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Abstract

Minimum Bayes Risk (MBR) decoding is a
method for choosing the outputs of a machine
learning system based not on the output with
the highest probability, but the output with the
lowest risk (expected error) among multiple
candidates. It is a simple but powerful method:
for an additional cost at inference time, MBR
provides reliable several-point improvements
across metrics for a wide variety of tasks with-
out any additional data or training. Despite
this, MBR is not frequently applied in NLP
works, and knowledge of the method itself is
limited. We first provide an introduction to the
method and the recent literature. We show that
several recent methods that do not reference
MBR can be written as special cases of MBR;
this reformulation provides additional theoret-
ical justification for the performance of these
methods, explaining some results that were pre-
viously only empirical. We provide theoretical
and empirical results about the effectiveness
of various MBR variants and make concrete
recommendations for the application of MBR
in NLP models, including future directions in
this area.

1 Introduction

“Sometimes innovation is only old ideas
reappearing in new guises ... [b]ut the new
costumes are better made, of better materials, as
well as more becoming: so research is not so much
going round in circles as ascending a spiral.”

(Jones, 1994)

Minimum Bayes Risk (MBR) decoding (Bickel
and Doksum (1977); §2) is a decoding method fol-
lowing a simple intuition: when choosing a best
output from a set of candidates, the desirable output
should be both 1) high probability and 2) relatively
consistent with the rest of the outputs (i.e., outputs
that are not consistent with the other outputs are
high risk— they may be dramatically better or worse
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than the consensus). MBR thus provides an alter-
native to the more standard maximum-likelihood
decoding; when a sample of sufficient size is taken,
MBR almost uniformly outperforms beam search
and single-output sampling across tasks, metrics,
and datasets (see §6). It is also notable in its flexibil-
ity; in §3 we organize and discuss several different
design decisions that go into the use of MBR and
how they affect the efficacy of the method.

While MBR is rarely applied by name in modern
NLP, a number of methods with similar intuitions
have gained popularity. In §4, we demonstrate
that a number of generation techniques widely
used with modern language models can be viewed
as special instances of MBR: self-consistency
(Wang et al., 2023) and its extensions, range vot-
ing (Borgeaud and Emerson, 2020), output en-
sembling (DeNero et al., 2010; Martinez Lorenzo
et al., 2023), and some types of density estimation
(Kobayashi, 2018). This view exposes connections
between seemingly disparate methods and presents
theoretical justifications for existing empirical re-
sults using these methods. We also discuss how
insights from the MBR literature can inform the
use of these other MBR-like methods.

With the framing of MBR, the theoretical jus-
tification for the empirical performance of sev-
eral methods becomes clear; the extension of self-
consistency to open-ended generations becomes
trivial; and several promising modifications to self-
consistency and output ensembling are exposed. In
particular, modern MBR-like methods often do not
apply the insights from research on MBR, suggest-
ing that these methods could be further improved.
In §5, we show that some design choices, though
seemingly intuitive to a practitioner accustomed to
search-based decoding methods, should be avoided
when applying MBR.

2 Formalization

We begin with the basics of decoding and MBR.



2.1 Standard decoding

Decoding from an autoregressive model (such as a
transformer decoder) is performed tokenwise. The
distribution at each decoding step is conditioned
on the prior tokens and the input text:

P(Yily<i, ) (1)

The model is locally normalized; the probabilities
of next tokens sum to 1. The probability of a se-
quence under this global model distribution is

T
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Given this distribution, there are several ways
of extracting an output: by sampling at each de-
coding step from the distribution over next tokens
(often with some modification to the distribution,
e.g. temperature, nucleus, or epsilon sampling;
Holtzman et al. (2019)); by always choosing the
most probable next token (i.e. greedy decoding);
or by performing a search over some subset of the
output space, guided by the distribution (e.g. beam
search, best-first search). These methods generally
return a single output; if multiple output candidates
are present, the one with the maximum likelihood
under the model distribution is returned.

2.2 Minimum Bayes Risk decoding

The traditional formulation of MBR is as a mini-
mization objective. Given a output space % and a
probability distribution over this space p(y|z), we
compute the risk R(y’) of a candidate decoding 3/’
as the expected error (also called /oss) under this
distribution (Bickel and Doksum, 1977; Kumar and
Byrne, 2004; Tromble et al., 2008). The MBR de-
coding is then the 3’ within %/ that minimizes risk:
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We can trivially rewrite the risk as a maximiza-
tion of gain (also called utility) rather than a min-
imization of error, where G(y,y') = —L(y,V').
Gain or loss functions are any function (e.g. a met-
ric) that compares two sequences G : % x % — R.

Approximating risk Computing this sum over
the space of all possible outputs ¢ is intractable
for most models.! In these cases, we approximate
the risk R(y’) by using a subset of the full space
Y C % ; that is, instead of exact computation
of the expectation, we approximate it with a sum
over independent samples from p(y|x). Generally,
this is performed by sampling repeatedly from a
model (or several models) and estimating the prob-
ability of each individual output as proportional
to the relative frequency that the output occurs.?
For an unbiased sampling method? (e.g. ancestral
sampling), as the number of outputs drawn goes to
infinity, this recovers the model’s true distribution
of probability over sequences. Thus, we approxi-
mate risk using this sample:
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Thus, given a sample (which may include dupli-
cates) ) and a gain function, we approximate the
true MBR decoding rule as:

. 1
j = argmax — Y G(y,y/) (8)
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Separation of evidence and hypothesis sets In
many cases, the same subset of the output space is
used for both the risk estimate and the candidate
outputs. However, when the sample is substantially
smaller than the full output space, it is often benefi-
cial to use separate sets (Eikema and Aziz, 2022;
Yan et al., 2023). Following prior work (§2.2), we
refer to these as the evidence set ().) and hypothe-
sis set (V).

This separation is beneficial because there are
distinct and potentially contradictory desiderata
for the two sets. We wish for our evidence set to
cover a large, representative portion of the search
space to obtain a more accurate estimate of risk.
However, we want our hypothesis set to only cover
the narrower, high-quality region of the space, as
we do not want to consider candidate hypotheses
that are low-quality. Applying the separation of
evidence and hypothesis sets yields the equation
for MBR over two subsets of the output space:

'This is the case for many deep generative models, such as
a transformer language model and other autoregressive models
without conditional independence assumptions.

“This is called a Monte Carlo approximation.
3We discuss the use of biased samplers in §3.2 and §3.1.
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Note that this implicitly encodes the distribution
of the evidence set samples in the sum. That is,
by averaging over the gain on evidence set exam-
ples, we are estimating the expected gain under this
evidence set’s distribution over sequences.

3 Taxonomy of MBR

Equation 9 demonstrates four major axes along
which an MBR method may vary:

1. Choice of hypothesis set )V},

2. Choice of evidence set Y,

3. Choice of gain (or error) function G(y, y')
4. Choice of evidence distribution p(y|z)

In this section, we examine how these four factors
affect the efficacy of MBR and give recommenda-
tions for each; in Section 4, we discuss how these
apply to other MBR-like methods.

3.1 Sampling a hypothesis set

Several recent works show benefits from improv-
ing the quality of the hypothesis space. Fernandes
et al. (2022) apply a two-stage approach where they
first apply an N-best (referenceless) reranker and
then do MBR over only the most highly ranked
hypotheses, which they also use as the evidence
set. Eikema and Aziz (2022) introduce a method,
Coarse-to-Fine MBR, that first uses MBR with a
cheap-to-compute metric to filter a large hypothe-
sis space to a smaller set, then uses MBR with a
better but more expensive to compute metric over
the smaller set; they separate evidence and hypoth-
esis sets. Freitag et al. (2023) further investigates
sampling strategies for MBR, finding that epsilon
sampling (Hewitt et al., 2022) outperforms other
strategies in automated and human evaluations.
Another earlier line of work has considered
growing post hoc the hypothesis set in order
to obtain hypotheses with higher expected gain
(Gonzalez-Rubio et al., 2011; Gonzalez-Rubio and
Casacuberta, 2013; Hoang et al., 2021).

3.2 Sampling an evidence set

Comparatively less work has studied strategies for
sampling the evidence set. Most recent work has
adopted the unbiased sampling strategy of Eikema
and Aziz (2020), i.e. drawing i.i.d. samples from

the model distribution p(y|x) (equation 2). This
strategy is motivated by their observation that unbi-
ased sampling is reasonably reflective of the data
distribution, much more so than beam search. How-
ever, their approach is incompatible with models
trained via label smoothing (Szegedy et al., 2016).
Yan et al. (2023) attempt to remedy this by sam-
pling the evidence set with temperature 7 < 1,
sharpening the model distribution.

3.3 What metric do we want to maximize?

The gain G (alternatively, error L) may be an arbi-
trary function ), x Y, — R. Early work focused
on simple, token-level metrics like word error rate
and BLEU (Kumar and Byrne, 2004; Ehling et al.,
2007), but more recent work has explored the use
of neural metrics (Amrhein and Sennrich, 2022;
Freitag et al., 2022), as well as executing outputs in
code generation (Shi et al., 2022; Li et al., 2022).

Generally, for both neural and non-neural met-
rics, MBR with metric G as a gain function will
yield the largest downstream improvements on (G
(Miiller and Sennrich, 2021; Freitag et al., 2022;
Fernandes et al., 2022). In other words, if one aims
to optimize system performance on metric M, one
should perform MBR with M as gain. Although
MBR uses pseudoreferences, using a metric M to
score candidates against these pseudoreferences
generally produces a candidate that also scores
quite highly on M against the gold reference.

However, MBR also inherits the weaknesses
and biases of the gain metric used. MBR has
been shown to suffer from length and token fre-
quency biases brought on by the metric, i.e. MBR
with BLEU prefers shorter sentences (Nakov et al.,
2012; Miiller and Sennrich, 2021). Similarly, Am-
rhein and Sennrich (2022) find that MBR using the
metric COMET (Rei et al., 2020) causes higher
rates of errors for named entities and numbers due
to a lack of sensitivity in the metric. Moreover,
MBR is susceptible to overfitting to the metric; Fre-
itag et al. (2023) show that the MBR setting that
maximizes the metric is not the one that humans
prefer. Thus, if the same metric is used for both
MBR and evaluation of the output, not all of the
improvement in that metric can be attributed to
higher quality: it is possible that some of the im-
provement comes from gaming the metric. This
provides an additional reason to evaluate across
multiple, diverse metrics.

Note that in the most trivial case, where the met-



Method Evidence Gen. Hypothesis Gen. Metric p(y|z)

Lattice MBR (Tromble et al., 2008) N-best list N-best list BLEU translation lattice
Coarse-to-fine MBR (Eikema and Aziz, 2022) ancestral sampling filter(sample) BEER single model

Wiher et al. (2022) ancestral sampling evidence + more decodings BEER single model
MBR-DC (Yan et al., 2023) temperature sampling!  temperature sampling' BLEURT single model

Ours (§ 3.3) ancestral sampling temperature sampling BERTScore single model

Ours (§ 3.4) ancestral sampling temperature sampling BERTScore length-corrected scores
Freitag et al. (2023) epsilon sampling BLEURT single model

Crowd sampling? (Suzgun et al., 2023)
MBR-Exec (Shi et al., 2022)

temperature sampling
temperature sampling

neural score metric
execution match

single model
single model

Self-consistency (SC) (Wang et al., 2023)
Complex SC (Fu et al., 2022)
SC for open-ended gen (Jain et al., 2023)

temperature sampling
filter(temperature sample)
temperature sampling

exact answer match
exact answer match
n-gram overlap

single model
single model
single model

Range voting (Borgeaud and Emerson, 2020)
Post-Ensemble (Kobayashi, 2018)

AMRs Assemble! (Martinez Lorenzo et al., 2023) model set

beam search
beam search for each model in ensemble

n-gram overlap
cosine similarity
perplexity

single model
model set

beam search model set

Table 1: Recent work under our taxonomy. The line separates methods that are explicitly MBR (above) from those that we

identify as MBR-like (below).
! Different temperatures used for evidence and hypothesis.

2 While Suzgun et al. (2023) coin the new term crowd sampling, they also explicitly refer to their method as MBR.

ricis G(y,vy') = 1[y = y'], MBR recovers mode-
seeking methods like beam search—i.e. MBR un-
der this metric, in expectation, yields the maximum
likelihood decoding. This is because, as the size
of the sampled evidence set grows to infinity, the
most frequent evidence set sequence (and thus the
sequence with the highest gain) becomes the one
with the highest probability under the sampling
distribution.

3.4 What probability distribution should we
use to estimate risk?

Most MBR decoding methods use the model’s
score distribution over outputs, s, as the (unnor-
malized) evidence distribution. Alternately, this
distribution may be normalized by a temperature
(during minimum risk training (Smith and Eisner,
2006) or decoding (Yan et al., 2023)). Some work
(e.g Suzgun et al. (2023)) interprets this as a weak
proxy for the human or true distribution, arguing
that the true objective is to minimize error under
the human distribution:

a’rgmin IE:’/"’phuman [L<y7 y/)]
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Note that this is not the only reasonable choice of
p(y|x); other possible distributions include a dis-
tribution over outputs from multiple models (§4.2)
or the length-penalized distribution over a single
model’s outputs p;(y|x) (§5.3).

4 MBR as a frame for other methods

Self-consistency, output ensembling, density esti-
mation, and range voting can all be viewed through

the framing of MBR. This exposes unstated con-
nections between the methods and provides some
theoretical backing to the empirical success of these
methods. We discuss each in turn.

4.1 Self-consistency as MBR

Self-consistency (Wang et al., 2023) is a method
for choosing outputs from language models. In self-
consistency, the model is prompted to generate an
explanation and then an answer. Multiple outputs
O = {y1,...,ym} are sampled from the model,
the answers A = {ay,...,a,,} are extracted a; =
ans(y; ), and the most frequent answer is returned:

argmax Z 1(a; = a) (10)
¢ =1

Self-consistency only computes exact match
over the answer, not the reasoning chain. It is
possible to recover MBR from this method by ei-
ther taking the hypothesis/evidence sets to be the
set of resulting answers )V}, = V. = A discarding
the reasoning chain, or by defining a gain function
G(y,y') = 1(ans(y) = ans(y’)) over full outputs
O; though notationally different, they are mathe-
matically equivalent.

Thus, self-consistency is a type of MBR decod-
ing in which we approximate the risk with a Monte
Carlo estimate (cf. Eq. 6), the answers are sampled
from the model (conditioned on the prompt), and
the metric is exact match of the “final answer.”

This framing additionally explains some re-
sults from the self-consistency paper. Wang
et al. (2023) compare the performance of self-
consistency across sampling strategies, finding that



the best of the strategies they tried are those that
are closest to ancestral sampling (nucleus sampling
with p = 0.95 and 7 = 0.7 without top-k sam-
pling). They also find that self-consistency works
better with a sampled output rather than outputs
from beam search (their Table 6). Through the lens
of MBR, this empirical result has a clear theoret-
ical justification: ancestral sampling of evidence
sets generally yields the best performance for MBR
because this provides an unbiased estimator of the
probabilities of the sampled sequences. This also
presents an opportunity for improvement: while
Wang et al. (2023) do not evaluate on ancestral
sampling, it is possible that this would outperform
their best results.

Self-consistency is a special case of MBR. Pro-
posed extensions to self-consistency have recov-
ered aspects of generalized MBR decoding, includ-
ing filtering to smaller hypothesis/evidence sets
(Fu et al., 2022) and the use of alternative gain
metrics (Jain et al., 2023). As a result, the term
self-consistency has widened in definition from a
specific type of MBR to a catch-all for MBR-based
decoding methods on large language models.

4.2 Output Ensembling as MBR

Model ensembling techniques that operate on com-
pleted outputs of models may also be cast in MBR
terms. Note that this does not include methods
that operate on model weights or partial outputs.
Common ensembling methods such as averaging
model weights (Izmailov et al., 2018) or averag-
ing token-level probabilities (Sennrich et al., 2016;
Manakul et al., 2023) cannot be explicitly formu-
lated as MBR.

The connection to MBR is most straightforward
in methods that perform MBR decoding over the
outputs of multiple models (DeNero et al., 2010;
Duh et al., 2011; Barzdins and Gosko, 2016; Lee
et al., 2022, inter alia). Representative of this fam-
ily of methods is Post-Ensemble (Kobayashi, 2018),
which ensembles multiple text generation models
01,05, ...,0, by separately decoding from each
model, computing pairwise sentence embedding
similarity between all pairs of outputs, and yielding
the output with greatest average similarity. Observe
that this may be framed as MBR minimizing the
expected risk over the mixture distribution

pe, (y|lx)  with probability 7y
pensemble(y’-r) =

po,, (y|z)  with probability m,

where Z?:l m; = 1. While 7; is usually taken to
be uniform over the ensemble, this need not always
be the case (Duan et al., 2010).

Other methods may be viewed as relaxations
of MBR decoding. Assemble! (Martinez Lorenzo
et al., 2023) ensembles Abstract Meaning Repre-
sentation (AMR) graph parsers by computing the
pairwise perplexities of each output under each
parser. While this is not precisely MBR, it may be
viewed as a variation where the evidence set is a
set of models, not a set of model outputs.

gy = argmin Eg_ () [L(6, y")]
Y eV
In this case, the error L(6,y’) is the perplexity of

' under model 0, i.e. exp(— logpe(y')) = pe(ly/)’

and 7(-) is the distribution over models.

4.3 MBR as Density Estimation

Interestingly, Post-Ensemble (Kobayashi, 2018)
(8§4.2) was not formulated as MBR (and in fact
never referred to by name as MBR), but rather as
kernel density estimation. Kernel density estima-
tion is a non-parametric method for estimating the
probability density function p of an unknown distri-
bution, given samples (x1,xa, -+ ,x,) from that
distribution (Rosenblatt, 1956; Parzen, 1962).

1 n
plx) = — Kz, x; (11
(@) = 7 LK)
Indeed, Equation 11 very closely resembles the
Monte Carlo estimator of expected loss in Equa-
tion 6. This connection allowed (Kobayashi, 2018)
to propose approximation error bounds on MBR,
drawing from the density estimation literature.*
Note that the kernel function K (z, z;) is more
commonly written as K (z — x;), or K (z” z;) for
directional statistics. While this may seem limiting,
we can rewrite commonly used MBR metrics in this
form; we show this for ROUGE-n as an example.
For a sequence y, define 7),(y) to be a vector of
size |V'|", where |V| is the size of the vocabulary,
containing the number of times every possible n-
gram appears in y. Then we can rewrite ROUGE-n
as the following:

Kr(Tn(y) - Tn(y/))
_ To(y) — Tu(y')h
Tn(y) + [Tn(y)

*We do not reproduce their bounds here; we direct inter-
ested readers to the original paper.

=1 (12)



where | - |1 is the L1 norm.

The similarity between density estimation and
MBR yields an alternative interpretation of MBR
as a mode-seeking search. However, we are not
seeking the mode of the model’s distribution over
outputs, p(y|x), but rather that of a distribution
over some features ¢(y) of our output, p'(¢(y)|z).
For instance, in the case of ROUGE-n MBR,

j = argmax > Kr(Tu(y') — Tu(y)) (13)
Veh yey.
~ argmax p' (T,,(v')|) (14)
Yy EVn
We posit that this alternative distribution

P (T, (y)|x) may be better correlated with
performance on specific downstream metrics than
the original model distribution, potentially adding
an additional justification for MBR’s effectiveness.
We hope this may inspire future work investigating
the theoretical underpinnings of MBR.

4.4 Range Voting as MBR

Methods that take inspiration from outside of NLP
may also be MBR-like; in particular, some MBR-
like algorithms in the literature are formulated from
a voting theory perspective where candidate hy-
potheses are assigned votes based on similarity to
some set of voters (Wang et al., 2023; Jain et al.,
2023; Suzgun et al., 2023; Hoang et al., 2021).
We show here that range voting (Borgeaud and
Emerson, 2020), which broadly encapsulates these
proposed voting methods, reduces to MBR.

Range voting describes a family of voting sys-
tems in which each voter assigns each candidate a
score and the candidate with the greatest total or
average score is elected. Observe that the set of
candidates C' corresponds to the hypothesis set ),
and the set of voters V' corresponds to the evidence
set V.. Then, if voter v’s score for candidate c
is taken to be a gain G(v, ¢) and each voter is as-
signed uniform weight, range voting is equivalent
to the MBR decision rule in Equation 8:

1
Celected = Argmax —— Z G(v,c)
ceC ‘V‘ eV

Other range-voting methods can similarly be cast
as MBR variants.

15)

5 Design Decisions Impact MBR
Performance

Although all the methods in Section 4 are MBR-
like, they make very different decisions about the

four design choices in our MBR taxonomy. To
demonstrate the importance of the method design,
we consider empirically two cases where changing
design impacts the performance of the method.

5.1 Experimental Details

We run MBR experiments for abstractive summa-
rization on CNN/DM (Nallapati et al., 2016) with
a fine-tuned BART-Large’ released by the BART
authors (Lewis et al., 2020) as our base model. In
§5.3, we additionally report results for translation
on WMT’16 Romanian-English (Ro-En) (Bojar
et al., 2016) using mBART-50 (Liu et al., 2020).°
We draw n. ancestral samples for our evidence
set and n; temperature samples (r = 0.5 for
CNN/DM, 7 = 0.3 for WMT’16 Ro-En) for our
hypothesis set. We set n, = n; = 30 in §5.2 and
ne = ng = 50 in §5.3. Unless otherwise specified,
we take ROUGE-1 (Lin, 2004) as our gain metric
for summarization and BLEU-4 (Papineni et al.,
2002)" as our gain metric for translation.
Our code is available at
//github.com/abertsch72/
minimum-bayes-risk.

https:

5.2 The MBR metric matters — but perhaps
not as much as the hypothesis set

We find that using MBR with the summariza-
tion n-gram metric ROUGE-1 (Lin, 2004) im-
proves abstractive summarization performance
over beam search on CNN/DM, even when evalu-
ating performance with neural metrics; using the
general-purpose neural metric BERTScore (Zhang
et al., 2020) as the MBR metric yields highest
BERTScore but smaller gains on non-neural met-
rics, a finding consistent with past work; and even
BEER (Stanojevi¢ and Sima’an, 2014), a transla-
tion metric, works as an MBR metric for this task.

However, prior work using the same dataset
and model (Wiher et al., 2022) found that BEER
(Stanojevi¢ and Sima’an, 2014) underperforms
beam search. This divergence in results is likely
due to our different choices in hypothesis set — Wi-
her et al. (2022) use the evidence set plus additional

Sfacebook/bart-large-cnn on
(Wolf et al., 2020)

6facebook/m]oartflargeffaOfmanyftofmany
—mmt

"We use the implementation from
sacrebleu (Post, 2018) with signature
nrefs:1l|case:mixed|eff:yes|tok:13a]
smooth:exp|version:2.3.1

HuggingFace
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Method R1 R2 RL BS
Greedy 4398 20.88 30.88 88.04
BS (k =5) 43.16 20.63 30.53 87.82
BS (k=10) 42.62 20.23 30.02 87.71
DBS (k=g =25) 4377 20.85 30.77 87.97
MBR ROUGE-1 46.89 2229 32.01 88.4l1
MBR BEER 46.31 2236 32.02 88.38

MBR BERTSCORE 46.04 22.09 32.09 88.68

Table 2: MBR results on CNN/DM for various gain functions.
We additionally test the same non-MBR, (approximate) mode-
seeking baselines as Wiher et al. (2022). All MBR methods
outperform all non-MBR methods tested.

outputs from other decoding methods as hypothe-
ses, while we use temperature samples at 7 = 0.5.
While reusing the evidence set is more efficient
than sampling a separate set of hypotheses, it leads
to performance degregation in this case; this fur-
ther emphasizes the importance of choosing the
hypothesis set in MBR.

5.3 Varying the risk distribution: lessons from
beam search don’t translate to MBR

By nature, autoregressive text generation models
suffer from length bias: sequence probability mono-
tonically decreases with increasing length, caus-
ing shorter, potentially less informative sequences
to be favored by the model distribution (Koehn
and Knowles, 2017; Stahlberg and Byrne, 2019).
For non-sampling methods such as beam search,
the sequence probabilities are generally modified
with a length-dependent term when comparing se-
quences (Murray and Chiang, 2018; Cho et al.,
2014). Hence, it stands to reason that a length-
corrected distribution with these biases alleviated
may provide a better estimate of the risk R(y').

Vanilla Monte Carlo MBR (as depicted in Equa-
tion 6) yields an estimate of the expected risk un-
der the distribution that our evidence samples are
drawn from. To modify the distribution used in
our estimate, we turn to importance sampling, a
method for estimating the expected value of a quan-
tity under target distribution p, given samples from
proposal distribution ¢ (Kloek and van Dijk, 1978).
For a brief tutorial on importance sampling and
description of our estimator, see Appendix A.

We take the score of a sequence to be the log
probability: We then experiment with two of the
strategies described in Murray and Chiang (2018)
for constructing the length corrected score s;(y|z):

(a) Length normalization: The model distribu-

Method R1 R2 RL BS LR

Beam search, no correction 4388 20.96 30.77 87.79 108.00
Beam search 4395 21.00 30.84 87.81 114.39
MBR, No correction 47.70 23.00 32.54 88.50 111.64
MBR, Length norm, 5 = 0.5 4429 19.95 29.99 88.03 110.75
MBR, Length norm, 5 = 1.0 4429 19.98 30.0 88.03 110.77
MBR, Length reward, v = 0.5 47.60 2293 3248 88.48 112.52
MBR, Length reward, v = 1.0 47.41 2272 3225 88.43 112.50

Table 3: MBR results for various length correction schemes
on CNN/DM. We report ROUGE-1, ROUGE-2, ROUGE-L,
BERTSCORE, and length ratio, respectively.

Method BLEU chrF BLEURT BS LR
Beam search, no correction 33.21 59.81 65.50 9495  99.37
Beam search 33.06 60.05 65.60 94.96 101.58
MBR, No correction 33.56 60.00 65.53 94.96 100.04
MBR, Length norm, 5 = 0.5 31.14 58.53 6470 94.71 102.82
MBR, Length norm, 5 = 1.0 31.09 58.51 64.68 94.71 102.60
MBR, Length reward, v = 0.5  32.09 59.63 65.19 94.82 105.00
MBR, Length reward, y = 1.0  31.29 59.17 6491 9473 105.63

Table 4: MBR results for various length correction schemes
on WMT’16 Romanian-English. We report BLEU, chrF,
BLEURT, BERTSCORE, and length ratio, respectively. We use
the chrF (Popovi¢, 2015) implementation from sacrebleu.
We use the smaller BLEURT-20-D6 checkpoint for effi-
ciency (Sellam et al., 2020; Pu et al., 2021).

tion is smoothed with temperature 7%, where
T is the sequence length and [ is the length
penalty, a hyperparameter. A larger 8 more
heavily prioritizes longer sequences.

si(ylz) = s(ylx)/T°

(b) Length reward (He et al., 2016): A fixed
reward +y is added to the score per token gen-
erated.

(16)

si(yle) = s(ylr) + 4T (17)
The length-corrected distribution is then p;(y|x)
exp s;(y|z). We apply normalized importance
sampling (Rubinstein and Kroese, 2016) to esti-
mate the risk under the length corrected distribu-
tion, i.e. R(y') = Ey~p,[L(y,y’)], given samples
drawn from the model distribution p(y|x).

We compare our MBR results against beam
search both with and without length normaliza-
tion. We use the models’ default values for length
penalty (8 = 2 for BART, 5 = 1 for mBART).

Our results are Tables 3 and 4. In line with past
work, we find that beam search generally bene-
fits from incorporating a length penalty. However,
we find that length-corrected MBR underperforms
vanilla MBR. This may be due to a gap between the
sampling and length-correction distibutions, lead-
ing to a high-variance estimator of risk.



However, our results are also emblematic of a
wider trend among minimum-risk techniques. Past
work has found that models trained with Minimum
Error Rate Training (Och, 2003; Shen et al., 2016),
an error-aware training method, do not require
length correction in beam search (Neubig, 2016).
Similarly, we find that MBR without length cor-
rection generates outputs relatively close in length
to the references, more so than length-normalized
beam search. This suggests that MBR may be to
some extent immune from length biases, when they
are not introduced by the MBR metric (Miiller and
Sennrich, 2021).

6 MBR applications in NLP

The use of minimum Bayes risk decoding in NLP
predates these MBR-like methods; MBR has been
applied by name in NLP since the 1990s.

Historical context Minimum Bayes Risk decod-
ing has roots in Bayesian decision theory, a field
of study that dates as far back as the Age of En-
lightenment (Bernoulli, 1738; Parmigiani, 2001).
Central to Bayesian decision theory is the principle
of risk minimization: in the face of uncertainty, an
optimal decision maker should choose the option
that minimizes the amount of error they can expect
to suffer — or, in other terms, maximizes the amount
of utility they can expect to enjoy (DeGroot, 1970;
Bickel and Doksum, 1977). This is precisely the
intuition encoded in MBR (i.e. Equation 3).

Adoption in NLP MBR was adopted by the
speech and NLP communities in the 1990s and
early 2000s, finding applications in syntactical pars-
ing (Goodman, 1996; Sima’an, 2003), automatic
speech recognition (Stolcke et al., 1997; Goel and
Byrne, 2000), and statistical machine translation
(Kumar and Byrne, 2004; Tromble et al., 2008; Ku-
mar et al., 2009). Many NLP tasks during this time
relied upon graph structures as inductive biases (i.e.
parse trees or translation lattices/hypergraphs). As
such, early MBR works often used these graphical
models as hypothesis and evidence spaces. Work
on lattice MBR (Tromble et al., 2008), for instance,
treated the set of all hypotheses encoded in a word
lattice, of which there are exponentially many, as
both evidence and hypothesis sets. This is in con-
trast to most later MBR work, which operates on a
relatively small list of text outputs obtained from
a neural model. As a result, early work relied on
rather involved dynamic programming algorithms
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Figure 1: The use of MBR (by name) peaked in the mid-2010s.
This graph shows the percentage of ACL Anthology papers
that mention several MBR-related phrases by year, from 2000
to 2022.

for exact MBR decoding and were restricted to
token-factorizable metrics such as BLEU and edit
distance. Later work additionally demonstrated the
efficacy of MBR for question answering (Duan,
2013) and for joining statistical and neural ap-
proaches to translation (Stahlberg et al., 2017).

Recent usage In an effort to move past
beam search, which has well-known pathologies
(Stahlberg and Byrne, 2019), MBR has in re-
cent years resurfaced as a decision rule for text-
generation models (Eikema and Aziz, 2020). As
discussed earlier in §3, several lines of work have
sprung up investigating the properties of MBR in
modern neural text generation setups. Notably,
however, most of these works have focused on ap-
plications of the method to neural machine transla-
tion, with only a few very recent works studying
its applications in other text generation tasks (Shi
et al., 2022; Wiher et al., 2022; Suzgun et al., 2023).
Outside of these areas, the method has largely
been applied in shared task papers (e.g. Manakul
et al. (2023); Yan et al. (2022); Barzdins and Gosko
(2016)), as it provides a reliable boost in perfor-
mance. The fraction of papers in the ACL Anthol-
ogy that reference MBR (at least by this name) has
declined from its peak around 2009 (Figure 1).

7 Conclusion

Minimum Bayes Risk decoding has declined in
popularity, but the underlying concept of sam-
pling a set from a distribution and choosing an
output to minimize risk according to that set has
remained. This concept now takes many surface
forms— from self-consistency to range voting to



output ensembles— and current research in these
areas rarely draws connections to MBR. While re-
discovery is a key part of science, so is recontex-
tualizing new methods within a broader research
narrative. This can often reveal new insights or
cast findings in a different light. For instance, the
empirical benefits of self-consistency can be justi-
fied through an MBR framing; work on extensions
to self-consistency has rediscovered other proper-
ties of MBR; and work on ensembling has raised
questions about how to weight mixtures of models
that can be reasoned about within the framework of
noisy estimates of global probability distributions.

The adoption of newer terms for MBR-like meth-
ods may be a type of terminology drift. Related
phenomena have been studied in the philosophy
of science literature, including pressures to coin
new terms (Dyke, 1992; Merton, 1957), potential
negative consequences of divergent terminology
(Calvert, 1956; Samigullina et al., 2020), and de-
creased citation of older methods in NLP (Singh
et al., 2023). For a more involved discussion of the
literature on term coining and possible connections,
see Appendix B.

Language is not static, so some degree of ter-
minology drift in scientific literature is unavoid-
able. However, recognizing the connections be-
tween modern techniques and older work is crucial
to understanding why such methods are effective.
We must not forget the lessons of the past as we
search for the methods of the future.
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A More details on importance sampling
for MBR

We present in this section the normalized impor-
tance sampling estimator of risk used in our experi-
ments in §5.3.

The core insight of importance sampling is that
we can rewrite the expected value of a random
variable f(x) under target distribution p as another
expectation under some proposal distribution g:

- q(x)

Importance sampling can be particularly useful
when sampling from the proposal distribution is
easy, but sampling from the target distribution is
costly or intractable; this is indeed the case for
MBR, as sampling from the length-corrected distri-
bution p;(y|z) requires computation of its partition
function, which has exponential complexity.

Hence, for MBR, if we draw evidence samples
Ve according to model distribution p(y|z) but wish
to compute the risk under some length-corrected
distribution p;(y|z), we may compute

R(Y') = Eyp [L(y,y)]

where we let w(y) = p(y|x)/p(y|z), commonly
referred to as the importance weight.

Note, however, that importance sampling re-
quires us to be able to exactly compute the prob-
abilities p(y|x) and p;(y|z); while the former can
be computed efficiently (Equation 2), the latter is
intractable, again because it requires the partition
function. What we can efficiently compute is the
unnormalized probability p;(y|z) = exp s;(y|x),
where s; is the length-corrected score given by ei-
ther Equation 16 or 17.

Fortunately, we can use normalized importance
sampling to obtain a consistent estimator of the

risk by adjusting importance weights (Rubinstein
and Kroese, 2016):

R(Y') = Eyp [L(y,y)] (18)
_ EypL(y, y)w(y)]
T, 00y) (19
_ N, oY)
—y%;eL(y,y) =, o) (20)

where w(y) = pi(y|z)/p(y|x). As it is the ratio of
two estimates, the normalized importance sampling
estimator is biased for finite sample sizes.



B Contextualizing this work within
philosophy of science

In this section, we contextualize our work in the
broader framings of meta-analysis of scientific re-
search.

Patterns of citation in NLP Several factors have
been shown to correlate with citation rate in NLP,
including author geographic location (Rungta et al.,
2022), author gender (Mohammad, 2020), and pub-
lication date (Bollmann and Elliott, 2020; Singh
et al., 2023). Bollmann and Elliott (2020) con-
duct a bibliometric anaylsis of the ACL Anthology,
finding that the mean age of papers cited decreased
significantly from 2010 to 2019. Singh et al. (2023)
expand this analysis to the full anthology, finding
that, while citations of older papers rose briefly
in the mid-2010s, it has since declined, with 2021
marking a historic low for the percentage of cita-
tions that went to older papers®. They term this
citational amnesia and discuss several possible rea-
sons for the result, including the shift to neural
methods and the rise of new areas of NLP.

Our work raises another potential explanation:
some citational amnesia is due to terminology drift
over time, as old methods begin to be referred to
by newer names.

Term coining in science Work in science and
technology studies has examined the broader phe-
nomenon of term coining in science. Dyke (1992)
argues that neologisms emerge more frequently in
fields that prize novelty and see science as funda-
mentally about leaps of discovery, and fields that
are perceived as synthesizing findings from mul-
tiple fields are most likely to recycle terms from
other disciplines. She cites computer science as
an example of a field where most new terms of
art emerge from recycling common words, often
those that draw a metaphor to some basic physical
or human concept; this is reflected in the adop-
tion of the humanizing “self-consistency’” and the
political-science-inspired “range voting” in decod-
ing. Raad (1989) suggests that evocative, metaphor-
laden names are more likely to emerge as a scien-
tific field grows more public-facing and in times
where many new terms are being coined; both of
these descriptors apply to modern NLP. While sev-
eral works in linguistics and STS have considered

8They define an “older paper” as one that is more than 10
years older than the paper that is citing it.

the coining of new terms for new phenomena, rela-
tively little work has focused on the divergence of
terminology for previously observed phenomena.

The consequences of divergent or distinct termi-
nology have also been studied, with differences in
terminology across fields blamed for slow adap-
tation of research to practical applications (e.g.
in studying visual distortions during plane take-
off (Calvert, 1956)). Borrowing terminology from
another language (often Latin or Greek) or from an-
other field has been described as a method to build
common ground between researchers (Samigullina
et al., 2020) and as a possibly concerning pressure
against developing language-specific scientific ter-
minology in lower-resourced languages (Hultgren,
2013). However, most work on lexical divides in
science has focused on divides across language or
field rather than divides across time in the same
field.



