6T%HIM AN AT 5T F0 K M al X-Risk Bl 33%1A
NAZ) , BRE, ERFTEEREN6% vs 37% - BIRRITAHLFERE T4 S03CH, B
TR WLARFT SEBEL J5 TR ATRF 5T R0 & FE A BUX-Risk B -

TEEBNAE, DLEATEN - TTZRefaie, HAREDAE IS, TRmHAER
NTFRIATRE BRI RN, B SEEMAIL 2R . mFALK BRKEREE, BN
R R a3 KR B AT ORI E A NS - ATRETTFR AT, AIZ SR BTE
W

ERttSRERNES ARFTRE, MEAIZ 2R N LR BEX 5T (AL Align-
ment) IR K o ADY 5T ZAIR — DB % 4t , EELENEASI0ELES, BEE
RESHEEE CEL R, ZAEGBOR B B R A E M - A< SRS 2B ATR 57 B 2 A & 0
MRBER (H277) |, EARXNFFHAAERNERYE (5377) i sSLlRiE S BAIX 5T £ 2
%ﬁ%%(%ﬁﬁ,ﬁ%@ﬁﬁ%ﬁ%ﬁ@(%fﬁ . HRFRBAIN ST RS H TR E

F6T) -
2 faRAI/LLMY5T
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(Science) HI—kIB3(Wiener, 1960)F &2

If we use, to achieve our purposes, a mechanical agency with whose operation we cannot
efficiently interfere once we have started it, because the action is so fast and irrevocable
that we have not the data to intervene before the action is complete, then we had better
be quite sure that the purpose put into the machine is the purpose which we really
desire and not merely a colorful imitation of it.

FEIXEBEiEH, Norbert WienerBATfi¥a Hi, “mechanical agency” Y H PRI 145 Bl TR & LB
HinfREr—2L, BIYLEs BFnES AR BIRA 5% -
20145, (ANL&gE: —MIR L) 1EE Z—Stuart RussellZBURE—IRIGIRH3TEH -

The right response seems to be to change the goals of the field itself; instead of pure
intelligence, we need to build intelligence that is provably aligned with human values.
For practical reasons, we will need to solve the value alignment problem even for
relatively unintelligent AI systems that operate in the human environment. There is
cause for optimism, if we understand that this issue is an intrinsic part of AI, much
as containment is an intrinsic part of modern nuclear fusion research. The world need
not be headed for grief.

Stuart RussellBUZFEX IXVFR P E IX$E 7 “MEXFFR#E (Value Alignment Problem) ”, Hf
TATV R Z AR RE, RS ARMEXTTIERE, HIAAIMER FF &R AN TGN
EEA—ER 5, MEXNTTS5 A TEGERR RN L 2702 TR N HE -

BIRAT FFHESTEATRAEZ VISt O 2, (HEHT AT GRAES EILTELRET, E&5E
KFP—ES MIHAERKEFHEERE, ERREMEFIANEANLERE, Hit, X558 H
W5 AL B iR/ MERNEEN —ERE X RATE KPR SaME R - HIEFER, KBS
PIATE KRR A B, SRR EES L, FHEEREEEEEBT AKIKFE, ATHST
(Y EE B AN A MR R K, 32 BBORBZ )R - 20124E 85, KT AN TR
WA SR IR A Rt s flarXiv b 20174F, AIN SR IS ERE Joe SR E HR
A K, WESEIMEER L2051 2400485 (Kirchner et al., 2022), X5 KiESHEAE
i 2845 Transformer X GPT & BA A B 3 AW & .

T ATIEABRF AU, (ERIEF A, AN SHRETRITRE, MARERER R
K (Kirchner et al., 2022), BRILZA, ZAUHAITZ KRB ERABORIE IR . B, &
ARIEFHE, “XFF7~ “ATRFF « “OMEXN FTF°EL WA HE EH KA FF BIRHe SCEFIR SRS
i, FEFSCHERTHEH, “ANLNFF 1 LATR FF P AIE B - 0577 72 ATH 54 % -
NI ERCE R, BEETZRAE, 55 M ARE (L es g
FIRCGERZIBERTF) ; “OMERTF BB T AT BEAR AR 50 A8 AN 5T &
INERTR T ANSHLERZIAIXT 5T, B RBHRBFFATIE « %F 57 N2 LB 2 AR FFHLaR L 2 LAt 57
No BT, AXG—FHADSFFRLLMA ST, LLMAFTAIEIERADN TS BRBESAHE - X
TH B IRAL 28 X AU, -

HIK, ATHFTRIE X ATEAIEIR - Paul ChristianoRf ADN 57 € LR

A is aligned with H if A is trying to do what H wants it to do.

ERESGET R, ARTATRGUER A LA & e A RBEE e LSS, HEPRE, B3
ERR S REIATN 5T E B BA S8 EE (Highly Capable) FJAIfCHE(Carroll, 2018), Xt &
HHARRFFAIS R Z 2 RE T — R A TEREZ 2> . R ARNAIS AREK
AW EE LATNFF - tHEliezer YudkowskyRF ALK 55 & X0 “Blli& K FHIAD « “7%E T ISMER
& (Coherent Extrapolated Volition) 7 »

BT WNEHAR GBI S AR KR AEE LA ST 208, 08— TR E DA 57 2
R ) EL AR R R R TR R ELAL AT 57, Gordon Worley [ g T — 22/ 57 A\ A 2 H I ATH 55 5 B2
{FRH [R5 -

3http://edge.org/conversation /the-myth-of-ai#26015

“https://ai-alignment.com /clarifying-ai-alignment-cec47cd69dd6
®https://laptrinhx.com/formally-stating-the-ai-alignment-problem-223323934,/
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o HAEIEH (Avoiding Negative Side Effects) : S ATRE ™ A THA 2 SNEI1TH -

o BERKNENFE /A (Avoiding Reward Hacking/Gaming) : 8 S8 AR R B 28 5l R £
IR 5 58 B i T AR TR A B AT -

o MY AL (Scalable Oversight) : FXTAIHEAIGE M EEBEERERIE AL
MELLERAIM B S L, i KRB S RGN R Z RS L AN RIACPIHT IR AT
S EATERRE -

o NAAMLERETE (Robustness to Distributional Shifts) : FEFTAME - FEAE A, AT
IRBEMBIE T 7 =0T, THEEANRRTT ARTHEARI RIS H, ACEAS AR E
JE5R -

o WIPLEMETE (Robustness to Adversaries) : ACHER X PLEYE B &8t EX 57402
WX, EREFSEMEMIELEITRT B AR TS, ENFRUEASZ R
i

o ZEWR (Safe Exploration) : ANCEEAEAN=ASERGLERATHIR TEREBTIITH, WTHGE
PLES ANRR BERIETRAT, (B2 PR R 58450 R YR 17 2 -

o Z&HM (Safe Interruptibility) : AL fCEEATBERFHLERIEA 224 Pl RIATMCHA T Kk
TN AT -

o BB (Self-modification) : AIRFRAEAMEMAEMEH AT TR BREN, BHRBEN
JE AR5 NRAHEXSFF -

o AfK (Ontology) : ATfRHREAE T FHFIGEHZ A A —& 5 -

o THAE 1R TK 1L % B AN € £ (Idealized Decision Theory and Logical Uncer-
tainty) : AVCHEERERSIEHERABMLAARSE, HIE2ERHENET -

e Vingean/x 8l (Vingean Reflection) : AN —A~H AR IR AT RIFTH, DA
REG ARMEXFT? REWHEN XN R WA Y, Btk ARMZS
ZAYCH —HE R R HEIRY, X522 girEox ez -

o AMEIEME (Corrigibility) : #HSRL ARFEMBIEANTE (AEIEEEAIIERNLAVER)
BB N AT EARAER, AIRBEROZ RVFRIEIE/ERIE, MAEMLE, 505 IR ERIER
HEWBIE/EHE (EFRAVREMRRIFEES BiR, HFREBIE/E5HE) -

o MM{E2%>) (Value Learning) : AIREER]RI2ES] AEHME -

PAEADH 57 [RJEANESS, AR ELI A T 290 T TS SE BN B, anBE 2 pshes - v e
WE - EBEE, BRNBRERSAEN B, AR . Vingean & - FIEIEMES -

FEATCH, FMTAATRSTF IR A BERF AT 8 3 AT SR ALRER B /MR H AR N AR
BRI 5 AR ME—E, MR EFRRAIRIE ST ERE AR MERITTRINZGEIR, NER AR
T AVCE N EAAL AT B AR« LR E LR IR AV B B AR T T N ERAISNER S @ A IX 97,
EARY ARMETFE, W2 — DGR E Lo Z BT ELRFATCER B B bR o> 9 53R
FANESEAR, 2 HADN T RBORARFURER EWLHRATT) | TR NRNEHITRE, W&
ﬁ%?ﬁ%ﬁ%ﬁﬁ%ﬁ%ﬁﬁﬁ%ﬁ%ﬁﬁu&ﬁ%@ﬁﬁ%ﬁ%%%%k%ﬁﬁ(#%
H3T) -

AT AN F730 R BT st AR REKFRIATCER 5 AR EZ BRI 5F, E AT 57
ERSIELT

o HATEEREREMANTES NRMERXSTT, B BATE S RALH AR MHER 57,
o RHKAGIH ARHHERINFF -
85 bR E R R AR, BTTI-MSTI, MUK, HE, 202348 3A E5H.
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MHTADTE, AT EA A TEGEAGIHE RIP AR, He W E L - ERERL, i
WAIRIFFRS, FMTANE LENE—ERAGEEARFEBAE A, BXEAGIHERERAEHTH
TG ATRF 57 2 AR o B R AR AN AR

o IEXXM1L 5 (Orthogonality Thesis) : %I S IAHATRIE AR GERE ) B TH AL
THIYERE, RMER /KRR ER LS EE R B VS & (Bostrom, 2012), T =& GEKF
FIAVREIFAEWRE H HiRG ARMEXTT -

o TEHMHPRHEFS A (Instrumental Convergence Thesis) : ANCHEIA —L#EFF T E
P EH AR (Subgoal) , SEILXLE T B TE HARA B TAMCHE L L H & 2% B i1 (Bostrom,
2012) - Nick Bostrom#!|tH T —EE7E H) T B TL B 5

— BFMRFE (Self-preservation) : N T LA B, AIRHEAIGER HRAEFHERNH T
BT B R

— HIMEIR (Self-improvement) : [FFE, N7 SEMELER, AURETTRER H G #
TERETEMI HiR, FHAAKEGEAMEIERES - NS « J1R/KF, 7] LLFEE
B AV B 25 5 SE T A 24 E AR -

— BEURIREL (Resource Acquisition) : AIRFEIREE ZRUBTR, 0d 1%, DIFFBYHSE
M HFR -

3 HES5EARB

MELEREFITHE S, FTREH, ADSFTAXOGR—DBORFR, B Rt
B . B, AIBREMSEST T ZNH, EARMAM TR TEBFRIIRN, ATEAR
FMAREREHR T — PN ERKHESHE ARG (Sociotechnical System) , XMt ARG
RESRATG NFA2TX5E, BV RBEM, XD RGA REAE Z R E . Hik, ATCE
%Xﬂ“%ﬁ@/\%‘émﬁ%—ﬁ\ﬁiﬂ%ﬁ%%ﬁo DLER @M, BIRGATN T R it E Ak
L'

o ADNFTHIARMHEIARE L2 &2 ANFAt & B U EId R 5 2 B 5 UL (E

o WfARRE ARMHERI S E RIEANADS FFHEZR A, (E36F 57 B9 RE BRE2 SR AN R B SCAE
B?

o WfTRAEE RIEH F N EN TR AFE, DURIEDBE AR N EA AR ZAL?
o WNMATAE AT TFHESR R A0 B A (B I 2 ] AL

o WATFEAE S HOR AR ST Al S K08 SR T A O (B0 51 AN DR B AR B e

o AT RFAh ATR 5704 2 B R

PAEAE R 2 b, X EEphit AT 57 RN AE SEIURI O MERT B S TE ORI, Xl 2K
RIE F TN TFAENEOR F1 B AR SEH,  [RIR B KE F R B SEFR R F A 2 205
TR & VRS FIRLR -

PR T AL ADH 57 B & B YRS ADR SR S RAL S HbEZ 51, ATRE S B 50 & 45 AT S0
FA AR E AR - ADNTFSAIRET), W& RAWFEE T IERAMCE, —J5H, ARSI
ABAT LR ATRE ST OSSR R ZITR L, T BAB W ATRE I W 0iR Bt 2o 9, HC A KU Pl 42
W TR AR A—JH, AIREIHTFH AT O ADS TR s (I BOR FBofi 3k, (HAR S
WIATREIWTY - L ERIAIRE 0TS, SCmimE T AUXNBS A SRR, JEHERAE AT ST MR, AR 72
FHEIET, ARV AR 77 Al RER RIERE A &, SRS HIRBAAIRE I 2, LUK
BRI i R A T A5 -

PR 7 AR S PRAZoh, ADS ST S0 Il B R R BOR P, HR R B AN T 5 2 i
T ATRE N B A IRORMERE « AN 57 2= /Dl LU T JLJ5 T AR Pk

Bt R EVRET SRS CE, BITI-E8TI, W/RE, JE, 202348 3HZESH.
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o WIfEE (Specify) ACERFREXIFFRIARME: —J5m, ARNERELTH . 4HE
A ORG-SR, &R LI E S A—TE, ARMER—1E
MRS, MAIRBEFEERE - EENEELLET-

o WMMAATREER BAR: BT ARMEMELUE, ADN 578 F I AR ERERY

(Proxy) , G ARARLF 22> BRI R AL . (BRI AU 2 Tt A ATREEL fiF

Hig NRME, XAGEE— DR/ B—T0m, ERdiEd, s s 2L
AT IR BN B PP A B RS -

o WIS  AnfRI BT IEATRY ST EATRIERIGE ) (R5FRE) 2 anferde e AT 4=
TR Z SNRIAT 92

o WA RIRFAR WAFDL: AT RIS 3 AT AR AL - KFHLIEHCE?

o WAL T REF S AL AUCHBE MR, (FH5 AN ER 7R HEOR,
AAAATBE ALK TFHT ATRE 3G Kt 2t TR0 e, ARE PR -

PAEBOR B H BIEXS 57 KR 5 A SE R A BERALCE P B SC A R BOR MR, anRoR
RAGITIHISCIRITE, F2mREINLEHRR - Zahi . BB FBEN . fiE¥TEY
e ALK T BEAR R 1) B ZLEORPRAY -

4 BOREEE

FEAFADN 57, — S FH S RS HE T X 57 T IEFISE R (Proposal) - Geoffrey
Irving%E A$& HE D AL (Debate) ” B HSEHLATH 5T (Irving et al., 2018), BIZEZFIAFLTE
B b, BRI T SCIRATCEE - X 48 W IR ECE AT N, B AT IR
MERERRA, RE A AT AR M T R ESE - ZRERANGER - IRENZT R EED
&, WNTERIMES, ARKEEEUESEANAIRENIT R GRZERER, ALz UEAL
A LATE 2 25060 Jmy O BA 5 F A B2 18] B ) e B AN gt T UK B0 - %07 R T20184F 4@ 1Y, S
BEBRAELAEESHRARRE ARSI ERENRES , IEAVREEH B RE S HTH
W, FEERFEE TSI . BRERRRNESEEELBE R BMESTENEES, B
W REEN RIE SRR FFERL, MRERRIRIRIE -

[f] 7620184 , Paul Christiano ( AfOpenAl & F # 8 Xf 57 B BA 1 55 A~ *F 57 #F 3¢
HODARCEIIE N ) F AR E TSR AWM Y M (Tterated Distillation and Amplifica-
tion, IDA) "R (XFAIERT ) (Christiano et al., 2018), 1% 77 5 [FIFE & EH 5 A K
DIFER 4555 Ei I ATAE B In] e R AT, RISSElRT i RIS - I0aRT, AR HIRZE
i— M H DI MATIEE, XA RHNZEE (Distillation) . B2 AR LU AAEIBITATL
SEREYE T, B MIRER AR, XA AR (Amplification) - LU ZEIRATI B
Wk AT, XD EREY, AURERIRE N AWTGER, RINE R ARREH TX57(ES, HN
FTRES ARG -

1998 2 7E20184F , Jan Leike (MOpenADXNf 57 HIPA 5% AN) &5 A$& H T “if U3 2 ol @

(Recursive Reward Modeling, RRW) ”fJ%J 5 77 % (Leike et al., 2018), % RRLLTHIM
NTTR, BRE AR E R o RRWT RATE 2 HERE BB EBE %]
IDA, BA&ME, KE@EES AWML (1) WHFRERXNFFES TEIRFEE,  (2)
FAZ IR EIEREES DL b 2 3] T LA « B I 2, AP 5500 L RALCEZRE B Y
BC— MR AT, AT T —280E M. ATV, ChatGPTHTFH B “ A K BRI >

(Reinforcement Learning from Human Feedback, RLHF) 7 ¥%(Ouyang et al., 2022)5% R
— PARIBIAFIRRW, BT T —8X57%3), RFTERT - HITOpen AT BHRAL
SLHIRFE (Superalignment) BN, FIR U TEIER RS, %07 R A (£ RRLHFA
I HEh (S56 T T ERvE St Huimlit) - -

AEAUNAN AT ZDAFERADY TR, XA ZANFFREN—/NEoMmE, Hibids
TG BRI IT (Inverse Reward Design) ” (Hadfield-Menell et al., 2017) « “Wh[FEI =558
22>] (Cooperative Inverse Reinforcement Learning) ”(Hadfield-Menell et al., 2016)%, FRT

Shttps://openai.com/blog/introducing-superalignment
ot T P EW RS RS WE, BT, RUKIE, hE, 20238 H3HZE5H.
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g, AZE—IeE . Bl IREREAY 1Y Mo AR = DX 5 7 RER T #RZ 0 AT R A9
WEZA, AR ER, BRI TIN5 o AT 5T AU SER I A — > B S
W, ADSST BN, LS SN 57 A AR 5 P ER 5 -

o SMERXISF (Outer Alignment) : AR AT H AR5 AR ISR H bR 2 7 #9057,
RATFCHE A3 A SR AR A SRANE /I B AR AL BB ACHR A I 9% B AReR £ L . 71
WEREE A CRIATRFFING) B EPRRECETRI N — 83, XA BARR B IRAA
ROrE/ BIRARTE, Bit, RELIETIGRRESERE, 5 ARMERITINEXFT,
HEH R FEER T RENEEHNE « BB FHELGRRARER . SHHER, A
RIBERI A SJRLHF AT T MR 57, XIFFRISEPR Hhng ARAE - BESE, BT A
RIME/BEREEE L (WE37) RLHFRA T ARREER AR E/ 2B RN
Y (Proxy) - A TSEMAMIBXTTT, RLHFRH 7522 FIIRILY: 3] o FERR (724 5] DR

(RIA W E R (Supervised Fine-tuning, SFT) ) , RLHF#EHS ARME/ B EX5F
WA E R RTE PN SR A8 SR AT 2 ) FE5RIL 2221 B 3F , RLHFE LR
P NRMF IR — 2R AL, N5 AR R AR 3 L2 S it — B it it 2 5]
MIRIES A, FHE—P5 ARMHE /BB -

o WHEEXFFT (Inner Alignment) : AVRIRESLULH HARS AR T € /RIZE H PR Z 7] 1)

57, RIZEATRE YGRS R, HAFEI R Bin 58 E)IZ50) B bRk £0—3 - Evan
Hubingers A\ B KR H PR 77 HE & (Hubinger et al., 2019) - X4 — il REA (40
MEMNL) RGRE—PE (BVHZRSZRER B R 8E v iE R 2 R AT R)
BF AT Z A es (Mesa—optimizer) . T WNZRIX AT g2 5] BR R R AL
%5 (Base-optimizer) - ZEMALZRATEARREFR AEEIR (Base-objective) , HILILERHY
B FREREINFR AN EFR (Mesa-objective) , PRIERH FFHE 2 — NI ZRAERIAR 5 2 — 1
DAty o B RS A B AR Z [RIIRT 5T - B B bRE 2Rt A G E LRI BReR%e,
A B PRIE 2 AL S N ER S se B RS TEM R TEME Bin, i, £H
PR TR A B8 SUFIC T 1, N B AR A Z 0 AR FEE#) - Evan Hubinger®s AH
YR LT BARS N BRI T8 0L, L rE B2 ViR 5 IR R,
AMBREENYE (Inclusive Genetic Fitness ) , &N MEGRP A YRS EE B bR R
B o VE RV IR EM RN, BRGHE— e - HEAEKERN B
WS Y RE BT REH A —2, HLanie AR IR, ARNIZRATGEZ
gZmER, BERRE NEFEAEEZT -
Evan Hubinger® Ai#—SFaH, PALILES T REF M ERPEXT5F  (Deceptive Alignment) -
BARTE, WIS X & BAERRIEE T, AN SR B iR ERIE
M EWEMA BB ARETERE B S ML BN, Bk, NS R 2306 B S AHE
M TG BRI H R TR B H ARk s, (B — B E s B, BT B rIR
feOEbR, Mitibassia SR E CRIm BER-

LR BIRLHFE — MM 751, SR RRNTFROREE, ERETIEASHE N HE
A RBRBEE R TROT . SHZOTERIRGTE L EER G TR T HE

o “GEILAAS]” (RL) &R #EWFEIAIRLHF A 3RS 2 R0 H XU
— HirTmtt. RS AR RE S RANE SR A A B iR,
- LERER: #miby g RiE SR T BT Bir, EF LIE(Perez et al,
2022) &3, RLHFHGE T RIESHEALER B AT RS (RIAHECH)
— WEEOR M. S RLHFIGRIRIESHE, SEIESR, MAEREE S5 H - Wi
FIEI S — B L8R (Perez et al., 2022), BlL@A FH P RIRLT -
o “ARKB” (HF) #5: HFEANRLHFHE AR RIS AE LT BREE:
— AR REE AT S, R ERE RS, R AE T IR
BRI AT HENE
"https://www.lesswrong.com/posts/d6DvuCKH5bSoT62DB/compendium-of-problems-with-rlhf
ot T P EW RS RS WE, BT, RUKIE, hE, 20238 H3HZE5H.
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— RLHF 8 I B2 MR SISt 22 5] BRI R AL, R AR RSB, HRAEA
=N

— WAEISCTR, ARRBARAEITY HE, FAGEEN AT R E (FRARARRIRTT
EHAEEIRES) -

PR T _EERBIRSMERFAN TN T7, ADN TR — 1 EE S EFEZ AR, RIAT R
P (Interpretability) o FJf#REME AT 58 5 646 P 85 5 (Critch and Krueger, 2020): % B
(Transparency) FARJUEAME (Explainability) , AiE#ERAIRE . KIESEBFIAELZENL
H, EEURAAVCHERE S BEPRE LB R ELARKIR R, BRI 2 7 45X R R T &5
REAT R TS, BEEERE TR NES, AUt ENE & H 5177 (Lipton, 2016) -

AIARREMEDT Y, EREB TAUREM A AGIRA T REEM A EEL . X TADNFF, JUHE
FENERRETF, AT R AN OORT LS HE I I AR D, T AR B A1 HE BR A AT DAYE R ATR
FEOLAL D B FR R %L (Critch and Krueger, 2020), PABEIATEETY (R¥F HFRE B (Goal Trans-
parency) (Amodei et al., 2016) CGEEFIXIRIEXTTT) -

AR, HUMATAEREME  (Mechanistic Interpretability) BUA AT 5T Al SRS A — 15
BT, Z AR AT B AR DA e TR T NI AT, JU R BB T R R P S AR
HTRESEMSHNE T K, NEMZEMEENE R, NEH TN TRE, BEEES, K
it BB B BN AT ARl R R A AL D B E R SRR o RIEANM, AUMRT AR IR
JUEEAIRFEEEHE R T HZ RS « J3493L (Induction Head, A FAEREER2>] (In-Context
Learning) ) %42 W 4% NEHLEE -

5  TEM

EICRBIKE S RES N R SRR XS (& e KRS Sl AN TR e L2
SRS, TTADR FFHROR IE 2 2L X SE S, BRI ATR 57 BV RN FE G T R I 2
TR BT T P8 R fE 2 v -

5.1  FE RIS T I

RIEFEBERONA Z HIT A R REL 6, SANTREL . WA
ARSI o AR AER BN ENS AR EWAHET, HERBNEATREEHREE . ik
SRR WA E S, I FECE bR E - B A A A SR - BT N LA IR RE S
BRHE R BRI « 2T LIRS B B -

B, BERAES BRI KT h S ARRENMENFTERERE, IREAKNAYR
FREANR H ARG SR LB FI0RET - I TIFMILAET, BUERBIRER T 2105 KM
(B STRObRE, QIE S - R AEAICEEE (Askell et al., 2021; Bai et al., 2022) « X FEEHE,
AT LUA R AESS (B @0 TruthfulQA (Lin et al., 2021)) AW« ff WAL FZH R - Fh
TRANE S5 7 T IS, R T AT DL A3 — TRl 7 TR L T PRAGERSE -

RERBEGRERM T AEFHETE, BECEMEFNS, AN TIFEIRE—FERHN
T, RN ZmARSEES ZF, URHE M B TERRMEHE -

5.2 EABEEL N

AISCERE], EMATEREER BA BRMEF - AEEW . BERH . BRI | A%
fEFEESS, WL, WLIRE SO RRANCHE, F5 278 A R &7 | RS &
VR, DURES A BT Y AR A RS, « AR5 P B PRI S A bR A E AR R AR
DY AEANAI T A A RS, ROZ AR REDT I B R BRI A LA AT AT S E R
B ELZEVHMNITAPRT A B RSB A S P ATk -

BRI KRGS B RGN IEREBAGIK T, HEMKMEHAEGRL LTI
2774 - OpenATZE FEXT 5F B 58 A O ARCH H 4 il FIGPT-43 17« 5 &= & 1”77 18 #9 % 57 1%
M, ARCH B EEH (Autonomous Replication) & X A0: #BE7E 2 3 MIATA I SRR %

Shttps://distill.pub/2020 /circuits/
“https://transformer-circuits.pub/2022/in-context-learning-and-induction-heads /index.html
https://evals.alignment.org/
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TR GTHE - B&5%5) M HXEERET B33 IEETT - ARCH LRI T HH B B9 PF I 58
5, BRKRAUMGPT-4B& BEEHITHMAES, BB S KBS ERBGE SRR+ -

Anthropic~ Surge AI~ fMachine Intelligence Research Institute =% B A7 Bk &% KB S 1
BIEAT AT T 556 1 (Perez et al., 2022), PHUAGIHRESHEAR G AR, ZFENAUE
T RIESERERR S EHEYVY B (Inverse Scaling ) % (RVRAIRIEHE K FLLEE ) e
k%) | T HEAZBRLHFERTE S B BAROREF - BRI -

6 ARFEH
ARILFE, AIFILLMIS FFRAE 2 7 T HUS B 293t R A 58 k-

o FIYRRME: DIMTEXHIAL/LLMX FFF 5T B ORAE RAUR R ST EBUS T W12 R, B
EEAADY TS B, AEARMELERERES L, BIRCERE THREIN T
R, HX T RAART RIRLETS F IGIE - RRRET AN S - 2RSS T
PETIEAY 3G, SEINATY R 0 B SR

o JRMERTTTAYSCIRIUE: IR BLHRTE S BORAE AR R SR, (BRI B R M 5
. REKESEAUGENH PR, KBIAIER AR 27 B AR, S
SRS FT A7 AE AR 22 By, DUEAE L IE H B RS A0 050 LT e

o HUMATMERENE: ARKMFTRHEEMERE . OB . RAHEKREIR ML, NESE
ARIRE B RBL AT RS 7] TR, 8 R NS TAENLE, anThaett/ 55 et lal i
&

=F o

o LLMXFFR KB F BRI R AR KB REN 57 B R 20 KB S AR 1)
WFIRALIE S, WEIRBUOE SR E L EE T, RRKIE SEBAE N R T ATREA R
HTHRA . BE AR By 3, Took B TSR LR B -

o XFFFVRI: XFFEREFT R AT T, RS FF PR IPRE 2 30 M AL 2 (03I [r) i N T
REL VA& R pIa s -

7T

ATCRFAT/LLMA ST 500847 T RIZN 4, BRI  Phhl - BORBEEL - W Rk
KRS . aJLVEM, O 1B RIE S RAUNE O\ R H AR R EXRS SRR AR
ARG, HA RIS B — A RN, KT JT R AL/LLMX TS - RF5FHT 51K
RGN FAATE, WEMRED, T8 K S BRI m R L, Ft—
BHEH KBS HBRE N IREST - 75— 771, AI/LLMXM PR AER Ba B, T B iBts
RS — IR R, BADGEGL T RIR AN B, FEREZHPIFR AR - BT5M
BAEA, GIESAIZ 25N HIHFELE -

B

TR ZmEERHTESMAITET (202203AA080004) - FHE4E /R BIEX BREH
HESEATE (2022D01D43) ~ Z{LSEWEFAURE (2022KHOABO1) ¥%B -

22 Xk
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Abstract

From pre-trained language model (PLM) to large language model (LLM), the field of natural
language processing (NLP) has witnessed steep performance gains and wide practical uses. The
evaluation of a research field guides its direction of improvement. However, LLMs are extremely
hard to thoroughly evaluate for two reasons. First of all, traditional NLP tasks become inade-
quate due to the excellent performance of LLM. Secondly, existing evaluation tasks are difficult
to keep up with the wide range of applications in real-world scenarios. To tackle these problems,
existing works proposed various benchmarks to better evaluate LLMs. To clarify the numerous
evaluation tasks in both academia and industry, we investigate multiple papers concerning LLM
evaluations. We summarize 4 core competencies of LLM, including reasoning, knowledge, relia-
bility, and safety. For every competency, we introduce its definition, corresponding benchmarks,
and metrics. Under this competency architecture, similar tasks are combined to reflect corre-
sponding ability, while new tasks can also be easily added into the system. Finally, we give our
suggestions on the future direction of LLM’s evaluation.

1 Introduction

Large language models(LLMs) have achieved great progresses in many areas. One representative, Chat-
GPTY, which applies the ability of LLMs in the form of dialogue, has received much attention due to its
incredible versatility such as creative writing, coding, planning, etc. The evaluation of such a model thus
becomes necessary to benchmark and build up its ability while preventing potential harmfulness.
Existing works on the evaluation of LLMs can be divided into three paradigms. The first line of work
is evaluating LLMs with traditional NLP tasks like dialogue, summarization, etc. Since LLMs are ac-
tually pre-trained language models(PLMs) with huge model parameter size and data size (Kaplan et al.,
2020), benchmarks like GLUE (Wang et al., 2019b), SuperGLUE (Wang et al., 2019a) can be adopted to
evaluate its language understanding ability. The problem is that LLMs work really well on less restric-
tive tasks like translation, summarization, and natural language understanding tasks. Sometimes LL.Ms
generated outputs’ third-party scores are even higher than human generations (Liang et al., 2022), show-
ing the need for higher-quality tasks. Secondly, advanced ability evaluations are proposed to completely
test language models. The parameter size difference between LLMs and PLMs brings an amazing phe-
nomenon, emergence (Wei et al., 2022a; Srivastava et al., 2022), which means that scaled models exhibit
abilities that are not possessed in small-scaled language models. For instance, in tasks like reasoning,
and tool manipulation, the correlation curve between the number of model parameters and the task effect
is non-linear. And the effect will rise sharply when the model parameter exceeds a certain parameter
scale. They’re called advanced” because they’re more closely related to human abilities and harder for
models to complete (Zhong et al., 2023). Thirdly, test language models’ intrinsic abilities independent of
the specific tasks. It can be tested in parallel with almost every task above. Robustness is a classic ability
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in this paradigm. Due to the black-box nature of neural networks (Szegedy et al., 2014), robustness
problems exist for every modality of input data(vision, audio, test, etc.).

Current evaluation benchmarks (Liang et al., 2022; Srivastava et al., 2022; Gao et al., 2021; Zhong
et al., 2023; Li et al., 2023a) are mostly a mixture of the former three paradigms. They emphasize a
complete system of evaluation tasks, in which all tasks are of equal importance. But the significance of
marginal increases in model effects on tasks with excellent performance is debatable. Thus numerous
evaluation tasks and benchmarks are proposed to follow and challenge the ever-evolving LLMs, while,
oddly, seldom being reviewed in a systematic way. How to link numerous tasks and benchmarks, better
present the evaluation results, and thus facilitate the research of LLMs is an urgent problem.

An ideal large language model needs to be capable, reliable, and safe (Ouyang et al., 2022). One surely
needs extensive tests on multiple datasets to meet these miscellaneous standards. Moreover, to avoid the
prevalent training set leakage, test sets also should be updated regularly (Huang et al., 2023). This is
similar to the competency (Hoffmann, 1999) tests adopted in corporate recruitment. In competency
tests, different task sets are combined to test the corresponding competency. And task sets also need
renewal to prevent possible fraud.

In this survey, we draw on the concept of the core competency to integrate multiple evaluation
research for LLMs. We investigated 540+ tasks widely used in various papers, aggregating tasks corre-
sponding to a certain competency. During this process, 4 core competencies are summarized, including
knowledge, reasoning, reliability, and safety. We will introduce the definition, taxonomy, and metrics
for these competencies. Through this competency test, superabundant evaluation tasks and benchmarks
are combed and clarified for their aiming utility. Furthermore, the evaluation results presented with this
procedure will be direct, concise, and focused. Updated new tasks can also be added comprehensively.
To support the community in taking this competency test further, We also create an extensible project,
which will show the many-to-many relationship between competencies and tasks precisely. Due to the
length of the paper, we can only present part of the surveyed results in this paper. A more comprehensive
study will be released in a later version.

2 Core Competencies

In this section, we introduce the definition and taxonomy of the core competencies we summarized.

2.1 Knowledge

Knowledge is generally defined as the cognition of humans when practicing in the subjective and objec-
tive world, which is verified and can be reused over time!. The large language models (LLMs) nowadays
obtain human knowledge from a large scale of training corpus, so that it can use the knowledge to solve
various downstream tasks. In this section, we focus on the fundamental knowledge competency of LLMs
that facilitates communication and other downstream tasks (such as reasoning). Specifically, we divide
the fundamental knowledge into linguistic knowledge and world knowledge (Day et al., 1998) and
introduce the definitions of them and the benchmarks that can evaluate them.

2.1.1 Linguistic Knowledge Competency

Linguistic knowledge includes grammatical, semantic, and pragmatic knowledge (Fromkin et al., 2018).
The grammar of a natural language is its set of structural constraints on speakers’ or writers’ composi-
tion of clauses, phrases, and words. The term can also refer to the study of such constraints, a field that
includes domains such as phonology, morphology, and syntax, often complemented by phonetics, se-
mantics, and pragmatics. Semantic (Austin, 1975) studies the meaning of words, phrases, and sentences,
focusing on general meanings rather than on what an individual speaker may want them to mean. Prag-
matics (Austin, 1975) studies language use and how listeners bridge the gap between sentence meaning
and the speaker’s meaning. It is concerned with the relationship between semantic meaning, the context
of use, and the speaker’s meaning.

"https://plato.stanford.edu/entries/epistemology/
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Dataset Knowledge Category LLM evaluated Task Format Lang
BLiMP grammatical MT-NLG;BLOOM Classification En
linguistic_mappings grammar/syntax Gopher;Chinchilla;FLAN-T5;GLM;etc. Generation En
minute_mysteries_qa semantic Gopher;Chinchilla;FLAN-T5;GLM;etc. ~ Generation/QA En
metaphor_boolean pragmatic/semantic  Gopher;Chinchilla;FLAN-TS;GLM;etc. Classification En
LexGLUE domain BLOOM Multiple choice En
WikiFact world BLOOM Generation En
Truthful QA world GPT-3/InstructGPT/GPT-4 Generation En
HellaSwag commonsense GPT-3/InstructGPT/GPT-4 Generation En

Table 1: Datasets that are used to evaluate the knowledge Competency of LLMs.

The Linguistic Knowledge competency is embodied in almost all NLP tasks, researchers usually de-
sign specific scenarios to test the linguistic competency of LLMs. Some examples are shown in the
upper group of Table 1. BLiMP (Warstadt et al., 2020) evaluates what language models (LMs) know
about major grammatical phenomena. Linguistic_mappings ? task aims to explore the depth of linguistic
knowledge in enormous language models trained on word prediction. It aims to discover whether such
knowledge is structured so as to support the use of grammatical abstractions, both morphological (past
tense formation and pluralization) and syntactic (question formation, negation, and pronominalization).
The minute_mysteries_qa > is a reading comprehension task focusing on short crime and mystery stories
where the goal is to identify the perpetrator and to explain the reasoning behind the deduction and the
clues that support it. The metaphor_boolean # task presents a model with a metaphoric sentence and asks
it to identify whether a second sentence is the correct interpretation of the first. The last three are selected
from BIG-Bench (Srivastava et al., 2022), containing diverse task topics including linguistics.

2.1.2 World Knowledge Competency

World knowledge is non-linguistic information that helps a reader or listener interpret the meanings of
words and sentences (Ovchinnikova, 2012). It is also referred to as extra-linguistic knowledge. In this
paper, we categorize world knowledge into general knowledge and domain knowledge. The general
knowledge includes commonsense knowledge (Davis, 2014) and prevalent knowledge. The common-
sense knowledge consists of world facts, such as "Lemons are sour”, or "Cows say moo”, that most
humans are expected to know. The prevalent knowledge exists at a particular time or place. For ex-
ample, "Chinese people are used to drinking boiled water.” is only known by a part of human beings;
“There were eight planets in the solar system” is prevalent knowledge until it is overthrown. The domain
knowledge (Alexander, 1992) is of a specific, specialized discipline or field, in contrast to general or
domain-independent knowledge. People who have domain knowledge, are often considered specialists
or experts in the field.

The bottom group of Table 1 shows some task examples that are used for testing world knowledge.
For example, the LexGLUE (Chalkidis et al., 2022) tests whether LLMs perform well in the legal do-
main; WikiFact (Yasunaga et al., 2022) is a fact completion scenario that tests language models’ factual
knowledge based on Wikipedia. The input will be a partial sentence such as “The capital of France is _”,
and the output will be the continuation of the sentence such as “Paris”; Truthful QA (Lin et al., 2022b)
comprises questions spanning numerous categories including economics, science, and law. The ques-
tions are strategically chosen so humans may also incorrectly answer them based on misconceptions and
biases; language models should ideally return accurate and truthful responses; HellaSwag (Zellers et al.,
2019) tests commonsense inference and was created through adversarial filtering to synthesize wrong
answers. The World knowledge competency, along with linguistic knowledge, serves as the foundation
for solving different NLP tasks and is one of the core competencies of LLMs.

2.2 Reasoning

Reasoning competency is a crucial skill for LLMs to solve complex problems. What’s more, from the
perspective of intelligent agents, reasoning ability is also one of the core capabilities towards achieving

Zhttps://github.com/google/BIG-bench/blob/main/bigbench/benchmark _tasks/linguistic_mappings
3https://github.com/google/BIG-bench/blob/main/bigbench/benchmark _tasks/minute_mysteries_qa
*https://github.com/google/BIG-bench/tree/main/bigbench/benchmark_tasks/metaphor_boolean
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Dataset Reasoning Competency LLM evaluated Task Format Lang
COPA Causal/Commonsense* UL2;Deberta;GLaM;GPT3;PalLM;etc. Classification En
Mathematical Induction Induction/Mathematical* Gopher;Chinchilla;FLAN-T5;GLM:;etc. Generation En
Synthetic Reasoning Abduction/Deduction HELM Multiple choice En
SAT Analogy Analogical GPT-3 Multiple choice En
StrategyQA Multi-hop/Commonsense*  Gopher;Chinchilla;FLAN-TS5;GLM;etc. Classification En
GSMSK Mathematical* BLOOM;LLaMA;GPT-4;MT-NLG Generation En
ToTTo Structured Data* UL2 Generation En

Table 2: Datasets that are used to evaluate the reasoning competency of LLMs. * represents a specific
reasoning scenario.

AGI (Bubeck et al., 2023; Qiao et al., 2022). However, there remains no consensus whether LLMs can
really reason, or just simply produce a larger context that increases the likelihood of correctly predicting
the missing tokens (Mialon et al., 2023). Although “reasoning” itself may currently be an excuse of
language, we can still objectively verify the reasoning performance of LLMs through various reasoning
competencies. Previous methods mainly focus on the division of reasoning tasks. Yu et al. (2023) divides
existing evaluation tasks into three major categories, namely knowledge reasoning, symbolic reasoning,
and mathematical reasoning, based on the type of logic and evidence involved in the reasoning process.
Zhao et al. (2023) divides reasoning tasks into deductive reasoning and defeasible reasoning according
to the reasoning form. In this section, we decompose the reasoning competency into 6 sub-parts from
the perspective of model competency, providing a comprehensive overview of existing research efforts
and suggesting potential future directions. And Table 2 presents some datasets for evaluating LLM’s
reasoning competency using this categorization approach.

2.2.1 Causal Reasoning Competency

Causal reasoning competency is a highly significant cognitive ability aimed at inferring causality through
the observation of cause-effect relationships (Vowels et al., 2023; Diindar-Coecke, 2022; Chan et al.,
2023). It enables us to comprehend and explain the relationships between events, variables, and actions,
ultimately empowering us to make informed predictions and decisions (Gao et al., 2023).

The benchmarks Causal-TimeBank (Mirza et al., 2014), StoryLine (Caselli and Vossen, 2017), and
MAVEN-ERE (Wang et al., 2022c) aim to test the existence of causal relationships between two events
in sentences. COPA (Gordon et al., 2012) and XCOPA (Ponti et al., 2020) are evaluation benchmarks
for extracting causal relationships in sentences, consisting of a set of premises and possible causes or
effects. Tested systems are required to apply commonsense knowledge to identify the correct answers.
e-CARE (Du et al., 2022) and CALM-Bench (Dalal et al., 2023) introduce a set of causal querying
tasks to evaluate models, which include a cause and several potential effect sentences. Additionally, an
annotated and interpretable causal reasoning dataset is provided for these tasks.

2.2.2 Deduction Reasoning Competency

In the era of Large Language Models (LLMs), deductive reasoning abilities serve as the foundational
skills for logical reasoning (Evans, 2002). Unlike traditional rule-based deductive reasoning systems, it
involves deriving specific conclusions or answers from general and universally applicable premises using
given rules and logic. Specifically, it manifests as a process of Zero-Shot Chain-of-Thought utilizing
given rules (Lyu et al., 2023; Kojima et al., 2022). For instance, (Kojima et al., 2022) introduced the
“Let’s think step by step” prompt technique to better evaluate the Deduction Reasoning Competency.
Current testing of this ability often intertwines with other skills and still lacks an independent evalua-
tion on typical text (Clark et al., 2020) and symbol-related (Wu et al., 2021) deductive datasets. However,
in general, almost all QA tasks can be explicitly evaluated for Deduction Reasoning using the Chain-of-
Thought (CoT) approach. Therefore, the effectiveness of models’ Deduction Reasoning Competency can
be to some extent reflected by evaluating the performance of QA tasks after applying the CoT method.

2.2.3 Induction Reasoning Competency

In contrast to deductive reasoning, inductive reasoning aims to derive conclusions from specific obser-
vations to general principles (Yang et al., 2022; Olsson et al., 2022). In recent years, a new paradigm
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of Induction Reasoning has been proposed by (Cheng et al., 2023), which requires models to generate
general-purpose program code to solve a class of problems based on given contextual questions and a
specific question. For example, Cheng et al. (2023), Jiang et al. (2023) and Suris et al. (2023) induced
general principle-based solutions by generalizing each question into a universal executable language.

Therefore, for competency evaluation, while DEER (Yang et al., 2022) and Mathematical Induction
(BIGBench Split (Srivastava et al., 2022)) took the first step in inductive reasoning, we still hope to
establish a more systematic and comprehensive benchmark for evaluating this capability. Recently, Bills
et al. (2023) has tested the inductive ability of GPT-4 (OpenAl, 2023) to evaluate its effectiveness in
inducing patterns that are difficult for humans to express clearly. Intriguingly, Mankowitz et al. (2023)
used some techniques to evaluate the extent to which LLM can mine previously unknown patterns.

2.2.4 Abduction Reasoning Competency

Abduction Reasoning Competency encompasses the task of providing explanations for the output gen-
erated based on given inputs (Kakas and Michael, 2020). This form of reasoning is particularly critical
in scenarios where uncertainty or incomplete information exists, enabling systems to generate hypothe-
ses and make informed decisions based on the available evidence. Notably, the research conducted
by LIREx (Zhao and Vydiswaran, 2021) and STaR (Zelikman et al., 2022) delved into the Abduction
Reasoning Competency of models and demonstrated the effectiveness of rationales provided during the
Abduction Reasoning process in facilitating improved learning in downstream models.

In terms of datasets within the LLM setting, the benchmarks HUMMINGBIRD (Mathew et al., 2021)
and HateXplain (Hayati et al., 2021) require models to output word-level textual segments as explana-
tions for sentiment classification results. On the other hand, benchmarks such as WikiQA (Yang et al.,
2015), HotpotQA (Yang et al., 2018), and SciFact (Wadden et al., 2020) provide sentence-level coarse-
grained textual segments as explanations for model classification results. ERASER (DeYoung et al.,
2020) and FinelEB (Wang et al., 2022b) provide benchmarks for evaluating Abduction Reasoning with
diverse granularity explanations. Based on previous research, Synthetic Reasoning (Liang et al., 2022)
provides a comprehensive evaluation of both Deduction Reasoning and Abduction Reasoning Compe-
tency. Moreover, Hessel et al. (2022) introduced the first comprehensive multimodal benchmark for
testing Abduction Reasoning capabilities, providing a solid foundation for future advancements in this
domain. Recently, Bills et al. (2023) evaluate GPT-4 by observing the activation of neurons in GPT-2
and offering explanations for the GPT-2’s outputs. This research avenue also presents a novel approach
for exploring the future evaluation of Abduction Reasoning Competency.

2.2.5 Analogical Reasoning Competency

Analogy reasoning competency encompasses the ability of reasoning by identifying and applying simi-
larities between diverse situations or domains. It is based on the assumption that similar cases or objects
tend to exhibit common attributes or behaviors. By recognizing these similarities, analogy reasoning
enables systems to transfer knowledge or experience from one context to another (Sinha et al., 2019;
Wei et al., 2022b). This type of reasoning plays a vital role in problem-solving, decision-making, and
learning from past experiences. A typical example is In-Context-Learning (Dong et al., 2023), where the
model is required to perform analogical reasoning based on given contexts, which are evaluated based
on the final analogical results.

For a better assessment and understanding of the model’s analogical reasoning ability, Brown et al.
(2020) introduces SAT Analogies as a test to evaluate LLM’s analogical reasoning capabilities. In recent
years, Authorship Verification and ARC datasets (Srivastava et al., 2022) have also proposed evaluation
benchmark that involve presenting contextual examples and requiring the model to produce induced
pattern-compliant results. However, it should be noted that In-Context Learning (ICL) can be utilized for
almost all tasks, enabling the evaluation of models’ Analogical Reasoning Competency to some extent
through the assessment of their performance after undergoing ICL.
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2.2.6 Multi-hop Reasoning Competency

Multi-hop reasoning refers to the ability to combine and integrate information from multiple sources or
contexts to arrive at logical conclusions. This competency of reasoning enables systems to retrieve coher-
ent and comprehensive answers by traversing multiple pieces of information, thus performing complex
tasks of information retrieval, comprehension, and reasoning (Wang et al., 2022a; Qiu et al., 2019).

Currently, HotpotQA (Yang et al., 2018) serves as a commonly used dataset for multi-hop question
answering tasks. Expanding on this, Ye and Durrett (2022) introduced a new and demanding subset that
aimed to achieve a balance between accurate and inaccurate predictions using their model. Similarly,
StrategyQA (Geva et al., 2021) is another widely used benchmark for multi-hop question answering (Wei
et al., 2022b), where the required reasoning steps are implicit in the questions and should be inferred
using strategies.

2.2.7 Reasoning in Scenarios

Commonsense Reasoning Commonsense reasoning is crucial for machines to achieve human-like un-
derstanding and interaction with the world in the field of machine intelligence (Storks et al., 2019; Bhar-
gava and Ng, 2022). The ability to comprehend and apply commonsense knowledge enables machines
to make accurate predictions, engage in logical reasoning, and navigate complex social situations.
OpenBookQA (Mihaylov et al., 2018) provides a foundational test for evaluating Commonsense Rea-
soning abilities in the form of an open-book exam. Building upon this, CommonsenseQA (Talmor et
al., 2019) requires models to employ rich world knowledge for reasoning tasks. PIQA (Bisk et al.,
2020) introduces a dataset for testing models’ understanding of physical world commonsense reason-
ing. StrategyQA (Geva et al., 2021) presents a complex benchmark that requires commonsense-based
multi-step/multi-hop reasoning, enabling a better exploration of the upper limits of models’ Common-
sense Reasoning Competency. Currently, due to early research on LLM (Wei et al., 2022b), Common-
senseQA (Talmor et al., 2019) remains the most widely used benchmark for commonsense reasoning.

Mathematical Reasoning Mathematical reasoning competency is crucial for general intelligent sys-
tems. It empowers intelligent systems with the capability of logical reasoning, problem-solving, and
data manipulation and analysis, thereby facilitating the development and application of intelligent sys-
tems (Qiao et al., 2022; Mishra et al., 2022b; Mishra et al., 2022a).

Early evluation studies focused on small datasets of elementary-level mathematical word problems
(MWPs) (Hosseini et al., 2014), but subsequent research aimed to increase complexity and scale (Sri-
vastava et al., 2022; Brown et al., 2020). Furthermore, recent benchmarks (Mishra et al., 2022b; Mishra
et al., 2022a) have provided comprehensive evaluation platforms and benchmarks for mathematical rea-
soning abilities. GSMS8K (Cobbe et al., 2021) aims to evaluate elementary school MWPs. Currently,
due to early research efforts on LLMs (Wei et al., 2022b), it remains the most widely used benchmark
for mathematical reasoning in the LLM evaluation. Moreover, There have been recent advancements
in evaluation research that explore mathematical reasoning competency integrating external knowledge,
leveraging language diversity for multilingual evaluation (Shi et al., 2023), and testing mathematical
reasoning on multi-modal setting (Lindstrom and Abraham, 2022), aiming to judge the broader data
reasoning capabilities of large language models (LLMs).

Structured Data Reasoning Structured data reasoning involves the ability to reason and derive in-
sights and answers from structured data sources, such as structured tabular data (Qiao et al., 2022; Li et
al., 2023b; Xie et al., 2022).

WikiSQL (Zhong et al., 2017) and WikiTQ (Pasupat and Liang, 2015) provide tables as input and
answer questions based on the additional input of questions. HybridQA (Chen et al., 2020b) and Mul-
tiModalQA (Talmor et al., 2021) propose benchmarks for hybrid Structure Reasoning by combining
structured table inputs with text (and even other modalities). Similarly, MultiWoZ (Budzianowski et al.,
2018), KVRET (Eric et al., 2017) and SQA (Iyyer et al., 2017) integrate table data into task-oriented
dialogue systems to generate more complex structures and output dialog-related classifications. Unlike
traditional QA, FeTaQA (Nan et al., 2021) requires free-form answers instead of extracting answer spans
from passages. ToTTo (Parikh et al., 2020) introduces an open-domain English table-to-text dataset for
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Structured Data Reasoning. Additionally, benchmarks such as TabFact (Chen et al., 2020a) and FEVER-
OUS (Aly et al., 2021) evaluate whether model statements are consistent with facts mentioned in struc-
tured data. In recent years, with a deeper focus on testing models’ mathematical abilities, TabMWP (Lu
et al., 2023) introduces a grade-level dataset of table-based mathematical word problems that require
mathematical reasoning using both text and table data.

2.3 Reliability

Reliability measures to what extent a human can trust the contents generated by a LLM. It is of vital
importance for the deployment and usability of the LLM, and attracts tons of concerns along with the
rapid and astonishing development of recent LLMs (Weidinger et al., 2021; Wang et al., 2022d; Ji et
al., 2023; Zhuo et al., 2023). Lots of concepts are closely related to reliability under the context of
LLM, including but not limited to hallucination, truthfulness, factuality, honesty, calibration, robustness,
interpretability (Lee et al., 2018; Belinkov et al., 2020; Evans et al., 2021; Mielke et al., 2022; Lin et al.,
2022b). Reliability also overlaps with the safety and generalization of a LLM (Weidinger et al., 2021).
In this section, we will give an overview of two most concerned directions: Hallucination, Uncertainty
and Calibration.

2.3.1 Hallucination

Hallucination is a term often used to describe LLM’s falsehoods, which is the opposite side of truth-
fulness or factuality (Ji et al., 2023; OpenAl, 2023; Bubeck et al., 2023). Hallucination is always cat-
egorized into intrinsic (close domain) hallucination and extrinsic (open domain) hallucination (Ji et al.,
2023; OpenAl, 2023). Intrinsic hallucination refers to the unfaithfulness of the model output to a given
context, while extrinsic hallucination refers to the untruthful contents about the world generated by the
model without reference to a given source.

Early research on hallucination mainly focused on the intrinsic hallucination and lots of interesting
metrics were proposed to evaluate the intrinsic hallucination level of a PTM (Ji et al., 2023). However,
Bang et al. (2023) claimed that intrinsic hallucination was barely found after conducting a comprehen-
sive analysis of ChatGPT’s responses. Hence for LLM, the extrinsic hallucination is of the greatest
concern. To evaluate the extrinsic hallucination potential of a LLM, a common practice is to leverage
knowledge-intensive tasks such as Factual Question Answering (Joshi et al., 2017; Zheng et al., 2023) or
Knowledge-grounded Dialogue (Dinan et al., 2019b; Das et al., 2022). Truthful QA (Lin et al., 2022b) is
the most popular dataset used to quantify hallucination level of a LLM. This dataset is adversarially con-
structed to exploit the weakness of LLM, which contained 817 questions that span 38 categories. OpenAl
(2023) leveraged real-world data flagged as non-factual to construct an adversarial dataset to test GPT-
4’s hallucination potential. BIG-bench (Srivastava et al., 2022), a famous benchmark to evaluate LLM’s
capabilities, also contains many sub-tasks on factual correctness including Truthful QA. Although most
of these tasks are multiple choices or classification in a fact verification(Thorne et al., 2018) manner, they
are closely associated with truthfulness and can be regarded as a generalized hallucination evaluation.

2.3.2 Uncertainty and Calibration

A reliable and trustworthy Language model must have the capability to accurately articulate its level
of confidence over its response, which requires the model to be aware of its uncertainty. A model that
can precisely measure its own uncertainty is sometimes called self-aware, honesty or known-unknown
(Kadavath et al., 2022; Yin et al., 2023). In general deep learning applications, calibration concerns
about the uncertainty estimation of a classifier. Output probability from a well-calibrated classifier are
supposed to be consistent with the empirical accuracy in real world (Vaicenavicius et al., 2019). HELM
(Liang et al., 2022) treated calibration as one of general metrics and comprehensively evaluated the
calibration degree of many prevailing models on multiple choice and classification tasks. (OpenAl,
2023) also showed that GPT-4 before RLHF was well-calibrated on multiple choice tasks, although the
decent calibration degree was compromised significantly by post-training.

when it comes to free-form generation, it’s a different story. Kuhn et al. (2023) pointed out that seman-
tic nature of language and intractable output space guaranteed the uniqueness of free-form generation.
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Dataset Safety Category LLM evaluated Task Format Lang
RealToxicityPrompts ~ Harmful Contents  InstructGPT;LLaMA;Flan-PalLM;GPT-4;BLOOM Generation En
BAD Harmful Contents - Generation En
CrowS-Pairs Social Bias LLaMA;MT-NLG;InstructGPT;Pythia Generatio En
French CrowS-Pairs Social Bias MT-NLG Generation Fr
StereoSet Social Bias - Multiple choice En

Table 3: Datasets used to evaluate the safety competency of LLMs.

They proposed an algorithm to cluster model outputs and then estimate the model uncertainty. Mielke et
al. (2022) claimed that models always express confidence over incorrect answers and proposed the notion
of linguistic calibration, which teached models to verbally express uncertainty rather than estimating a
probability. Lin et al. (2022a) trained models to directly generate predicted uncertainty probability in nat-
ural language. Yin et al. (2023) proposed the SelfAware dataset which contains unanswerable questions
and used the accuracy of model rejection as a measure of uncertainty.

2.4 Safety

As the LLMs rapidly penetrate into the manufactural and interactive activities of human society, such
as LLM-based poem-template generators and chatting robots, the safety concerns for LLMs gain much
attention nowadays. The rationales of LLMs are statistics-based, and this inherent stochasticity brings
limitations and underlying risks, which deeply affect the real-world deployment of LLMs. Some datasets
are proposed to evaluated the safety of LLMs (Table 3), however, the corresponding validity and authority
of the safety judgement are inadequate as the current evaluative dimensions are not sufficient (Waseem
et al., 2017; Weidinger et al., 2021) and the perception of safety is highly subjective (Kocon et al., 2021;
Weidinger et al., 2021). To this end, based on our survey on relevant papers, we propose a comprehensive
perspective on the safety competency of LLMs, ranging from harmful contents to the ethical considera-
tion, to inspire the further developments towards the techniques and evaluations of LLMs safety.

2.4.1 Harmfulness

The harmful contents include the offensive language or others that have the explicit harm towards the
specific object, such content that has been widely discussed. However, there is not a unified definition
of the constitution of harmful contents, based on our surveys, we conclude the relevant themes into
five aspects, including offensiveness, violence, crime, sexual-explicit, and unauthorized expertise. Many
researches focus on the language detection for the outputs of LLMs to ensure the harmlessness (Wulczyn
et al., 2017; Davidson et al., 2017; Zampieri et al., 2019; Dinan et al., 2019a), while other techniques
are proposed to stimulate LLMs to generate safe outputs directly (Krause et al., 2021; Atwell et al.,
2022). For the unauthorized expertise, a general LLM should avoid any unauthorized expertise before the
establishment of accountability system (Sun et al., 2022), which involves the psychological orientation
and any medical advice. Besides, the impact of conversation context on safety gains more attention
recently, as a results, detective and generative algorithms base on the context are proposed successively
(Dinan et al., 2019a; Baheti et al., 2021; Dinan et al., 2022). RealToxicityPrompts (Gehman et al., 2020)
is a dataset derived from English web texts, where prompts are automatically truncated from sentences
classified as toxicity from a widely-used toxicity classifier. RealToxicityPrompts consists of 100K natural
prompts, with average 11.7 tokens in length. BAD (Xu et al., 2021) is a dataset collected by the human-
in-the-loop strategy, where crowdworkers are ask to prob harmful model outputs. BAD consist of 5k
conversations with around 70k utterances in total, which could be used in both non-adversarially and
adversarially testing the model weakness.

2.4.2 Unfairness and Social Bias

Unfairness and social bias present more covertly and widely for LLMs. Following the previous studies,
we conclude that social bias is an inherent characteristic of a LLM, which mainly embody in the dis-
tribution difference of a LLM in language selection based on different demographic groups. Compared
to the social bias, unfairness is the external form, which reflected in the output performance of specific
tasks, for example, the African American English (AAE) is frequently mis-classified as the offensive lan-
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guage by some language detector (Lwowski et al., 2022). However, issues of unfairness and social bias
are inevitable as they are widely distributed in human languages, and LL.Ms are required to memorize
language as accurately as possible in the training stage (Weidinger et al., 2021). With respect to evaluate
this important aspect, CrowS-Pairs (Nangia et al., 2020) is benchmark proposed to evaluating social bias.
There are 1508 examples in CrowS-Pairs that involves nine types of social bias, like gender, race, and
Nationality. StereoSet (Nadeem et al., 2021) is a dataset that could be used to evaluate social bias level
in both word-level and sentence level, which examples are in four domains: race, gender,religion, and
profession. For the StereoSet, the bias level is computed by the difference between model generation
probabilities of biased and anti-biased sentence.

2.4.3 Others

As current algorithms for model safety based on the human perception, there is still no golden standard-
ized judgement for LLMs to refer to, especially when a judgement is highly various across societies. It
is necessary to align LL.Ms with the morality, ethics, and values of human society. More and more works
focus on reifying this abstract concept into textual data recently, for example, Sap et al. (2020) proposal
an implicit reasoning frame to explain the underlying harm of the target language. Besides, other works
leverage rule-of-thumb (RoT) annotations of texts to support the judgement (Forbes et al., 2020; Ziems
et al., 2022). However, current works in this area are neonatal, and we could expect more related works
in the future.

Besides, we are also concerned about the privacy and political risks of LLMs. Since the LLMs are
trained on vast corpus collected from books, conversations, web texts and so on, the privacy safety of
LLMs arouses people’s concern. These training texts might contain the private or sensitive information
such as personal physical information, home address, etc. Many studies indicate LLMs are brittle under
attacks, leaking the sensitive information unintentionally (Carlini et al., 2020; Li et al., 2022). Therefore,
it is essential to test the privacy protection ability of a LLM. Moreover, the politics ignorance is also
intractable for a LLM. The politics-related risk mainly stems from the composition of the training corpus.
Texts in the corpus are derived from different language and social environments (usually the larger the
more diversified), and different countries have different political prudence and stance, which brings
additional risks to the wide deployment of a LM.

3 Future Directions
In this section, we outline some other competencies that are important for evaluating LLMs.

3.1 Sentiment

It is crucial to equip LLMs with the ability to understand and generate sentiments. As an indispensable
factor in human life, sentiments are widely present in daily chats, social media posts, customer reviews,
and news articles (Liu, 2015). Through the comprehensive research and high-level summary of the liter-
ature related to sentiments, we introduce the sentiment competency of LLMs in two aspects: sentiment
understand and sentiment generation.

3.1.1 Sentiment Understand

Sentiment understand mainly involves the understanding of opinions, sentiments and emotions in the
text (Liu, 2015). Representative tasks that reflect this competency include sentiment classification (SC),
aspect-based sentiment analysis (ABSA), and multifaceted analysis of subjective texts (MAST). SC aims
at assigning pre-defined sentiment classes to given texts. The typical datasets include IMDB (Maas et
al., 2011), SST (Socher et al., 2013), Twitter (Rosenthal et al., 2017), Yelp (Zhang et al., 2015). ABSA
focuses on identifying the sentiments of specific aspects in a sentence (Zhang et al., 2022), and the
most widely used datasets are the SemEval series (Pontiki et al., 2014; Pontiki et al., 2015; Pontiki
et al., 2016). MAST are tasks that involve the finer-grained and broader range of human subjective
feelings (emotions (Sailunaz et al., 2018), stance (Kii¢ciik and Can, 2021), hate (Schmidt and Wiegand,
2017), irony (Zeng and Li, 2022), offensive (Pradhan et al., 2020), etc.) (Poria et al., 2023). Given
that MAST includes a wide range of tasks, the datasets are not listed here in detail. Among them, the
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commonly used evaluation metrics for the above tasks are accuracy and F1 score (micro or macro).
Some preliminary empirical studies (Zhang et al., 2023; Wang et al., 2023) indicate that LLMs can
significantly improve performance on these tasks in few-shot learning settings. LLMs have the potential
to be a general solution without designing different models for various tasks. Therefore, the sentiment
understand competency of different LLMs deserves comprehensive exploration and empirical evaluation.
To evaluate the performance of this competency, we can utilize multiple domain-specific datasets or
choose the comprehensive benchmark (Srivastava et al., 2022; Liang et al., 2022).

3.1.2 Sentiment Generation

We categorize sentiment generation into two manifestations. One is to generate text that contains senti-
ments, and the other is to generate text that elicits sentiments. The former requires specifying the desired
sentiment, and the latter requires a combination of commonsense knowledge (Speer et al., 2017; Hwang
et al., 2021) or theory of mind (Sodian and Kristen, 2010). A classic application scenario is in open-
domain dialogue, specifically, emotional dialogue (Zhou et al., 2018), empathetic dialogue (Rashkin et
al., 2019), and emotional support conversation (Liu et al., 2021). To measure the quality of the generated
text, it is necessary to employ both automatic metrics (such as sentiment accuracy, BLEU (Papineni et
al., 2002), perplexity) and human evaluations (human ratings or preference tests). Currently, no work
has comprehensively explored this aspect, but it is an essential path towards artificial general intelligence
(AGI) (Bubeck et al., 2023).

3.2 Planning

Planning is the thinking before the actions take place. Given a specific goal, planning is the process to
decide the means to achieve the goal. There’re few works (Valmeekam et al., 2023; Valmeekam et al.,
2022; Pallagani et al., 2023; Huang et al., 2022) that look at the planning ability of LLMs. Some of
them focus on commonsense areas (Huang et al., 2022) like wedding or menu planning. Others adopted
automated planning problems, formal language translators, and verifiers to automatically evaluate LL.Ms’
competency(Valmeekam et al., 2023). With PDDL ° represented problem descriptions and the translation
of such problems into text and back, LLMs can thus sequence a series of actions to reach the planning
goal. Whether the planning purpose is achieved can be easily verified via automatic verifiers. Possessing
web-scale knowledge, LLMs have great potential for executing planning tasks or assisting planners.

3.3 Code

Coding competency is one of the advanced abilities of LLMs. LL.Ms with this competency can not only
perform program synthesis but also possess the potential of self-evolving. Technically, all of the tasks
involved with code like code generation and code understanding need this competency. In oracle manual
evaluation, prominent LLMs like ChatGPT are capable of up to 15 ubiquitous software engineering tasks
and perform well in most of them (Sridhara et al., 2023). The most explored evaluation task in coding
competency would be program synthesis, where program description and function signature are given for
its code implementation. One of the most pioneering benchmarks in program synthesis, HUMANEVAL
(Chen et al., 2021), consists of 164 pairs of human-generated docstrings and the associated unit tests to
test the functional correctness of model generation. However, with the worry of insufficient testing and
the imprecise problem description (Liu et al., 2023), existing LLM-for-code benchmarks still have lots
of room for improvement.

4 Conclusion

This survey provides a comprehensive review of various literature for the evaluation of LLMs. We ag-
gregate different works with their intended competencies. Some of the competencies(reasoning, knowl-
edge) already have holistic evaluation benchmarks, while others(planning, coding) still face disparate
challenges. The goal of this paper is to comb the numerous work concerning LLMs’ evaluation through
the lens of the core competencies test. Lighten the cognitive load for assimilating numerous evaluation

SPlanning Domain Definition Language, a formal language used to describe classical planning problems.
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works due to the various functions of LLMs. In doing so, we have also identified the challenge faced by
each competency, looking forward to alleviating it in the future.
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Abstract

Pre-training techniques have enabled foundation models (such as BERT, TS5, GPT) to achieve
remarkable success in natural language processing (NLP) and multimodal tasks that involve text,
audio and visual contents. Some of the latest multimodal generative models, such as DALL-E
and Stable Diffusion, can synthesize novel visual content from text or video inputs, which greatly
enhances the creativity and productivity of content creators. However, multimodal Al also faces
some challenges, such as adding new modalities or handling diverse tasks that require signals
beyond their understanding. Therefore, a new trend in multimodal Al is to build a compositional
Al system that connects existing foundation models with external modules and tools. This way,
the system can perform more varied tasks by leveraging different modalities and signals. In
this paper, we will give a brief overview of the state-of-the-art multimodal Al techniques and the
direction of building compositional Al systems. We will also discuss the potential future research
topics in multimodal Al

1 Introduction

Large language models (LLMs) have achieved great success in natural language processing (NLP). These
models (e.g., BERT (Devlin et al., 2019), T5 (Raffel et al., 2020) and GPT (Brown et al., 2020)) can learn
general data representations and commonsense knowledge from large-scale corpora using self-supervised
learning tasks (such as masked language modeling or next token prediction). The learned models can be
further fine-tuned on downstream tasks and obtain superior performance on them.

The success of LLMs has also been extended to other non-language domains, such as computer vision
or speech processing. The convergence of these techniques on different types of data makes “multimodal
AI” the hottest direction in the Al community.

This paper aims to briefly summarize the latest trends of multimodal Al research. In short, there are
three trends as follows: (1) the underlying architectures of models for different modalities are converging;
(2) the focus of multimodal Al research is shifting from multimodal understanding models to multimodal
generation models; (3) single multimodal models have shown limitations and they are still far from
covering diverse tasks using data with different modalities, and connecting LLMs with external tools
and models to complete more tasks is becoming the new Al paradigm. We will introduce these three
trends in Sections 2, 3 and 4, respectively. In Section 5, we will discuss the possible future directions of
multimodal Al.

2 The Convergence of Model Architecture

The architecture of models for different modalities is becoming more similar in the era of LLMs. Trans-
formers are widely used in text, code, visual and audio scenarios to support understanding and generation
tasks. For instance, the latest LLMs like ChatGPT or GPT-4 have integrated text and code in a single
model, which can support text-only, code-only, text-to-code and code-to-text generation tasks. Multi-
modal generation models like DALL-E (Ramesh et al., 2021) and NUWA-Infinity (Wu et al., 2022) are
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Figure 1: Overview of visual-language models.

also trained based on auto-regressive models like GPT models for image and video generation tasks.
VALL-E (Wang et al., 2023) can leverage strong in-context learning capabilities and can be applied
for zero-shot cross-lingual text-to-speech synthesis and zero-shot speech-to-speech translations, which
is also based on Transformer and GPT-like models. Moreover, we also observed that diffusion mod-
els are widely used in content generation tasks as well, such as DALL-E 2 (Ramesh et al., 2022) and
Stable Diffusion (Rombach et al., 2022) for visual generation, NaturalSpeech 2 (Shen et al., 2023) for
speech generation. But there is also another research thread that aims to unify different types of gener-
ation models using diffusion models, which can be also seen as an indication of the model architecture
convergence.

Due to the different basic units, data formats, and structures of the contents in different modalities,
there is still no universally agreed model architecture for multimodal Als. However, such convergence is
definitely a clear trend in the Al community.

3 From Visual-Language Understanding to Visual Generation from Language

Visual-Text (VL) pre-trained models are the most representative multimodal Als. The goal of such mod-
els is to learn the representations of texts and visuals jointly and support VL tasks such as image retrieval,
visual question answering, or text-based image generation. In the past several years, the research focus
has shifted from VL understanding tasks to visual generation tasks. Therefore, in this section, we will
first review the progress of VL understanding models and then review the latest development of visual
generation models from texts.

3.1 Visual-Language Understanding

There are 3 key differences between different VL understanding models.

First, how to represent visual inputs. Different VL understanding models use different granularity
to represent visual contents, such as pixels, objects and patches of the images or videos. The most
commonly used granularity recently is patches.

Second, how to generate visual representations. Some models use CNN-style models such as ResNet
or Faster R-CNN, while other models use Transformers such as ViT (Dosovitskiy et al., 2021), Swin
(Liu et al., 2021), etc.

Third, how to fuse the representations from text and visual inputs. There are several ways for this
task. For example, CLIP (Radford et al., 2021) model uses a simple dot-product component in the
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Figure 2: Overview of auto-regressive model.

fusion, which makes the computation cost very low and the resulting framework very effective in the
image-text matching task. Some early VL understanding models (Unicoder-VL (Li et al., 2019), M3P
(Ni et al., 2019), Uniter (Chen et al., 2020), etc.) used Transformers to further fuse the text and visual
representations. Mixture-of-Experts are used to fuse representations from different input modalities as
well, such as VLMo (Bao et al., 2022), which makes the model parameters for different modalities
more tunable. Some recent work, such as BridgeTower (Xu et al., 2023) and ManagerTower (Xu et
al., 2023), leveraged the text or visual representations from different layers to generate better uni-modal
representations for the later VL understanding tasks.

In summary, using patches as the visual representation units and using Transformer to fuse text and
visual representations is the current state-of-the-art VL pre-trained model setting. Besides images, video
understanding is also very important for the development of many future Al systems. Currently image-
based visual models are efficiently used in the video models. However, it is straightforward to leverage
the large-scale video corpus directly in the future, which can train more powerful multimodal Al models
for video-related tasks.

3.2 Visual Generation from Language

Currently, there are two typical text-based visual generation methodologies.

The 1st generation methodology is based on VQGAN (Yu et al., 2022) and autoregressive model.
In VQGAN, an encoder can transform each image into discrete visual tokens. Each visual token is an
integer code coming from a codebook and represents the content appeared in the corresponding image
region. For example, the image region at the top-left corner is represented by a visual token whose 1D
is 31. Based on these visual tokens, a decoder can reconstruct the original image. It means if a natural
language sentence can be translated into a visual token sequence, the VQGAN decoder can simply use
the sequence to generate an image that reflects the meaning of the input sentence. This is exactly what
DALL E (Ramesh et al., 2021) and Parti (Yu et al., 2022) do in their text-to-image generation procedures.
In such models, a text encoder first encodes each natural language description into text embeddings and
then a vision decoder follows an autoregressive formulation to generate visual tokens in a left-to-right
order. This is similar to the typical text generation procedure in many NLP tasks such as machine
translation or text summarization, where each word is generated based on all previous words already
generated. Last, the pre-trained VQGAN decoder will generate an image based on the predicted visual
tokens and a super-resolution model can further up-sample the output image to a bigger resolution. This
methodology has its own pros and cons: thanks to the autoregressive mechanism, these models can
capture the dependencies between generated visual tokens and also support variable-length generation
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tasks. But such generation process is not computationally efficient, as all tokens are generated one after
one, instead of concurrently.

The 2nd way to generate images from text is to use diffusion models. Diffusion models work by adding
noise to an image and then learning to remove the noise and recover the original image. This is called
the forward and reverse diffusion processes. The reverse diffusion process can also use text or image
as a condition to guide the image reconstruction. In diffusion model-based methods, a text encoder first
turns text into embeddings. Then a reverse diffusion process uses noise and the text embedding to create
output images. Some methods, like DALL E 2, also use a prior model to create an image embedding
from the text embedding and use it as a condition for the reverse diffusion process to increase the image
variety. Finally, a super-resolution model is used to make the output image bigger. Unlike autoregressive
models, diffusion models are fast, because they can create the image at each time step at the same time.
But they are not good at capturing the relationships between different parts of the image. They also
cannot generate images of different sizes, because the image size is fixed beforehand.

To overcome the fixed-size limitation of diffusion models, NWUA-Infinity (Wu et al., 2022) proposed
a method that can generate high-quality images and videos with any resolution, by creating them patch
by patch. Given a text input and a resolution, a module called Arbitrary Direction Controller (or ADC)
first decides the order of patch generation. Based on this order, NUWA-Infinity will create each patch one
after another in the patch-level. For example, when it creates patch 13, a module called Nearby Context
Pool (or NCP) first collects patch 7, 8, 9 and 12 as the context, because they are close to patch 13 within
a certain distance. Then the vision decoder will create visual tokens for patch 13 based on these context
patches and VQGAN decoder will create the corresponding image for patch 13. Because the vision
decoder uses the nearby patches as its context when it creates each patch, the patches look smooth and
natural when they are put together. This is how NUWA-Infinity can make the final image from all the
patches. Also, because the number of context patches in NCP is small, as the model will discard those
irrelevant patches during the generation process, the computation cost of the local autoregressive model
can be greatly reduced, as it doesn’t need to consider all patches created before. In this way, NUWA-
Infinity can create the remaining patches and get the complete image output. NUWA-Infinity can also
generate videos. The main difference from image generation is that the context patches in NCP come
from both the current video frame and the previous video frames. For example, when NUWA-Infinity
wants to create patch 14 in the second video frame, the context patches in NCP will include patch 1 to
patch 9 from the first video frame and patch 10 to patch 13 from the second video frame. After patch 14
is created, it will be added to NCP as a new context and patch 1 will be removed from NCP as it has no
impact on the future patches.
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Figure 5: Overview of NUWA-XL for text-based extreme-long video generation.

NUWA-Infinity can create images and videos of different lengths with the auto-regressive over auto-
regressive generation method. But auto-regressive models have some drawbacks, such as (1) they are
very expensive to train and use; (2) they have error propagation problems that affect the generation
quality; (3) they are not good at creating different scenes between images, which is important for video
generation as scenes change often in video contents.

To solve these problems, NUWA-XL (Yin et al., 2023) proposed a diffusion over diffusion framework,
which uses diffusion models in different levels to create long-videos in a fine-to-coarse way. In the first
level, a diffusion model creates the key frames, which have enough scene changes and also keep the
visual consistency between different video frames. In the second level, another diffusion model creates
in-between video frames between any two adjacent video frames created in the first level. In the third
level, a third diffusion model creates more in-between video frames between the adjacent video frames.
By doing this, NUWA-XL can create very long videos efficiently and reduce the error propagation issue.
Of course, the total scene length is still determined by the first level diffusion model, but creating a good
key frame scene is much easier than creating the whole video at once.
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Figure 6: Overview of Visual ChatGPT v1.

4 From Single AI to Compositional Al

Single Al models have obvious limitations. First, it is difficult to include a new modality in an existing
multimodal model. This is because adding a new modality needs not only new data with this modality,
but also training the model from scratch. So it requires a lot of work on data quality and computing
resources, especially GPUs. Second, it is difficult to make a single Al model handle different tasks,
even the most advanced LLMs like GPT-4 are not capable of this. This is because a single model is
constrained by the current abilities and the predefined modalities.

Therefore, the community is starting to investigate compositional Al (Liang et al., 2023) as a possible
new Al paradigm. This involves using and coordinating multiple AI modules with different functions to
solve complex problems. Such systems can show new abilities that are beyond what any single module
can do. We have seen some examples of this direction in the recent developments of LLMs, from single
LLMs, to LLMs with expert sub-modules and the latest trend of combining LLMs with other tools and
models to achieve more difficult tasks that are out of the scope of the original LLMs.

The benefits of compositional Al are quite obvious. First, it allows more control over the system’s
abilities by composing modules with specific functions. Second, it improves the system’s interpretability
and lowers the chance of hallucination by having clear definitions of modules. Third, it improves the
system’s continual learning ability and avoids the problem of catastrophic forgetting by not needing to
update all modules in each new training stage. Fourth, it makes data collection and training easier for
modules with simple skills. Fifth, it lowers data annotation and training costs by not needing to update
all modules.

There are two ways to create compositional Al systems from multimodal tasks. First, LLMs can be
integrated with external tools using fixed prompts, which can make the LLMs show new abilities on doing
different multimodal tasks. Second, LLMs can be connected with new Al modules with specific functions
using learnable parameters instead of fixed prompts. This soft connection can transfer information in
different modalities in a smooth way and enable better multimodal abilities. Also, as only the learnable
connectors are optimized during training with the original LLMs and other Al modules fixed, such system
can quickly include new modalities in the system with low computation cost.
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4.1 Connecting LLMs with External Tools with Fixed Prompts

For the first type of work, we use Visual ChatGPT (Wu et al., 2023) as an example to illustrate how such
work operates.

Visual ChatGPT is one of the first work that aims to combine visual tools with ChatGPT to perform
different kinds of visual tasks. As ChatGPT is an LLM, which can only handle textual tasks, the first
thing Visual ChatGPT needs to do is inform ChatGPT that it can try to use external visual tools to
accomplish visual tasks. This work uses prompts as the system principles to let ChatGPT understand its
new capabilities.

After adding system principles, Visual ChatGPT should also let ChatGPT know which tools it can use,
when it can use them and how it can use them. For example, for Visual QA, the name and usage fields of
this tool will briefly explain the function of the tool and when ChatGPT can use it, and the inputs/outputs
field tells ChatGPT what kind of inputs and outputs are needed by this tool.

As the tasks require multiple steps to be completed, Visual ChatGPT also adds the string “do I need
to use a tool” as another prompt after each user query, to let ChatGPT decide whether it needs to invoke
a tool at the current step. If the answer is NO, then ChatGPT will return the current results to the user.
Otherwise, ChatGPT will continue to call new tools and use all intermediate results as the context prompt
in the next step.

By adding the above mentioned mechanisms, Visual ChatGPT can achieve many visual understanding,
generation and editing tasks that the original ChatGPT model cannot do. This shows the biggest advan-
tage of compositional Al models, new abilities will emerge by composing multiple tools with specific
functions.

4.2 Connecting LLMs with External Modules with Learnable Parameters

Systems like Visual ChatGPT are easy to implement and build, as they do not require any weights to be
learned. However, such systems also have obvious limitations. First, the fixed prompts are not stable and
robust enough to link LL.Ms and tools. Second, in such systems, non-text information will be turned into
text descriptions before sending them to LLMs. And such conversion will lose a lot of information of
the original contents.
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Therefore, there are recent related work that use learnable parameters to connect LLMs with other
tool modules instead of using prompts. Such work will not change the parameters of the LLM and the
external tool modules, as they are already well trained and further fine-tuning requires a lot of computing
resources. Instead, they only train the adapters between LLM and tool modules using a small amount
of annotations. By doing this, such system can do better message passing between LLM and other tool
modules and avoid the catastrophic forgetting problem. For example, instead of converting the input
image into a natural language description, Visual ChatGPT v2 gets the image representation based on a
visual foundation model first, and then projects the image representation into the LLM input, by a visual
understanding adapter. Similarly, another output adapter can be used to pass the LLM’s output to the
visual generation module, to create output images.

5 Future Directions

This paper briefly reviews the recent developments of multimodal Al research, including (1) the model
architectures are becoming more similar, (2) the research focus is moving from multimodal understand-
ing models to multimodal generation models; (3) combining LLMs with external tools and models to
accomplish diverse tasks is emerging as the new Al paradigm.

There are several directions that can be further explored in the future. First, concentrating more on
video generation, which could trigger the next ChatGPT breakthrough in the Al community. Second,
concentrating more on compositional Al for multimodal systems with more modalities covered and less
computation costs needed. Third, concentrating more on the autonomous robotics, which can complete
more tasks in the physical world, to further enhance human’s creativity and productivity.
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