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Abstract

Recent years have seen a lot of efforts in attacking the issue of language priors in the field of
Visual Question Answering (VQA). Among the extensive efforts, causal inference is regarded as
a promising direction to mitigate language bias by weakening the direct causal effect of questions
on answers. In this paper, we follow the same direction and attack the issue of language priors
by incorporating counterfactual data. Moreover, we propose a two-stage training strategy which
is deemed to make better use of counterfactual data. Experiments on the widely used bench-
mark VQA-CP v2 demonstrate the effectiveness of the proposed approach, which improves the
baseline by 21.21% and outperforms most of the previous systems.

1 Introduction

As an Al-complete task to answer questions about visual content, Visual Question Answering (VQA) has
seen surging interest in recent years. The task is thought to be extremely challenging since a VQA system
requires the capability of visual and language understanding and the capability of multi-modal reasoning.
Recent researches in this field have paid increasing attention to the issue of language priors, aka language
bias (Agrawal et al., 2018). The issue of language priors is caused by spurious correlation between the
question pattern and the answer. See the example in Figure 1, “yellow” is the most likely answer to
the question “what color are the bananas” in the training data. So a simple solution to answering the
question is to give the answer “yellow” with no reference to visual content. Such a short cut can achieve
an accuracy of 54.5% for the question.

To overcome language priors in VQA, previous works generally resort to data augmentation. In this
direction, visual and textual explanations can be used as the data for augmentation (Das et al., 2017,
Park et al., 2018). Besides, counterfactual training samples are also regarded as a valuable source for the
purpose (Chen et al., 2020; Zhu et al., 2020; Gokhale et al., 2020; Liang et al., 2020). In the direction
of causal effect for VQA, more recent work is counterfactual VQA that focuses on the inference instead
of training phase (Niu et al., 2021), though, we still think of counterfactual data augmentation as an
efficient and effective way to solve the issue of language priors. So in this paper we first design novel
causal graphs specifically for the task of VQA, and then use the causal graphs to guide the generation of
counterfactual data. Finally, to make better use of counterfactual data, we propose a two-stage training
strategy. We evaluate the proposed approach on the widely used benchmark VQA-CP v2. Extensive
experiments demonstrate the effectiveness of the approach, which improves over the baseline by 21.21%
and outperforms most of previous systems. Moreover, to evaluate the generalization ability of the ap-
proach, we also experiment with VQA v2 and find that our approach achieves the best performance on
the dataset.

The contributions of the paper are as follows.

* For the task of counterfactual VQA, we design a novel causal graph and methods to construct
counterfactual data.
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Question: What color are the bananas?

Image:

-~

Answer: Yellow Answer: Green

Answer distribution:

57.6% 54.5%

42.4%
33.3%

Training Data Testing Data

Figure 1: An example from VQA v2 which is used to illustrate 1) the task of visual question answering,
and 2) the issue of language priors.

* Our approach achieves significant improvements over the baseline and is one of the best-performing
systems on the benchmarks.

2 Methodology

In this section, we first describe the implementation of our baseline system. Then we introduce the design
of VQA causal graphs which inspire us to come up with the proposed methods. Finally we describe the
methods in detail. The system framework is presented in Figure 2.

2.1 The Baseline System

Following the conventional paradigm of VQA systems, we formalize the task as a multi-class classi-
fication problem. In general, a VQA dataset consists of /N instances which are tuples of an image, a
textual question, and the corresponding answer, denoted as D = {I;, Q;, Ai}i]\il' VQA models take an
image-question pair (I, () as input, and predict an answer A by following

A* = P(A|L, Q;), 1
arg max P(A|L;, Qi) (D

where P(A|I;, Q;) can be any model-based functions that map (I, @) to produce a distribution over the
answer space 4. Conventional VQA systems are generally composed of three components:

* Feature Extraction, which extracts the features of images and question as visual representation
and text representation, respectively.

* Multimodal Feature Fusion, which fuses image and text features into the same vector space.
* Answer Prediction, which produces the answer prediction through a classifier.

We follow (Anderson et al., 2018) to implement our baseline system. The baseline system pays special
attention to feature extraction by integrating a combined bottom-up and top-down attention mechanism
to enable attention calculation at the fine-grained level of objects. Within the approach, the bottom-up
attention proposes image regions while the top-down mechanism determines feature weightings.
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Figure 2: Illustration of our approach, where the upper half presents the process of counterfactual data
generation and the bottom half represents the process of two-stage training.

2.2 Causal Graph for VQA

To better understand the casual graphs we propose for the VQA task, we need to revisit the procedure
of VQA data annotation. Specifically, when curating a dataset, annotators are required to produce a
question regarding visual content of a presented image and give a correct answer. Therefore, we can
construct a casual graph to exhibit the relationship between three variables: the image I, the question
@, and the answer A. Figure 3(a) illustrates the casual graph, where [ indirectly and directly affects A
through I — Q — A and I — A, respectively. In the chain of I — Q — A, the question @ acts as
a mediator to influence A. If we control the mediator (), the causal association between [ and A in the
chain I — Q — A will be blocked, that is, when the association between I and A is not well learned
through I — A (the middle and right graph in Figure 3(a)), the model will give the answer based on the
question only but ignore the content of the image. This phenomenon corresponds exactly to the language
prior problem in VQA. Therefore, we propose to introduce counterfactual data to weaken the effect that
comes from the chain I — ) — A, which is shown in Figure 3(b).

2.3 Automatic Generation of Counterfactual Data

We propose two methods to construct counterfactual data, corresponding to multimodal counterfactual
data and unimodal counterfactual data, respectively.

Multimodal Counterfactual Data. First of all, we realize that the issue of language priors is caused
by the chain I — @ — A, so we need to mitigate the influence of this branch on the selection of the
answer. Inspired by (Zhu et al., 2020), for each pair(7;, @;) in factual data, we construct counterfactual
data (I], ;) by shuffling image I; in the same mini-batch, such that the image and the question in coun-
terfactual data are mismatched. The causal graph of counterfactual image data is shown in Figure 4(a).
Following the same idea, we also propose to construct counterfactual question data by shuffling ques-
tions in the same mini-batch. The corresponding causal graph is illustrated in Figure 4(b). Subsequent
experiments show that incorporation of multimodal counterfactual question data is also beneficial to the
performance, which demonstrates the presence of vision bias in the VQA task, a phenomenon not often
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Figure 3: (a) Casual graph for VQA. (b) Overcome language priors with counterfactual data.

Figure 4: Causal graph demonstrating the methods for generating counterfactual data.

mentioned before.

It is worth noting that we do not resort to any extra human annotations during the construction of the mul-
timodal counterfactual data, but simply make use of the factual data itself. The underlying idea is quite
different from the methods proposed in previous works for the construction of counterfactual data (Chen
et al., 2020; Liang et al., 2020; Gokhale et al., 2020).

Unimodal Counterfactual Data. We further consider to construct unimodal counterfactual data. We
hope the model to accept information from only one modality as input. Concretely, we construct uni-
modal counterfactual data by passing only images(/;,#) or questions({), @;) into the model, which the
causal graph is illustrated in Figure 4(c)(d). However, the model cannot handle the case where the input is
empty during implementation, so we choose to use a learnable parameter ¢ multiplied by a matrix whose
elements are all ones and the shape is same as image representation or text representation as the null
modal information. Finally, the unimodal counterfactual data can be represented as (/;, ¢;) and (c;, Q;).

2.4 Two-stage Training Strategy

In the real world, we can only give the right answer when we see the right factual image-question pair.
Conversely, we often cannot give the correct answer when we see a counterfactual image-question pair.
But usually in this case the correct answer will change and the previously correct answer will often
become the wrong answer, which is the only thing we know for sure. We hope to solve language prior
problems by using counterfactual image data in the manner shown in Figure 3(b). Specifically, when the
VQA model takes the counterfactual image data as input, we construct the loss function by minimizing
the probability of the ground truth answer:

P(A'|I}, Qi) = softmaz(F(I}, Q;))

'yt (2)
me,cf,i = P(A ‘I'u Qz)[k]
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| VQA-CP v2 test(%) VQA v2 val(%)
| Al YN Num Other | Al YN Num Other

UpDn 39.74 4227 1193 46.05 | 63.48 81.18 42.14 55.66
GVQA 31.3 5799 13.68 22.14 | 48.24 72.03 31.17 34.65
SAN 2496 3835 11.14 21.74 | 52.41 70.06 39.28 47.84
Systems without counterfactual inference
DLR 48.87 70.99 18.72 4557 | 57.96 76.82 39.33 48.54
VGQE 48.75 - - - 64.04 - - -
AdvReg 41.17 6549 1548 3548 | 62.75 79.84 4235 55.16
RUBI 4423 67.05 17.48 39.61 - -
LMH 52.01 7258 31.12 46.97 | 56.35 65.06 37.63 54.69
CVL 42.12 4572 1245 48.34 - - - -
Unshuffling | 42.39 47.72 14.43 47.24 | 61.08 78.32 42.16 52.81
Randlmg | 55.37 83.89 41.6 442 | 5724 76.53 33.87 48.57
SSL 57.59 86.53 29.87 50.03 | 63.73 - - -
Systems with counterfactual inference
CSS 58.95 8437 4942 4821|5991 7325 39.77 55.11
CSS+CL | 59.18 86.99 49.89 47.16 | 57.29 67.29 38.40 54.71
CF-VQA | 53,55 91.15 13.03 4497 | 63.54 82.51 4396 54.30
MUTANT | 61.72 88.90 49.68 50.78 | 62.56 82.07 42.52 53.28
This Paper | 60.95 87.95 5041 49.70 | 64.11 82.23 44.09 56.75

Systems

Table 1: Comparison with the state-of-the-art methods on the VQA-CP v2 test set and VQA v2 validation
set. The evaluation metric is accuracy, and the backbone of all models is UpDn. Overall best scores are
bold and the second best of scores are underlined.

where k denotes the index of the ground truth in the answer set A. For the counterfactual question data,
the corresponding loss function is similar to equation(2): , which can be defined as:

P(A'L;, Q) = softmazx(F(I;, Q7))
me,Cffq = P(A/‘Iiv Q;)[k]
Finally, the loss of the multimodal counterfactual data is defined as:

me,cf = )\;nmme,cf,i + )\anme,cf,qa (4)

3)

where \; and )\, are hyperparameters.
Similar to multimodal counterfactual data, the unimodal counterfactual loss function can be defined as:

P(A'les, Qi) = softmaz(F(c;, Qi)
Lum_cfi = P(A'|ci, Qi) [K]
P(A'|L;, ¢q) = softmax(F(I;,c,))
Lum.cy.q = P(A'1;, ¢g)[K]
The total loss of unimodal counterfactual data is defined as:
Lum_cg = N Lum_cfi + A" Lum_cf 4 (7)

Simply combining counterfactual and factual data together as training data may render these two types
of data interfere with each other. For this reason, we adopt a two-stage training strategy, which utilize
factual data and the normal VQA loss function for training in the first stage and utilize counterfactual
data and counterfactual loss functions in the second stage. are introduced on top of the first stage to
alleviate the problem of the language priors of the VQA model:

Ltotal = qua + )\mmme,cf + )\umLum,cf (8)

6))

(6)
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3 Experiments

3.1 Datasets and Comparative Systems

Datasets. We conducted extensive experiments on the most widely used benchmark VQA-CP
v2 (Agrawal et al., 2018) adopting the standard evaluation metric. Because the dataset of VQA v2 (Goyal
etal., 2017) has the language prior problem, (Agrawal et al., 2018) reorganized the data splitting of VQA
v2 to construct VQA-CP v2 where answers have different distributions in the training and validation set.
Thus, VQA-CP v2 is an appropriate benchmark for evaluating the generalization ability of VQA models.
Briefly, the training set of VQA-CP v2 contains approximately 121k images and 245k questions, and the
test set consists of approximately 98k images and 220k questions.

Comparative Systems. System participating in the comparison against our approach can be cate-
gorized into two groups: 1) systems without counterfactual inference, including DLR (Jing et al.,
2020), VGQE (KV and Mittal, 2020), AdvReg (Ramakrishnan et al., 2018), RUBi (Cadene et al.,
2019), LMH (Clark et al., 2019), Unshuffling (Teney et al., 2021), RandImg (Teney et al., 2020),
SSL (Zhu et al., 2020), and 2) systems with counterfactual inference, including CF-VQA (Niu et al.,
2021), CSS (Chen et al., 2020), CL (Liang et al., 2020), and MUTANT (Gokhale et al., 2020).

3.2 Implementation Details

As mentioned above, our VQA system builds on the base of UpDn (Anderson et al., 2018). Following
previous researches, we use the Faster-RCNN (Ren et al., 2015) model previously trained by (Anderson
et al., 2018) to extract image features. We extract 36 region features for each image and the dimension
of each region feature is set to 2048. Moreover, each question is padded so as to have the same length
of 14 tokens, and each token in questions is encoded by the pretrained language model BERT (Devlin
et al., 2019) with a dimension of 768. Then word embeddings are fed into GRUs to obtain the question
representation with a dimension of 1280. Inspired by SSL (Zhu et al., 2020), we also add a BatchNorm
layer before the MLP classifier of UpDn. We train our model for 25 epochs every time. We adopt the
Adam optimizer to update model parameters, whose learning rate is set to 0.001 and the learning rate
decreases by half every 5 epochs after 10 epochs. The batch size is set to 256. We implement our system
using PyTorch, and we train our model with one Nvidia 2080Ti card.

3.3 Main Experimental Results

Table 1 presents the comparison results between our approach and previous systems on both VQA-CP v2.
From the results, we can see that our approach significantly improves the baseline UpDn by +21.21% on
VQA-CP v2. The improvement demonstrates the effectiveness of our approach on mitigating the issue
of language prior. Moreover, our approach outperforms all the comparative systems on VQA-CP v2
except for MUTANT which requires additional human annotations of key objects in images. Moreover,
we can see our approach achieves stable performance on VQA v2 with the best performance over all the
previous systems. To demonstrate the generality of our approach, we also experiment with VQA v2, and
the results show that our approach achieves the best performance among all the participating systems.

3.4 Experiment Analysis

Impact of Counterfactual Data Combination

We proposed several types of counterfactual data, so we conducted a study on the effect of each type of
counterfactual data and the effect of their combinations. From the results shown in Table 2, we have the
following observations:

* Both counterfactual image data (], );) and counterfactual question data (I;, ;) are able to im-
prove the performance. The use of counterfactual image data achieves significant improvements,
while the counterfactual question data achieves relatively limited improvements. This suggests that
the main cause of the language prior problem is the superficial correlation between questions and
answers, but there are also some vision bias that cannot be ignored.
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Counterfactual Data
(Iz{in) (IhQ;) (Cini) (Ii’CQ)
- 41.52
- 57.59
MM - v - - 41.87
v - 59.05
- 41.83
v 41.70
v 41.88
Total ¢/ v v v 60.95

v
UM - - -
v

Table 2: Impact of different types of counterfactual data, evaluated on VQA-CP v2 test set. MM refers
to multimodal counterfactual data and UM refers to unimodal counterfactual data, respectively

A | Ratio | VQA-CP v2 test(%)
1:0.5 58.06
1:0.7 59.46
Agmymm |z 59.32
1:2 59.15
1:3 58.76
1:0.5 60.03
1:0.7 60.29
Agmum | 60.34
1:2 59.51
1:3 58.07
1:0.5 60.17
1:0.7 60.53
Amm:xum ] 60.95
1:2 5821
1:3 60.29

Table 3: Impact of different ratio between A\. We divide A into three groups(A[*™ : AJ"™), (AP -
AG™ ), (AT XU according to the counterfactual data used, with the latter group realized on the best
results of the previous group’s experiment. The evaluation metric is accuracy(%).

* Both multimodal counterfactual data and unimodal counterfactual data can improve the model per-
formance, which demonstrates that these data can prompt the generalization ability of model.

In summary, the above experimental results verify the validity of the counterfactual data.

Impact of Varying Settings of \

As we can see from the results in Table 2, different types of counterfactual data have diverse effect on
the performance. So we need to evaluate the effect of varying settings of the hyperparameters A in the
loss functions. We divide A into three groups for comparison and conducted extensive experiments with
different \ values. From results in Table 3, we can observe that the model gets the best performance
when A" )\an is 1:0.7, Aj™ - Xq”” is 1:1, and A™™ : \¥™ is 1:1.

Impact of Varying Starting Points of the Second Stage Training

In the process of two-stage training, different starting points of the second stage tend to achieve different
results. So we conducted an experiment to show the effect of varying starting points. As can be seen in
Figure 35, starting the training on counterfactual data too early or too late will bring negative effect on
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Figure 5: Impact of different starting points of the second stage training, evaluated on the VQA-CP v2

test set.
Methods ‘ Overall(%) ‘ Gap A 1
UpDn 39.74
UpDn + counterfactual data 60.95 +21.21
ot 2390 +27.46

SAN + counterfactual data 5242

Table 4: Performance of different backbones on VQA-CP v2 test set.

the performance. Empirically, we find the second stage can start its training at the 12th epoch.

Impact of Different Backbones

We also conducted experiments on another backbones SAN (Yang et al., 2016) to verify that our approach
is model agnostic. From the results in Table 4, we can observe that our approach can achieve significant
improvements no matter what backbone is used.

4 Related Work

Visual Question Answering

Visual Question Answering aims to answer the question according to the given image, which involves
both natural language processing and computer vision techniques. At present, the dominant methods
are attention-based models. (Anderson et al., 2018; Yu et al., 2019; Yang et al., 2016) use attentions
mechanisms to capture the alignment between images and natural language in order to learn the intrinsic
interactions between image regions and words. (Antol et al., 2015) maps two modal features(visual and
textual features) into a common feature space and then passes the joint embedding into the classifier to
obtain the answer of the question. Another methods including that compositional models that (Andreas
et al., 2016) applies neural module network to the VQA task, which is a combination of several modular
networks. The neural module network is dynamically generated according to the linguistic structure
of the question. (Wu et al., 2016) introduces external knowledge to help model with answering the
questions.

Attacking Language Priors in VQA

Despite the progress made in the field of VQA, recent researches have found that VQA systems tend
to exploit superficial correlations between question patterns and answers to achieve state-of-the-art
performance (Agrawal et al., 2016; Kafle and Kanan, 2017). To help build a robust VQA system,
(Agrawal et al., 2018) propose a new benchmark named VQA-CP whose training and testing data have
vast distributions. Recent solutions to overcome the language priors can be grouped into two categories
as without counterfactual inference (Clark et al., 2019; Zhu et al., 2020; Teney et al., 2021) and with
counterfactual inference (Agrawal et al., 2019; Pan et al., 2019; Chen et al., 2020; Liang et al., 2020;
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Gokhale et al., 2020).

For the methods that without counterfactual inference, RUBi (Cadéne et al., 2019) proposes to dy-
namically adjust the weights of samples according to the effect of the bias, LMH (Clark et al., 2019)
ensembles a question-only branch to discriminates which questions can be answered without utilizing
image and then penalizes these questions. Unshuffling (Teney et al., 2021) describes a training procedure
to capture the patterns that are stable across environments while discarding spurious ones. SSL (Zhu et
al., 2020) proposes a self-supervised framework that generates labeled data to balance the biased data.
For the methods that with counterfactual inference, One solution is is to modify model architecture that
implement counterfactual inference to reduce the language bias (Niu et al., 2021). The other one is to
synthesize counterfactual samples to improve the robustness of VQA systems (Agrawal et al., 2019;
Pan et al., 2019; Chen et al., 2020; Liang et al., 2020; Gokhale et al., 2020). CSS (Chen et al., 2020)
generates the counterfactual samples by masking objects in the image or some keywords in the question.
Based on CSS, CL (Liang et al., 2020) introduces a contrastive learning mechanism to force the model to
learn the relationship between original samples, factual samples and counterfactual samples. MUTANT
(Gokhale et al., 2020) utilizes the extra object-name annotations to locates critical objects in the image
and critical words in the question and then mutates these critical elements to generate counterfactual
samples.

5 Conclusion and Future Work

To mitigate the effect of language priors in the VQA task, we proposed a causal inference approach that
automatically generates counterfactual data and utilize the data in a two-stage training strategy. We also
designed several causal graphs to guide the generation of counterfactual data. Extensive experiments on
the benchmark VQA-CP v2 shows that our system achieves significant improvements over the baselines
and outperforms most of previous works. Moreover, our system achieves the best performance on VQA
v2 which demonstrates the capability of generalization.

The starting point of the the second stage training is critical to the performance, in our future work,
we would like to determine the starting point in an automatic way. Moreover, it is interesting to evaluate
the performance when other networks such as SAN are used as the backbone. We will also study this
problem in our future work.
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