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Abstract

We consider the task of automatically extract-
ing various overlapping frames, i.e, structured
entities composed of multiple labels and men-
tions, from long clinical breast radiology doc-
uments. While many methods exist for related
topics such as event extraction, slot filling, or
discontinuous entity recognition, a challenge
in our study resides in the fact that clinical re-
ports typically contain overlapping frames that
span multiple sentences or paragraphs. We
propose a new method that addresses these dif-
ficulties and evaluate it on a new annotated cor-
pus. Despite the small number of documents,
we show that the hybridization between knowl-
edge injection and a learning-based system al-
lows us to quickly obtain proper results. We
will also introduce the concept of scope rela-
tions and show that it both improves the per-
formance of our system, and provides a visual
explanation of the predictions.

1 Introduction

In this study, we will address the task of structur-
ing breast radiology reports.1 This end to end task
consists in extracting different structured entities
(frames) of various types, each one composed of
multiple labels and multiple mentions organized
as a list of fields. The creation of a frame is trig-
gered by a "trigger" mention, and some of its fields
may be justified by "attribute" mentions. An ex-
ample of structured lesion frames extracted from
a fictitious document is illustrated in Figure 1 and
Table 1, using the scheme described in Appendix
A. A first difficulty is related to the size of the
documents: frames can group mentions that span
several sentences or paragraphs. The second dif-
ficulty is related to overlapping frames that may
share multiple mentions and even trigger mentions.

1This study was approved by the institutional review board
at APHP (CSE 190022) as part of the EZMammo project.
Only previously pseudonimized documents were used in this
study (Paris et al., 2019).

Therefore, modelling the relations between differ-
ent mentions is necessary to distinguish between
multiple overlapping frames, such as Frames 1 and
3 in the example. Our contributions 2 are the fol-
lowing:
• an end-to-end model to extract frames from texts
• a clique-based method for dealing with overlaps
• the concept of scope-relations to group mentions

Figure 1: Fictitious excerpt, annotated with lesion
related-mentions colored according to their frames

2 Related works

The extraction of structured information from clin-
ical reports has been the subject of many studies.
Most of these works are not specific to breast imag-
ing reports and the objectives vary greatly, in terms
of their scope, granularity and form. Interested
readers can refer to existing surveys on the state of
NLP in radiology reports (Bitterman et al., 2021;
Miwa et al., 2014). Several works are only con-
cerned with the extraction of a few report-level
attributes, and therefore view the task as a classi-
fication or term extraction task for items such as
ACR scores, histological grade or primary site of

2An implementation of the model presented in this article
can be found at https://github.com/percevalw/
breast-imaging-frame-extraction
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Frame 1 Frame 2 Frame 3
field value mention(s) value mention(s) value mention(s)
trigger [cysts], [nodules] Multiple [cysts] [cysts], [nodules]
organ breast [Breast] breast breast [Breast]
laterality left [Left]: left on the [left] left [Left]:
time current current current
quadrant
size [millimetric] [millimetric]
distance 30mm [3 cm] 20mm [2 cm]
angle 8 [8 o’clock radius] 6 [6 o’clock radius]

Table 1: Lesion frames of the example in Figure 1.

lesions (He et al., 2017; Qiu et al., 2018; Alawad
et al., 2018; Moore et al., 2017; Castro et al., 2017).
Other features have also been the subject of special-
ized systems such as locations (Datta et al., 2020).
An extensive survey of the different systems pro-
posed for different features was conducted by Datta
et al. (2019). Other works have sought to produce
a more detailed and global extraction, and to de-
tect several types of entities at the same time. The
earliest work was the one of Taira et al. (2001),
who proposed a frame based representation and
method for annotating abnormal findings, anatomy,
and medical procedures frames in radiology re-
ports. Lacson et al. (2015) used a rule-based sys-
tem and terminologies to extract abnormal findings
and ACR scores. The DeepPhe system was pro-
posed by Savova et al. (2017) as a fully integrated
software built on cTakes (Savova et al., 2010) to ex-
tracts document and patient level cancer summaries
(akin to frames) in clinical reports. Steinkamp et al.
(2019) proposed a fact-based scheme, in which
each fact is structured around an anchor and may
contain modifiers. However, their model makes the
assumption that all the mentions that characterize
an entity are adjacent inside the fact span. Several
methods decompose the problem into a first NER
step followed by a relation detection step that al-
lows arguments to be non adjacent. Roberts et al.
(2019) proposed a frame based scheme for anno-
tating cancer information in clinical reports and a
method to perform the prediction (Si and Roberts,
2018). Their method first extracts triggers and mod-
ifiers with a NER system, and predicts their rela-
tions to form frames, but makes the assumption
that there is no overlap between the different enti-
ties. Recently, a more complex scheme has been
proposed by Jain et al. (2021) to annotate nested
relationships between different entities. However,
this work does not specifically address the case of

complex or distant relations between entities.
The closest task to ours is the one of Event Ex-

traction, in which models extract one event per
trigger mention, and look for related mentions that
might be part of the same event. However, trig-
ger mentions (e.g., the first [cysts] in Figure 1)
may belong to different overlapping frames (the
3cm 8 o’clock lesion frame and the 2cm 6 o’clock
lesion frame in Figure 1) that can only be distin-
guished by considering relations between their at-
tribute mentions ([2cm], [3cm], [8 o’clock radius],
and [6 o’clock radius]). To address this issue, an
approach consists in listing all the possible com-
binations of mentions, then filtering them with a
classifier (Miwa et al., 2010; Heimonen et al., 2010;
Björne and Salakoski, 2011, 2013, 2015; Liu et al.,
2015; Trieu et al., 2020). However, this solution
becomes computationally unsatisfactory when the
number of mentions that compose a frame grows.

3 Method

We now detail a neural network based end-to-end
method to automatically extract frames from clin-
ical reports. We encode each document as word
embeddings and share these with the downstream
decoding components. Like most relation and event
extraction models, our model operates as a pipeline.
As illustrated by Figure 2, the first two mention-
level decoders extract the named entities, or men-
tions (step 1 ), that are likely to be used in the com-
position of structured entities, and normalize them
(step 2 ) to obtain the value of the field they apply
to. The next two decoders focus on frame-level
extractions. The frame extraction decoder (step 3 )
extracts groups of mentions to form frames. For
each frame, the last frame classification decoder
(step 4 ) predicts the values of the fields for which
no explicit mention was found, such as a past tem-
porality, which could be indicated by a verb tense.
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Figure 2: Overview of the decoding steps: we 1 extract mentions, 2 normalize them, 3 group them into frames
and 4 predict the values of the fields for which no explicit mention was found

3.1 Text encoder
Our documents are written in French, therefore we
use a pretrained CamemBERT model (Martin et al.,
2020). To reduce the sequence size and ensure that
the NER step does not predict boundaries inside
words, we average the wordpieces embeddings of
a word to obtain one embedding per word. More-
over, we split the document into sentences using
a regular expression. We add the left and right
contexts ("document context") of each sentence be-
fore running it through the Transformer, up to a
maximum total number of wordpieces, as it proved
useful in other studies (Devlin et al., 2019; Kantor
and Globerson, 2020; Yu et al., 2020; Schweter and
Akbik, 2020; Luoma and Pyysalo, 2021). Next, we
apply multi-layer BiLSTM on the concatenation of
the BERT embeddings generated for each sentence
of the document. BERT models usually focus on
sentences and replace the "line break" character
by a single space. To keep this informative token
in our long clinical documents, we replace all line
breaks with the rarely used "_" character.

3.2 Mention recognition and normalization
We use a sequence labeling NER model based on
the BIOUL tag scheme with multiple parallel CRF
layers. Each independent layer is responsible for
the extraction of entities of a given type, such that
predicted entities of different types may overlap.

Each mention is then classified, or normalized, to
obtain the values of the fields to which it applies. A
subset of the available values for each field/mention
is given in Table 7.

For example, "bilateral" is normalized as both
"left" and "right". The allowed multi-label combi-
nations is defined manually. We compute a max-
pooled representation for each mention m and
project it to obtain one score per label:

scorelabel(m) = V label · maxpool
w∈words(m)

E(w)

Finally the score of each possible legal label
combination Lmention is computed as the score of
the labels present in the combination. The prob-
ability is computed by normalizing over all legal
combinations.

To be processed in the next layers, each men-
tion is represented by the average embedding of its
words.

3.3 Frame extraction

We now seek to extract the frames, that is, group
the extracted named entities together. We will now
describe a method to overcome the previously dis-
cussed issue of overlapping frames. The overall
frame extraction component and its training proce-
dure are described in Figure 3.

3.3.1 Clique extraction
Our approach consists in answering the following
question for each pair of mentions: "are these two
mentions part of the same frames ?" We can then
extract maximal cliques of entities, i.e., groups in
which mentions agree with each other on belonging
to the same frame. For two mentions u and v,
we compute the score r(u, v) computed by u of
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Figure 3: Overview of the frame extraction process and its supervision. Forbidden scope begin and end locations
(because they are located after or before the mention) are grayed out. Green matrices and arrows at the left and top
of the Figure show the possible supervision signals: red means no relation, green means that a relation should be
predicted, and white means no supervision.

v belonging to its frames, and the score r(v, u)
computed by v of u belonging to its frames: the
final agreement score between the two mentions is
the maximum

R(u, v) = max T r = max(r(u, v), r(v, u))

meaning that one of the two mentions can be un-
certain about the relationship. At this point, we
could have assumed a symmetric function for r to
avoid the max computation, but as we will see in
the next sections, both biaffine and scopes scores
are asymmetric.

3.3.2 Biaffine relation scores
A simple baseline to compute r(u, v) consists in
a biaffine model. In our case, we compute this
score as an attention score between the mentions
representations. Additionally, we inject the rela-
tive distances between mentions inside the atten-
tion mechanism using a similar mechanism to He
et al. (2020). This attention is the sum of a content-
content attention (the original dot product attention
of Vaswani et al. (2017)), a content-position atten-
tion and a position-content attention.

3.3.3 Scope relation scores

We propose another approach for the same relation
extraction task, based on the concept of scopes.
Scopes are annotations of contiguous text zones on
which a named entity referred to as a "cue" applies
its meaning. Scopes have been mostly studied in
the context of negation and uncertainty detection
(Vincze et al., 2008; Li and Lu, 2018; Dalloux et al.,
2020; Khandelwal and Sawant, 2020). We extend
this concept to all types of named entities and make
it the primary mode of relation extraction in our
task. Indeed, it may be simpler for the model to
detect where the scope of a mention starts and stops,
and to retrieve all entities between these boundaries,
than inferring the value of the relation for each
pair of mentions. In the example of Figure 1, the
scope of laterality [Left] covers all the section and
therefore applies its effect to all frames composed
of these mentions.

For the mathematical details of our formulation,
we will call u and v two mentions, and t a word.
Each scope is represented with the BIOUL for-
mat. We compute two attention matrices SB(u, t)
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and SL(u, t) between the mentions and words, us-
ing the relative attention mechanism previously de-
scribed to obtain start (B) and end (L) scope scores
for each word. We constrain B to be before the
mention and L after. The score SU of the tag U
(scope that only contains one word) can be com-
puted as the sum of the start and end scores, and
the scores SI and SO of I and O tags are set to
zero and will be inferred by a CRF layer (Lafferty
et al., 2001).

To predict if a word is in the scope of a men-
tion, i.e., is labeled I, B, L or U, we compute the
marginalized probabilities Sm

··· of a CRF with the
forward-backward algorithm on the scope of each
mention. The Scope CRF is parameter-less but
illicit transitions (such as I −→ B or L −→ I) be-
tween tags are prevented, i.e., all CRF weights are
0 or −∞. The score rscope(u, t) of each word t
being in the scope of u is therefore:

rscope(u, t) = ln
[
eS

m
B + eS

m
L + eS

m
U + eS

m
I − eSm

O

]

with Sm
BIOUL(u) = ForwardBackward(SBIOUL(u))

and, the score rscope(u, v) of v being in the scope
of u, i.e., the average of the scores of each word of
v of being in the scope of u: 1

|v|
∑

t∈v r
scope(u, t)

Using a CRF allows us to never explicitly com-
pute the score that a word is in the scope of a given
mention. Instead, we let the network predict the
start and end of the scope for each mention and
use the CRF to "paint" the inside of the scopes in a
differentiable way.

3.3.4 Score combination
The scope relation and biaffine relation scores are
combined together. Because we defined scopes
as being continuous spans of text, it is possible
that a mention falls in the scope of another men-
tion and yet does not belong to its frame. In
the example "Mammography: we find the left
mass biopsied in 2010. Nothing else in the right
breast.", the scope of [Mammography] contains
the temporality [2010] but the two mentions are
not part of a same frame. Therefore, a relation
between two mentions is only predicted if both
components (biaffine-based and scope-based) pre-
dict this relation, which we formulate as r(u, v) =
min(rscope(u, v), rbiaffine(u, v)).

3.3.5 Frame relation supervision
Training the frame extraction module raises several
difficulties. For two compatible mentions u and v,

we supervise R with the supervision matrix Rtarget

via a binary cross-entropy loss.

Rtarget(u, v) =

{
1 if u and v are linked
0 otherwise

(1)

The score R(u, v) is the result of the maximum
of a matrix r(u, v) and its transpose, which, from
a scope perspective, means that one mention can
be within the scope of another without the reverse
being true. This non-differentiable maximum can
be hard to learn for the model.

For this reason, we propose to supervise one of
the two relation directions scores (i.e., r(u, v) or
r(v, u)) specifically, instead of the maximum, with
the asymmetric target matrix rtarget(u, v). The dif-
ference between these two supervision modes is
illustrated at the top of the Figure 3. If the two
mentions u and v are not part of the same frames,
both directions scores should be negative, since
max(r(u, v), r(v, u)) = R(u, v) < 0. However,
if the two mentions share the same frames, we "ex-
plore" the two different supervision directions by
performing stochastic sampling of rtarget, according
to a categorical distribution parameterized by the
relation probability computed by the model:

[rtgt(u, v), rtgt(v, u)] ∼ softmax(r(u, v), r(v, u))

The model should explore a few ways of arrang-
ing the scopes at the beginning of the training when
the probabilities are close to 0.5, and stick to a strat-
egy that leads to low entropy of the above distribu-
tion as the training progresses and its confidence
increases in either direction.

3.3.6 Supervision heuristics
We also experiment with heuristics in the super-
vision matrix rtarget(u, v). If u belongs to strictly
more frames than v, we maximize r(u, v). If both
belong to the same number of frames, we choose
the direction that leads to the smallest number of
wrong erroneous memberships due to the contigu-
ity of scopes. Finally, if no heuristic can be applied,
we sample a direction as previously described.

3.3.7 Word-level scope supervision (WSS)
Finally, we also propose to supervise the scopes
scores rscope(u, t) directly using partial word-level
annotation rWSS generated from the rtarget matrix,
as illustrated on the left side of Figure 3. Indeed,
using the rtarget matrix for a given mention u, we
can determine which words t of other mentions

160



should be contained in its scope, which words of
other mentions should not, and which words are
not supervised. Because scopes are contiguous, if
a mention v that is not part of the frame of u is
contained within its partially supervised scope, i.e.,
if it is between two mentions that belong to the
scope of u, we do not supervise its words and leave
the biaffine component handle the non-relation de-
tection.

3.4 Frame classification
Some labels of a frame such as its temporality or
laterality may not be explicitly supported by a men-
tion. Each frame is therefore fed through a con-
strained multi-label classifier. We represent each
frame by an embedding computed as a projection
of the max-pooling output of the embeddings of its
mentions, and then project it to give a score per la-
bel. The score of a label combination is computed
as the score of the labels in the combination. The
probability is computed by normalizing over all
legal combinations. During prediction, the label
combinations are filtered to keep only those that
contain the normalized labels of the mentions in
the frame.

3.5 Optimization
The different components are trained jointly. We
use the CRF Forward algorithm to compute the
NER loss, cross-entropy to compute the mention
normalization and the frame classification losses.
The frame extraction decoder relation loss Lrelation
is the sum of binary cross entropy for every valid
supervised mention-mention pair and the partial
word-level supervision Scope CRF loss Lscope is
the CRF Forward algorithm. The losses are com-
bined into a weighted average, the specifics of
which are detailed in Appendix B.

3.6 Knowledge injection
Data augmentation We augment the training
data in two ways. First, we randomly extract parts
of documents such that no frame is cut, and add
them as new documents to the dataset. This is
somewhat akin to sentence splitting, but for multi-
sentence entities. Second, we build synthetic sen-
tences from a manually pre-defined lexicon of men-
tions, and add these sentences as NER samples
to the dataset. The sentence creation process is
the following: we randomly pick a synonym from
the lexicon such as [ACR 6] and insert it in a ran-
domly picked context from a predefined list such as

"There is {} ." to generate "There is [ACR 6]." The
documents generated from these augmentations are
mixed with the original documents such that every
batch approximately contains 1

3 of each (original,
doc parts and lexicon sentences).

Output constraints Some background knowl-
edge can be injected by constructing rules such
as the fact that "left" and "right" are exclusive, or
the fact that a mammogram is always performed
on the breasts. During the frame extraction step,
relations between mentions that cannot be part of
the same frame are filtered out during learning and
prediction. Similarly, as mentioned in Section 3.2,
illegal label combinations are filtered out during
training and prediction. This filtering reduces the
number of possibilities that the model must evalu-
ate, and alleviate the need for the model to "learn"
the annotation scheme.

4 Experiments

We evaluate our proposed approach on the test
set of a new annotated dataset described in Ap-
pendix A, and perform several ablation experiments
to investigate the design choices of our model. The
dataset is composed of 120 French breast imaging
clinical reports annotated with frames. There are
five types of objects: ACR (cancer risk) scores,
breast density scores, diagnostic procedures, thera-
peutic procedures and lesions. The document-level
statistics are detailed in Table 2. The model is eval-
uated with 3 retrieval metrics: the mention metrics
evaluate the mention and normalization prediction
with approximate boundaries, the Frame Support
evaluates the frames through their mentions, and
the Frame Label evaluates them through their la-
bels. These metrics are further described in the
following section.

train test
count 80 40
average words 361.0750 362.175
average lines 45.7375 45.475
average frames 19.4750 18.425

Table 2: Document level statistics for the corpus

4.1 Relaxed retrieval metrics

We use three metrics to evaluate the predictions
at the mention and frame level, and provide algo-
rithms to compute them in Appendix C.
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Unlike the exact match NER metric for which
a true positive is unambiguously counted when
two elements of the predicted and gold entities
match, defining and computing relevant metrics
between more complex sets of objects becomes
more difficult as the number of element attributes
increases. One option is to lower the minimum sim-
ilarity threshold required between predicted and
gold features to account for small errors such as
mismatch between mention boundaries. However,
this leads to ambiguities in the metric computation,
since several predicted elements may match a sin-
gle gold element, and vice versa. We explicitly
formulate a greedy matching procedure to compute
a maximum bipartite greedy match between the
elements of two sets, in the algorithm 1 to avoid
double counting true positives.

The NER metric (Algorithm 2) uses a score func-
tion that returns 1 if the Dice overlap of words in
two mentions is higher than 0.5. The procedure is
described in the Algorithm 2.

The Frame Support metric (Algorithm 3) scores
a pair of two frames with a non-zero match score
if some of their mentions overlap, and a perfect
score if all their mentions overlap, and 0 otherwise.
This score between 0 and 1 is the Dice/F1 overlap
between the mentions of the two frames. It is used
as a "relaxed" true positive when computing the
retrieval metrics.

Finally, the Frame Label metric (Algorithm 4)
scores a pair of two frames with a matching score
of 1 if their labels match and their trigger mentions
overlap, and 0 otherwise. This score is used as a
true positive when computing retrieval metrics.

4.2 Experimental setup
Hyperparameters were manually selected by trial
and error on 20 documents from the training
dataset, and the model were trained for 2000 steps
with a batch size of 16. Hyperparameters are fur-
ther described in Appendix B. All experiments
were averaged on 3 runs.

4.3 Main results
Table 3 shows the performance on the different
types of frames. The model performs better for
frames with fewer fields such as Cancer risks or
Breast densities. We visualize the predicted scopes
of the proposed model on the right side of Fig-
ure 4. We observe that the scopes coarsely follow
the structure of the document, i.e., that the pre-
dicted boundaries are located at the beginning or

Figure 4: Visualization of the predicted mentions and
scopes on the example of Figure 1 (original French ver-
sion). The vertical axis represents the words, and the
horizontal axis represents the mentions. The predicted
mention is marked in white, the scope in yellow.

the end of the different sections. This observation
suggests that our approach may effectively lever-
age the structure commonly found within clinical
documents. It is worth keeping in mind that these
scopes have only been supervised with the require-
ment that they contain or exclude certain mentions,
and that no information regarding the precise loca-
tion of their boundaries has been given. Moreover
we note that the reading of these scopes gives a par-
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Frame support Frame label
Type P R F1 P R F1
ACR score 89.6 95.7 92.5 80.6 86.1 83.3
Density 84.9 96.9 90.5 82.6 94.3 88.1
Diag proc 82.1 91.7 86.6 74.0 82.7 78.1
Ther proc 86.2 87.1 86.6 68.3 69.0 68.6
Finding 74.0 82.4 78.0 59.6 66.5 62.9
Overall 81.1 90.0 85.3 68.7 76.2 72.2

Table 3: Performance of the model at the frame level

tial explanation of the predicted relations, whereas
the outputs of relation prediction models are usu-
ally hardly explainable.

4.4 Impact of scopes

Table 4 shows the effect of ablating the model
scopes. In this configuration, the model can only
predict the relations through the biaffine model. We
can observe that ablating scopes results in an over-
all loss of 5.3 pt for the Frame Label metric and
4.9 pt for the Frame Support metric. We believe
that this is due to the inability of standard neural
components to reason with intervals, i.e., to an-
swer queries such as "what word is between these
two words". Given that scopes improve the qual-
ity of predictions, the question arises as to what
kind of supervision is needed for learning them.
As shown in Table 4, when the scopes are learned
directly using word-level partial annotations, the
model performs better than with distant supervi-
sion on the r(u, v) matrix. If we directly supervise
the symmetric matrix R(u, v) instead of the asym-
metric matrix r(u, v), the performance collapses
and we lose between 10 and 15 pt for the Frame
metrics. The learning of scopes must be hindered
by the uncertainty related to the supervision of this
matrix alone and the small amount of data. Interest-
ingly, if we remove the relation supervision heuris-
tic described in Section 3.3.6 and let the model
explore different configurations on its own, the per-
formance shown in Table 4 remains on par with the
proposed approach. Since these heuristics aim at
injecting information about the hierarchy of men-
tions and the structure of the text, this suggests that
the model is able to infer this information itself.

4.5 Impact of the relative attention

We evaluated the effect of the added information
on the relative position of the word-mention and
mention-mention attention mechanisms. From the

Table 4, we can observe that this added information
leads to a performance gain of 1.3 pt of F1 frame
support and 1.8 pt of F1 frame label. Without it, a
mention is "positionally blind" and must rely on the
inductive bias of the LSTM to find its neighboring
words or mentions. Therefore, we expected a larger
drop in performance, especially in the context of
long documents. Nevertheless, relative attention
proves to be an effective way to improve perfor-
mance.

4.6 Impact of the size of the training data

Figure 5 shows the overall performance of the
model when trained with different numbers of an-
notated samples. On one hand, we can note that our
system requires only a small amount of documents
to achieve "correct" accuracy, i.e., it can be used
to pre-annotate more documents. This "data effi-
ciency" is important when tackling new domains in
order to allow quick feedback and possible changes
regarding the annotation scheme. However, given
the complexity of the task and the evolution of per-
formance with the training set size, we also note
that a large number of annotated documents might
be needed to approach a perfect score.

Figure 5: Plotted evolution of the F1 scores with the
number of annotated documents. The plain lines show
the performance with data augmentation (synthetic sen-
tences and document splitting), while the dashed lines
show the performance without augmentation.

4.6.1 Impact of the augmentations
We remove the augmented samples from the train-
ing data and show the effect on performance in
Table 5 and Figure 5. We observe that adding
synthetic lexicon sentences only slightly helps im-
proving the model mention detection performance
(+0.3 pt). However, this improved performance has
a larger effect of 1.5 pt on the Frame Label metric.
This is typical of the phenomenon of error propa-
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Mention Frame support Frame label
Full model 96.2 85.3 72.2
− relative attention 95.6 (−0.5) 84.0 (−1.3) 70.5 (−1.8)
− relation supervision heuristics 96.1 (−0.1) 85.4 (+0.1) 71.8 (−0.4)
−WSS 96.1 (−0.1) 82.1 (−3.2) 69.5 (−2.7)
−WSS − asymmetric supervision 95.9 (−0.3) 74.4 (−10.9) 57.5 (−14.8)
− scopes (only biaffine scores) 96.2 (+0.0) 80.4 (−4.9) 66.9 (−5.3)

Table 4: Architecture ablation experiments . WSS stands for Word-level Scope Supervision. All reported metrics
are F1-scores.

Mention Frame support Frame label
All 96.2 85.3 72.2
− doc splitting (1) 96.1 (−0.0) 85.3 (+0.1) 71.5 (−0.7)
− synthetic lexicon sentences (2) 95.4 (−0.8) 85.0 (−0.3) 70.8 (−1.5)
− data augmentations (1+2) 95.4 (−0.8) 85.0 (−0.3) 69.9 (−2.3)
− constraints 96.2 (−0.0) 84.0 (−1.3) 69.4 (−2.8)

Table 5: Knowledge and data ablation experiments. All reported metrics are F1-scores.

gation, since a missing or mislabelled mention can
have an effect on multiple frames.

As we reduce the number of annotated docu-
ments in the training set, the effect of augmentation
becomes more important, and with only 4 anno-
tated documents we obtain an average performance
of 89.4 F1 in mention extraction versus 81.1 F1
without, and an average performance of 45.7 F1 in
Frame Label F1 versus 34.7 without. Finally, we
can see that a model trained only with synthetic
sentences, i.e., 0 training document in Figure 5) al-
ready obtains decent retrieval performances, which
is valuable when tackling a new domain with unla-
beled data only. The non-zero Frame metrics can
be explained by the presence of frames containing
only one mention, and the constraints preventing
the system from predicting illicit label combina-
tions.

4.6.2 Impact of constraints

We train the model without the constraints de-
scribed in section 3.6 (but we still apply these con-
straints during the evaluation phase to avoid illicit
predictions). In this configuration, the model learns
that each pair of mentions is legal. We observe in
Table 5 this leads to a loss of 2.3 pt in the Frame
label F1-score and 1.3 pt in the Frame support F1-
score. This can be explained by the fact that the
model has to "learn" the annotation scheme and its
inevitable imperfect representations of the reports.
These constraints can also help the model focus on
the actual uncertainties of the task, and leave what

is already known to the modeled constraints.
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6 Conclusion

In this work, we presented a system for extracting
structured entities from clinical breast radiology
reports. We have shown that the addition of syn-
thetic sentences can improve the performance in
the context of a small amount of data. This informa-
tion is valuable for the annotation and development
of new information retrieval systems in other do-
mains, where key words or phrases are known in
advance. The method we described introduces the
notion of frame extraction in the form of mention
cliques, and we have shown that a formulation of
the relation extraction task via scopes improves
the performance of our system. Future work will
evaluate this approach on other structured entity
extraction tasks such as event extraction.
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A Annotation scheme appendix

We detail here the annotation scheme and the re-
sulting dataset. We focus on entities related to
therapeutic (e.g. surgery) or diagnostic (e.g. mam-
mography) procedures, radiological observations
(e.g. cysts or masses), and breast density or ACR
(or BI-RADS) cancer risk scores. The relevant
entities to extract were the result of discussions
with a physician expert in the field. The annota-
tion scheme itself was the result of many iterations
between annotations and scheme revision. The cor-
pus consists of 120 annotated clinical documents,
80 for the training set and 40 for the evaluation set.
The document-level statistics are detailed in Table
2.

A.1 Mention annotation

First, we annotate several types of mentions, each
justifying the value of a field in a frame. In our
scheme, each mention has an effect that can be
combined with other effects to describe an entity.
Some mentions have the effect of justifying the
existence of a frame: we will refer to these men-
tions as "triggers". Other mentions have the effect
of specifying an attribute of an object: we will
refer to them as "attribute" mentions. No frame
is created if there is no trigger, even if several at-
tributes are present. In the example 1, the trigger
[Ultrasound] mention has the effect of creating at
least one "Diagnostic procedure" frame, whereas
the [millimetric] attribute has the effect of giving a
size to the frames that it is part of.

The trigger mention types are ACR score, Breast
density, Diagnostic procedure, Therapeutic pro-
cedure and Radiological lesion. The additional
attribute mention types are Diagnostic procedure
type, Therapeutic procedure type, Breast density
type, ACR score type, Organ, Laterality, Temporal-
ity, Size, Distance, Angle and Breast quadrant.

We have chosen to annotate mentions describing
attributes (such as laterality or size) even if they are
not part of any frame. On the other hand, trigger
mentions are not annotated if they do not justify
the presence of an object. In the sentence "No sus-
picious mass on the right", only [right] is annotated
as potentially justifying the laterality of an object,
but not [mass] since it is preceded by a negation,
and therefore does not justify the creation of any
radiological lesion object.

Finally, each mention is classified, or normal-
ized, according to a predetermined set of values.

For example, a trigger mention "Breast density"
may be labeled exclusively "type 1", "type 2", "type
3", "type 4". A laterality can take the values "left",
"right", or "left + right".

A.2 Frame annotation

Frames describe conjunction of triggers and at-
tributes that share their effect (or concept) on a
given entity. In the above example, [8 o’clock
radius] (applying an angle), [3cm] (applying a dis-
tance), [Left] (applying a laterality), [Breast] (ap-
plying an organ) and the trigger [cysts] (applying
the effect of existing) share their respective effect
on a same slice of an object. These mentions may
be located in different sentences or paragraphs, and
a field in a given frame may be justified by sev-
eral mentions. On the other hand, if an object is
described in several places in the text, we anno-
tate it with several distinct frames. The notion of
"several places" and the choice to split a same ob-
ject into multiple frames is sometimes ambiguous.
We choose to annotate a single frame for an object
if it is described on several juxtaposed sentences,
and split it into multiple frames otherwise. For
instance, the [cysts] trigger is combined with the
[nodules] trigger because they are found in juxta-
posed sentences, and [nodules] is clearly referring
to the previously mentioned [cysts].

All frames follow a specific scheme that con-
straints the set of labels and mentions (or effects)
combinations. A summary of the frame schemes
is shown in Figure 7. In practice, these constraints
take the form of a list of 2502 label tuples that
enumerates every possible mention / label combi-
nation. For example, a ACR Cancer Risk type 0 on
the right breast at the time of the exam is described
by the following tuple:

(acr_trigger, acr_type_0, temp_overlap,
organ_breast, lat_right)

As shown in the structured output 1 of example
1, five frames are annotated:

• the ultrasound "Diagnostic procedure" frame
for its left location, composed of the [Breast],
[ultrasound] and [left] mentions on lines 1 and
2

• the ultrasound "Diagnostic procedure" frame
for its right location, composed of the [Breast],
[ultrasound] and [right] mentions on lines 1
and 7
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Diag. procedure 1 Frame 1 Frame 2
field value justification value justification
trigger [Ultrasound] [Ultrasound]
type ultrasound [Ultrasound] ultrasound [Ultrasound]
organ breast [Breast] breast
laterality left [Left]: right [Right]:
temporality overlap overlap

Lesion 1 Frame 3 Frame 5
field value justification value justification
trigger [cysts], [nodules] Multiple [cysts]
organ breast [Breast] breast
laterality left [Left]: left on the [left]
temporality overlap overlap
quadrant
size [millimetric]
distance 30mm [3 cm]
angle 8 [8 o’clock radius]

Lesion 2 Frame 4 Frame 5
field value justification value justification
trigger [cysts], [nodules] Multiple [cysts]
organ breast [Breast] breast
laterality left [Left]: left on the [left]
temporality overlap overlap
quadrant
size [millimetric]
distance 20mm [2 cm]
angle 6 [6 o’clock radius]

Table 6: All mentions, frames and objects extracted from the example 1

• the first "Finding" frame of the first nodule,
with two trigger mentions: [cysts] and [nod-
ules] and attribute mentions [8 o’clock posi-
tion], [3cm] and [millimetric] on lines 1, 2, 3,
4 and 5

• the first "Finding" frame of the second nod-
ule, with two trigger mentions: [cysts] and
[nodules] and attribute mentions [6 o’clock
position], [2cm] and [millimetric] on lines 1,
2, 4 and 5

• the second "Finding" frame of both nodules
in the conclusion: composed of the trigger
[cysts] and the laterality [left] on line 11

Since the mass negation on line 8 is not an in-
dication of the presence of an object, we do not
annotate it. The temporality of each frame over-
laps the exam, although no explicit mention can

support this fact, so we fill the temporality field of
the frames with the value "overlap" and leave the
justification empty.

A.3 Object annotation

Finally, the different frames are grouped into ob-
jects, although we do not extract them in the model
presented in this study. Objects are union of frames.
For a given set of concepts, multiple frames might
be required to describe a same object. In the context
of growing lesions, a union of multiple (temporal-
ity, size) conjunctions can represent the evolution.
In an other setting with moving objects, a union of
(temporality, localisation) labels could be used. In
our case, as we represent lateralities with two ex-
clusive "left" and "right" concepts, bilateral objects
are described with two co-referent frames.

In the previous example, three objects are an-
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Type Field Field value

ACR
risk
score

score trigger
score type type 0/... type 6
laterality left/right
temp overlap/before

Breast
density

dens. trigger
dens. type type 1/... type 4
laterality left/right
temp overlap/before

Diag.
proc.

diag. trigger
diag. type mammo/mri/...
organ breast/other
laterality left/right
temp overlap/before/after

Ther.
proc.

ther. trigger
ther. type surgery/other
organ breast/other
laterality left/right
temp overlap/before/after

Lesion

lesion trigger
organ breast/other
laterality left/right
temp overlap/before
quadrant lower inner/...
size
distance
angle

Table 7: Schemes of the extracted frames. Each frame
is composed of multiple fields that can take a value.

notated, grouping two frames for the ultrasound
procedure and two frames for each cyst. The last
nodule frame in the conclusion is a case of plu-
ral coreference, since it its attributes apply to both
objects. In this case, the frame describing several
objects is added to each one. The statistics of ob-
jects in the annotated documents are described in
Table 8. This step amounts to annotating corefer-
ences between frames. We did not address this task
of frame-coreference prediction in this study.

A.4 Annotation process
Clinical documents were de-identified automati-
cally beforehand and the manual annotation was
performed with BRAT (Stenetorp et al., 2012) by
two annotators. 120 clinical reports were sam-
pled from a from of query the APHP clinical data
warehouse that combined the substrings "mamm"
(to obtain breast related reports), "ACR" and "BI-
?RADS" (to obtain ACR scores). Some sampled

train val
obj frame obj frame

lesion 279 449 122 210
diagnostic proc. 285 795 141 379
therapeutic proc. 51 83 22 29
ACR score 152 152 82 82
breast density 98 98 52 52

Table 8: Frame and object statistics in the annotated
corpus

Figure 6: BRAT annotation of Example 1

reports were not breast radiology reports, yet we
annotated and kept them as negative samples. Us-
ing the "Event" or "Relation" annotations in BRAT
turned out to be impractical. We choose instead to
annotate frames using a mix of identifier attributes
(frame1, frame2, ...) on mentions, and relations on
close-by mentions. Co-references, i.e., object an-
notation, were annotated using identifier attributes
(objectA, objectB, ...) for the same reason. The
BRAT annotations of Example 1 are shown in Fig-
ure 6. The direction of the annotated relations
is only used to extract the paths along which the
frames are clustered, but is not used as directed
relation in our model, since it is not consistent.

B Hyperparameters appendix

We optimize the model weights with the Adam
optimizer (Kingma and Ba, 2015) without weight
decay and use a first learning rate lrBERT, linearly
decayed from 5 × 10−5 with a 10% warmup, for
the pretrained CamemBERT (base) weights, and a
second lrmain, linearly decayed from 5× 10−4, for
the other parameters. The models were trained with
a batch size of 16 for 2000 steps. The maximum
wordpiece sequence size is 192, a dropout of 0.5
is applied on the output of BERT, and a dropout of
0.2 in the attention matrices computation. There
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are 3 BiLSTM layers of hidden size 200. The loss
weights are set to αNER = 2, αnormalization = 1,
αrelation = 1, αWSS = 1, αframe_classification = 0.5

C Relaxed retrieval metrics algorithms

Algorithm 1 Procedure to compute the maximum
sum of greedily matched items between two sets of
predicted and gold items P and G according to the
MATCH_SCORE function

1: function MATCH_SUM(P, G, MATCH_SCORE)
2: scores← empty matrix . match scores
3: matched← {} . matched (p,g) items
4: result← 0 . aggregated score
5: for each predicted item p ∈ P do
6: for each gold item g ∈ G do
7: scores[p, g]← MATCH_SCORE(p, g)
8: while |P \matched×G\matched| > 0 do
9: Take the 1st p ∈ P\matched

10: g← argmaxg∈G\matched(scores[p])
11: if scores[p, g] > 0 then
12: result← result + scores[p, g]
13: matched← matched

⋃
{p, g}

14: return result

Algorithm 2 Procedure for the approximate men-
tion retrieval metric

1: function SCORE_NER(p, g)
2: . return 1 if p and g have a word dice

overlap ≥ 0.5 and the same label,
0 otherwise

3: return 2·|p.words
⋂

g.words| / (|p.words| +
|g.words|) > 0.5 and p.label = g.label

4: function HALF_NER(P, G)
5: tp← MATCH_SUM(P, G, SCORE_NER)
6: f1← 2 · tp/(|G|+|P|)
7: return f1

Algorithm 3 Procedure to compute the Frame Sup-
port retrieval metrics

1: function OVERLAP(a, b)
2: . return 1 if a and b share a word and

have the same label, 0 otherwise

3: function SCORE(p, g)
4: . return the Dice score between spans

(=mentions) of p and g, between 0 if there
is no overlap and 1 if all mentions match)

5: tp← MATCH_SUM(p.spans,g.spans,OVERLAP)
6: return 2 · tp/(|g.spans|+ |p.spans|)

7: function FRAME_SUPPORT(P, G)
8: . return the retrieval metrics, where relaxed

true positives between P and G are
computed with SCORE

9: relaxed_tp← MATCH_SUM(P, G, SCORE)
10: f1← 2·relaxed_tp/(|G|+|P|)
11: return f1

Algorithm 4 Procedure to compute the Frame La-
bel retrieval metrics

1: function SCORE(p, g)
2: . return 1 if all labels of g are in p, all labels

of p are in g or a non conflicting frame
of the same object and triggers overlap,
0 otherwise

3: function FRAME_LABEL(P, G)
4: . return the retrieval metrics, where true

positives between P and G are computed
with SCORE

5: tp← MATCH_SUM(P, G, SCORE)
6: f1← 2 · tp/(|G|+|P|)
7: return f1

170


