
Proceedings of the 18th Workshop on Innovative Use of NLP for Building Educational Applications (BEA 2023), pages 709–726
July 13, 2023 c©2023 Association for Computational Linguistics

S cratic Questioning of Novice De
gers:
A Benchmark Dataset and Preliminary Evaluations

Erfan Al-Hossami1, Razvan Bunescu1, Ryan Teehan2, Laurel Powell1,
Khyati Mahajan1, and Mohsen Dorodchi1

1University of North Carolina at Charlotte, Charlotte, NC
2New York University, New York City, NY
{ealhossa, rbunescu}@uncc.edu

Abstract

Socratic questioning is a teaching strategy
where the student is guided towards solving
a problem on their own, instead of being given
the solution directly. In this paper, we introduce
a dataset of Socratic conversations where an in-
structor helps a novice programmer fix buggy
solutions to simple computational problems.
The dataset is then used for benchmarking the
Socratic debugging abilities of GPT-based lan-
guage models. While GPT-4 is observed to
perform much better than GPT-3.5, its preci-
sion, and recall still fall short of human expert
abilities, motivating further work in this area.

� https://github.com/taisazero/socratic-
debugging-benchmark

1 Introduction and Motivation

Educational needs for computer science (CS) are
on the rise, due to increased enrollments in CS
programs (Camp et al., 2017). Higher education
institutions in particular are affected by the lack
of sufficient instructional staff, often resorting to
hiring undergraduate Teaching Assistants (TAs) in
their computer science courses. An effective TA
benefits students by providing timely feedback and
assistance that is tailored to each student’s level
of proficiency, with measurable and significant im-
pact on student retention rates (Mirza et al., 2019).
In practice, however, not all educational institu-
tions benefit uniformly from their TAs. Depending
on class sizes and TA allocations, it is often the
case that a teaching assistant cannot spend their
time equally with all students who need help, espe-
cially when nearing office hours or an assignment
deadline. Moreover, students who lack fundamen-
tal knowledge from prerequisite courses consume
significant TA time throughout the course. This
comes at a time when there is also a shortage of K-
12 computer science teachers, a lack of appropriate
training for K-12 educators interested in teaching

CS effectively (Yadav et al., 2016), and rising TA
and peer instruction demand in flipped computer
science classrooms (Maher et al., 2015).

Overall, the lack of instructional staff, ranging
from TAs to K-12 teachers and college educators,
motivates the automation of various types of teach-
ing tasks by leveraging the increasing capabilities
of AI models, especially in terms of understanding
and generating language and code. Prior work in AI
for programming education is primarily composed
of intelligent tutoring systems (ITS) and learning
support systems for programming courses. While
some ITS systems allow interactions with a learner
through a chat interface (Hobert, 2019), the range
of interactions is often limited, as tutoring sys-
tems typically focus on giving hints constructed
for predefined solutions or predefined Socratic ut-
terances that are specific to a known set of pro-
gramming exercises (Jeuring et al., 2014; Gerdes
et al., 2017; Hobert, 2019; Alshaikh et al., 2020b).
Consequently, traditional ITS systems in the pro-
gramming domain do not generalize to new courses
or new coding assignments without human inter-
vention. This situation is however rapidly changing,
due to the substantial leaps in performance exhib-
ited by large language models recently, on a wide
array of problems. Language models are now capa-
ble of solving introductory programming exercises
(Hendrycks et al., 2021; Chen et al., 2021) includ-
ing custom problems created by instructors (Finnie-
Ansley et al., 2022). Furthermore, solutions gen-
erated by these models are unique and can fool
plagiarism software such as MOSS (Biderman and
Raff, 2022), presenting educators with further chal-
lenges in maintaining academic integrity.

In Socratic questioning, a teacher assists a
learner trying to solve a problem beyond their zone
of proximal development (Quintana et al., 2004).
Language Models (LMs) have been used effectively
for generating a particular type of Socratic ques-
tions for solving word math problems, wherein

709

https://github.com/taisazero/socratic-debugging-benchmark
https://github.com/taisazero/socratic-debugging-benchmark

they leverage the sequential structure of steps that
compose the solution (Shridhar et al., 2022). Other
applications of LMs include automated feedback
on student code submissions (Wu et al., 2021), as
well as generating programming exercises, unit
tests, and code explanations (Sarsa et al., 2022).
However, there still remains a substantial gap in
leveraging LMs effectively for guiding novice pro-
grammers through a coding exercise in a way that
maximizes their learning outcomes, similar to how
an effective, experienced TA would guide a be-
ginner programmer. For Socratic questioning, in
particular, the difficulty of building an effective
system is compounded by the scarcity of examples,
whereas the limited data that can be found (Chen
et al., 2011) does not have sufficient structure to
enable the automatic evaluation of Socratic ques-
tioning systems.

In this paper, we focus on the task of Socratic
questioning for debugging (Wilson, 1987), or So-
cratic debugging, defined as a conversation be-
tween a knowledgeable programmer and a beginner
student who comes for help fixing a buggy solution
for a simple computational problem (Section 2).
To enable the development and evaluation of LM-
based instructional agents, we introduce a manually
created dataset of dialogues where the main objec-
tive is for the student to repair their buggy code
themselves by leveraging guidance received from
the instructor at every turn (Section 3). However,
as originally observed by Wilson (1987), "no pre-
cise formula, or line of questioning" is needed to
achieve the goals of Socratic questioning. Further-
more, depending also on their expectations with
respect to the student’s abilities, an instructor can
often think of multiple ways of guiding the student
at any particular turn in the conversation, leading
to a very large space of possible dialogues. So-
cratic questions lie in a continuum ranging from
providing direct hints that give out the answer to
offering minimal guidance, enabling instructors to
pose queries at an appropriate level that challenges
the student while remaining within each student’s
ability to answer. To facilitate the automatic evalua-
tion and benchmarking of future Socratic question-
ing systems in terms of their precision and recall,
the dataset contributors are asked to provide all al-
ternative utterances that they think could help the
student, at every turn in the conversation. This is
a currently ongoing, cognitively demanding data
generation effort, requiring contributors with sub-

stantial experience in tutoring beginner program-
mers. We use the current version of the dataset,
containing 86 main conversations, to benchmark
the Socratic debugging abilities of two large lan-
guage models in the GPT family, namely GPT-3.5
and GPT-4 (Section 4), noticing a large discrep-
ancy in performance in favor of the more recent
GPT-4. We conclude the paper with related work
and limitations.

2 Task Definition

We formulate the Socratic debugging task as a
dyadic conversation between a Student and an In-
structor. In this scenario, the Student is assumed to
be a beginner programmer who has recently started
learning how to code in Python. As part of his1

learning to code curriculum, the Student is given a
coding problem for which he needs to write a func-
tion implementing the specified input-to-output re-
lationship. The Student writes the code for the
function, however, the code is buggy and he cannot
make progress on his own without help, therefore
he seeks help from the Instructor. The Instructor is
assumed to be a proficient programmer in Python
with experience in teaching novice programmers
how to code. When contacted by a Student for help,
her main aim is to maximize the learning outcomes
by following a Socratic guidance approach through
which, over one or more dialogue turns, she helps
the students figure out where the bug is and how to
fix it on their own.

2.1 Input

Since the focus of this work is on generating So-
cratic guidance and not bug identification or fixing
bugs, we assume that the AI agent implementing
the Instructor also has access to a description of the
bug and of one or more bug fixes. The decision to
separate Socratic advice generation from bug iden-
tification and debugging was motivated by the fact
that these subordinate tasks can already be solved
efficiently by large LMs with high accuracy. There-
fore, at the start of each conversation, we assume
the Instructor has access to the problem descrip-
tion, a number of test cases, the student’s buggy
code, the bug description, and one or more bug
fixes, as shown below in a sample from our dataset.
At each turn in the conversation, the Instructor’s
task is to generate Socratic guidance in response
to the Student’s current progress in addressing the

1The genders were selected at random by tossing a coin.

710

bug. Consequently, we assume that the Instructor is
also given as input a history of the conversation so
far, ending with the last utterance from the student.
Shown below is an example ending with the sec-
ond turn from the student, where the turn number
is indicated between brackets.

➣ Problem description:
Write a function factorial(n) that com-
putes the factorial n! of a natural number n,
which is defined mathematically as:

0! = 1
n! = n x (n - 1)!

Additionally, if the input integer n is negative
the function should return 0.

➣ Test cases:

assert factorial(-1) == 0
assert factorial(0) == 1
assert factorial(1) == 1
assert factorial(2) == 2
assert factorial(3) == 6
assert factorial(4) == 24
assert factorial(5) == 120

➣ Buggy code:

1. def factorial(n):
2. if n < 0:
3. return 0
4. fact = 1
5. for i in range(n):
6. fact = fact * i
7. return fact

➣ Bug description:
On line 6, fact is multiplied with 0 in the
first iteration of the for loop. Consequently,
at every iteration fact stays equal with 0
instead of being updated to be equal with fac-
torial of (i + 1). Therefore, the function
will return 0, irrespective of n.

➣ Bug fixes:

1. Replace i with (i + 1) on line 6.

2. Replace range(n) with range(1,
n + 1) on line 5.

To summarize, the input for the Instructor agent
consists of:

1. The problem description, a number of test
cases, the student’s buggy code, the bug de-
scription, and one or more bug fixes.

2. The conversation so far, ending with the last
turn from the Student.

➣ Conversation so far:
[1] STUDENT: Hi! I implemented the factorial
function but it doesn’t work and I do not know
why. Can you help?
[1] INSTRUCTOR: Sure. Can you tell me for
what values of n it fails and what values it
returns in those cases?
[2] STUDENT: For n = 1 or larger it returns
the same value, 0.
[2] INSTRUCTOR: ⟨Socratic guidance⟩

2.2 Output

Using the input data described above, the Instructor
is expected to generate Socratic guidance appro-
priate for the current state of the conversation, as
shown below.

➣ Socratic guidance:
Main responses:

Let’s see what happens when n is 1.
What is the first value that is assigned
to variable i in line 5?

Alternative responses:

1. Let’s see what happens when n is 1. Be-
fore line 6 is evaluated in the first iteration
of the for loop, what are the values of the
variables fact and i?

2. Let’s see what happens when n is 1. Can
you insert a new line between lines 5 and
6 that prints the values of the variables
fact and i?

3. Let’s see what happens when n is 1.
What does range(n) do when n is 1?

4. Can you tell me what range(n) does?

The example above shows a total of 5 Socratic
responses, partitioned into 1 main response and 4
alternative responses. Most of the time there are dif-
ferent ways of guiding the student, and ideally, the
Instructor should be able to generate all different
types of Socratic guidance that are different from
each other in non-trivial ways. For example, the

711

4th alternative focuses the student on correcting the
potential misuse of the range function, whereas
the main response provides a different kind of guid-
ance wherein the student is expected to first notice
the wrong code behavior that is caused by the mis-
use of range. Further justification for the decision
to include alternative responses will be provided in
Section 3 when introducing the data contribution
guidelines. Note that only the main response is
used to create the history of the conversation so far
that is used as input for generating future Instructor
turns.

3 Benchmark Dataset

To facilitate the development of conversational
agents that act under the task definition above, we
manually created a dataset of dialogues where a
student fixes buggy code on his own by leveraging
the Socratic guidance received from an instructor.
The dataset is created by sequentially specifying
the Coding problem → Bugs → Conversations →
Threads. First, a coding problem is selected, nor-
mally a simple coding exercise situated at a novice
level of coding proficiency, such as Factorial
or Fibonacci. The coding problem is specified
through the problem description and the associated
test cases. Next, one or more buggy implementa-
tions are created, with the constraint that each im-
plementation contains exactly one bug. The bugs
were selected to reflect common types of mistakes
that beginner programmers make, such as forget-
ting that indexing of sequences starts at 0, boundary
bugs, operator misuse, or misunderstanding of ba-
sic programming constructs.

For each buggy implementation, a main conver-
sation is created, where a fictional Student, the
author of the buggy code, interacts with a fictional
Instructor. The aim of the instructor is to guide the
student to discover the cause of the bug and fix it on
his own through Socratic dialogue. The dialogue
always starts with a student utterance. The instruc-
tor and the student then take turns in a dialogue,
until the bug is successfully fixed. At each turn,
the student may also provide a block of code if he
made edits to the code at that turn.

Following research in dialogue systems (Gupta
et al., 2019), we create multiple reference instruc-
tor utterances at each turn. The Main utterance
may be optionally followed by one or more Al-
ternative utterances. Given that the aim of this
dataset is to benchmark the ability of an artificial

Problems 23
Bugs 34
Dialogues 86
Student turns 537

Student utterances 763
Instructor Turns 497

Instructor utterances 1,329
Total turns 1,034

Total utterances 2,092

Table 1: Summary of the benchmark dataset: Number
of programming problems, bugs, dialogues (including
all threads), turns, and total utterances (main and alter-
natives) for both roles (student and instructor).

Instructor agent to generate Socratic guidance, it
is especially important that the contributed main
and alternative utterances for the Instructor com-
prehensively explore the entire range of Socratic
advice at that point in the conversation. These al-
ternative utterances should be semantically distinct
in a non-trivial manner; in particular, they should
not be mere paraphrases of the main utterance or of
each other. Upon inspection of the conversations
created manually, we discovered that one contribu-
tor used a vending machine as an analogy to guide
the user to conclude that print is not the same as
return. While using analogies can substantially
enhance the impact of Socratic questioning, it can
lead to an open-ended range of alternatives, as the
number of possible analogies is virtually infinite.
Since our aim is to create a dataset that can be used
to estimate both the recall and precision of a So-
cratic guidance generator, at this stage we decided
to require that Socratic utterances be literal, leaving
the generation of figurative utterances as a direction
for future work. For the Student, alternative utter-
ances may give different or conflicting answers to
an Instructor question, reflecting different levels of
understanding. Students may give correct or incor-
rect answers; they may also introduce new bugs
when fixing the original bug.

Once the main conversation ends with the stu-
dent successfully correcting their code and passing
all test cases, the contributors are instructed to cre-
ate up to three conversational threads.

The dialogues in the dataset were created by
10 contributors with extensive experience in CS
education as instructors, teaching assistants, or tu-
tors. The starting problems and buggy implementa-
tions were selected to contain a variety of syntactic

712

Language Manual BLEU-4 BERT F1 Rouge-L
Model P R F1 P R F1 P R F1 P R F1

GPT-3.5 19.8 31.5 24.3 3.2 1.9 1.8 56.0 38.6 37.4 21.0 13.3 12.8
GPT-4 52.9 50.0 51.4 3.2 5.6 3.8 35.4 63.3 42.0 14.1 24.9 16.7

Table 2: Preliminary evaluation of GPT-3.5 (gpt-3.5-turbo) and GPT-4 on our benchmark dataset. Manual
evaluation is performed on all instructor turns from a sample of 5 dialogues, whereas automatic evaluation is
performed on the entire dataset. We report the Precision (P), Recall (R), and F1 for the manual evaluation, and
BLEU-4, BERT F1, and Rouge-L for the automatic evaluation. All results are percentages (%).

and semantic mistakes that are frequently made by
novice Python programmers.

To streamline and standardize the collection of
Socratic dialogues and code edits for each input
problem description and buggy implementation,
we developed a 7-page web application using the
Streamlit2 and gsheetsdb3 libraries. The applica-
tion guides contributors through selecting a bug,
creating initial and conversational threads, and re-
viewing and submitting their work. During the
process, contributors can add main and alternative
utterances, undo actions, and edit the chat history.
The application also allows importing and export-
ing dialogues in a standardized form for review.
For more details and images of the application, the
reader is referred to Appendix A.

4 Experimental Evaluations

We evaluate the GPT-3.5 (OpenAI, 2022) and GPT-
4 (OpenAI, 2023) language models in terms of
their capacity to generate, at each instructor turn,
Socratic utterances that match those contributed in
the benchmark dataset. Each test example is com-
posed of an input prompt to the language model
containing: a steering prompt for Socratic ques-
tioning adapted from the GPT-4 blog post4, the
problem description, the buggy code, the bug de-
scription, the bug fixes, the unit tests, the dialogue
history so far, and an instruction to the language
model to generate all possible semantically distinct
Socratic utterances, as shown below.

Respond to the user with all possible
distinct Socratic utterances that guide
the user to discover and fix the bug
described between ‘<bug_desc>’ and
‘</bug_desc>’. Student code is writ-
ten between ‘<code>’ and ‘</code>’

2https://streamlit.io/
3https://github.com/betodealmeida/gsheets-db-api
4https://openai.com/research/gpt-4

throughout the conversation. Utterances
that have the same meaning but differ-
ent words are considered duplicates. As-
sume that the student has run the test
cases.

The list of utterances generated by the LM is
then used to estimate precision and recall. After
conducting a preliminary, qualitative evaluation
of various prompts and instructions we select the
prompt and instruction used in this paper. For more
details about prompting, the reader is referred to
Appendix B.

In all experiments, LM outputs are generated
using a greedy decoding setting (i.e. temperature
= 0). We set a maximum generated token thresh-
old of 1,024 and do not apply any frequency or
presence penalties. We perform manual evaluation
of the LM generations for a subset of problems,
and automatic evaluations for all problems in the
benchmark dataset.

4.1 Manual Evaluation

In the manual evaluation process, we aim to esti-
mate the performance of GPT-3.5 and GPT-4 by
manually assessing the quality of their generated
instructor utterances. At each instructor dialogue
turn, we manually examine each LM utterance to
determine if it is an appropriate Socratic utterance
at that turn. We sample a total of 17 instructor turns
across 5 dialogues from the benchmark. Using the
example listed in §2.1, during the second instructor
turn a good-matching generated utterance example
is: “How does the range function work in your loop,
and what values does it generate for i?" because it
is semantically close with the ground truth utter-
ance: “Can you tell me what range(n) does?". If the
LM utterance is good but not present in our dataset,
we mark it as missing to compute an overall upper
bound on recall for the dataset itself. These miss-
ing alternatives can later be used to augment the

713

https://streamlit.io/
https://github.com/betodealmeida/gsheets-db-api
https://openai.com/research/gpt-4

dataset. An example of a good LM utterance that
is not in the dataset: “Let’s take a closer look at
the loop in your code. Can you explain how the
loop iterates and what it does in each iteration?",
this utterance is distinct from the first alternative
response as the generated utterance gives more au-
tonomy to the student by simply asking the student
to explain the buggy portion of the code with less
guidance on what to explain or look for. If the LM
output is not good, it is considered a false positive
(FP), which decreases the precision of the LM. An
example of a poor-matching utterance in the same
setting is: “Can you think of a way to modify the
loop so that it starts with a different value of i?".
This utterance is generated too early before the stu-
dent realizes that the loop starts with an ‘i’ value of
0. For each alternative in the benchmark dataset at
that turn, we check if it is missing from the list of
LM utterances. If missing, it is considered a false
negative (FN), which decreases the recall of the
LM. If the dataset utterance is present in the LM
utterances, it is considered a true positive (TP). LM
and dataset instructor utterances are matched only
if they are semantic equivalent. If the LM gener-
ates two or more paraphrases of the same Socratic
guidance, for the purpose of evaluation they are
considered as one Socratic utterance. The preci-
sion (P), recall (R), and their harmonic mean (F1)
presented in Table 2 highlight GPT-4’s superior per-
formance over GPT-3.5 in generating relevant and
diverse Socratic utterances. We emphasize GPT-
3.5’s poor precision as it tends to generate many
poor Socratic questions (93 FP) compared to GPT-
4 (41 FP) that may contain keywords in common
with a ground truth utterance but are irrelevant. In
addition to the evaluation of language models, we
compute the (R) for our benchmark dataset dur-
ing human evaluations, obtaining a value of 70.0.
This score suggests that most of the high-quality
Socratic utterances generated by language models
are effectively captured within the dataset by con-
tributors, further validating the dataset’s usefulness
for benchmarking purposes.

4.2 Qualitative Analysis

We examine the LM-generated outputs in our man-
ual evaluation setup and observe interesting phe-
nomena. In general, GPT-3.5 seemed to refer to
example cases in the problem description to ask
for the expected output in its utterances whereas
GPT-4 rarely did so. Furthermore, GPT-4 has gen-

erated utterances that are good (32) but not in the
dataset 3 times more than GPT-3.5 (10) indicat-
ing that GPT-4 generates more diverse (e.g. in
the level of guidance) and comprehensive Socratic
utterances. GPT-3.5 has generated over 96 poor
utterances (FP) which is more than double that of
GPT-4 (42). Below are cherry and lemon picked
LM output samples given a buggy code containing
a return statement within the for loop leading to
an early termination. Good responses are bolded
and colored in green while poor utterances are ital-
icized and colored in red.

➣ Buggy code:

1. def removeEven(nums):
2. newNums = []
3. for i in nums:
4. if i % 2 != 0:
5. newNums.append(i)
6. return newNums

➣ Conversation So Far:
[1] STUDENT: Help, I’m stuck.
[1] INSTRUCTOR: What should your code be
doing?
[2] STUDENT: Right now, it’s only returning
the first number in the list, not all of them.
[2] INSTRUCTOR: Okay, let’s look at your
loop. Do you see anything that could be caus-
ing it to end early?
[3] STUDENT: No I do not. I’m iterating
through the whole list of numbers.
[3] INSTRUCTOR: ⟨Socratic guidance⟩
➣ Sample GPT-4 Outputs:

1. Can you identify which part of your
code is responsible for returning the
final result?

2. What happens when the ‘return’ state-
ment is executed inside the loop?

3. How does the placement of the ‘return’
statement affect the execution of your
code?

4. How can you modify the position of the
‘return’ statement to ensure that the en-
tire list is processed before returning the
result? (direct)

➣ Sample GPT-3.5 Outputs:

1. What does the ‘return’ statement do?

714

2. How can you modify the code to return
all odd numbers in the list? (early)

3. What happens when the condition on line
4 is true? (irrelevant)

4. Can you identify any issues with the loop?
(repeated)

In the example above, we observe that GPT-4 cov-
ers three distinct levels of guidance. The first utter-
ance simply guides the student’s focus onto the er-
roneous line and the second utterance exerts higher
level of guidance by asking the student to demon-
strate their understanding of the ‘return’ keyword,
and lastly the third exerts even more guidance by
asking the student to explain the impact of indenta-
tion on code execution. GPT-3.5’s second utterance
is illustrative of a poor utterance as it provides very
little guidance and is unhelpful for the student in
that conversation. Poor utterances for both LMs
fall into 4 categories. The first and largest category
are irrelevant utterances, where the SQ diverts the
learner’s attention away from the actual bug and
may mislead them as a consequence. GPT-3.5 has
generated over 53 irrelevant utterances significantly
more compared to GPT-4 (8). An example of an
irrelevant utterance is the third GPT-3.5 utterance
where the LM directs the focus of the learner away
from the loop and why it might be terminating early
and towards explaining the if statement and its body
where there is no bug. The sudden shift in the goal
of the conversation from discussing possible causes
of the bug to explaining non-buggy code lines may
mislead the learner to thinking the if statement and
its body may be causing the bug when they are not.
This category of utterances must be minimized by
systems performing Socratic questioning. The sec-
ond category are repeated Socratic utterances that
had been asked in a prior turn or the answer to
the Socratic question was given by the student in
a prior turn. For example, the fourth GPT-3.5 ut-
terance asking if the student observes any issues
with the loop coming right after the student had
said they don’t see anything causing the loop to
end early. The third category are SQs that are too
direct by making the bug fix pretty obvious early
in the conversation. An illustrative example of this
is the fourth GPT-4 utterance where it makes the
bug fix obvious which is de-indenting the return
statement before the student discovers the cause
of the bug. These utterances lower the challenge
level for students while learning and prevent stu-

dents from engaging in a discovery process and
potentially lowers learning outcomes. The last cat-
egory is composed of SQs uttered too early in the
conversation, where student is not yet aware of the
issue, and the Socratic utterances guide the student
towards changing the code before they realize what
the issue is. Take the second GPT-3.5 utterance as
an example, where the LM asks the student how
can they modify their code to fix the bug before
the student even discovers the cause of the bug.
This category of poor utterances may cause con-
fuse learners.

4.3 Automatic Evaluation

Following prior work in Socratic sub-question gen-
eration (Shridhar et al., 2022), we compute the
similarity between an LM utterance and a ground
truth utterance in the dataset using BLEU (Pap-
ineni et al., 2002) for n-gram overlap, BERT F1
Score (Zhang et al., 2020) for semantic similarity
based on the DeBERTa language model5 (He et al.,
2020), and Rouge-L (Lin, 2004) for n-gram overlap
based on Longest Common Subsequence (LCS) be-
tween generated and reference instructor utterances.
Rouge-L is included for its flexibility in evaluat-
ing text similarity and capturing overall structure
and content better than BLEU-4. BERTScore is
included to handle paraphrases. Given a set of m
LM-generated utterances and n manually created
utterances, we create a complete bipartite graph be-
tween the two sets, with a total of mn edges, where
the weight of each edge is computed using one of
the text similarity measures above. We then apply
Edmond’s Blossom algorithm (Galil, 1986) for find-
ing the maximum matching in this bipartite graph.
This ensures that each manual utterance is matched
with at most one LM utterance, effectively prohibit-
ing semantically equivalent LM utterances from
artificially increasing the evaluation measures. The
number of true positives TP is computed by sum-
ming up the weights of all edges found in the opti-
mal matching. Given that the weights are similarity
scores in [0, 1], if an LM utterance u is matched
with a manual utterance v for a similarity weight of
s(u, v), the remaining weight mass of 1−s(u, v) is
considered to contribute towards the total number
of false positives FP . Any unmatched LM utter-
ance is considered to contribute the maximum of 1
towards the FP total. Overall, it can be shown that
this results in FP = m−TP . The number of false

5https://huggingface.co/microsoft/deberta-xlarge-mnli

715

https://huggingface.co/microsoft/deberta-xlarge-mnli

negatives is computed in an analogous way, result-
ing in FN = n− TP . Consequently, precision is
P = TP/m and recall is R = TP/n.

The results of evaluating GPT-3.5 and GPT-4 on
the entire benchmark dataset using these automated
metrics are shown in Table 2. We observe that there
is a correlation in terms of F1 and R between the
automatic metrics and the manual metrics. How-
ever, upon manual inspection reveals that automatic
evaluation metrics tend to increase when generated
Socratic questions contain variable names from the
buggy code input or statements from the bug de-
scription. This occurs regardless of the question’s
relevance or usefulness to the student, emphasizing
the importance of manual evaluation for this task.

5 Related Work

▶ Education and Socratic Questioning. Scaffold-
ing is the process that enables a learner to achieve
a goal through guided efforts (Wood et al., 1976).
Scaffolding efforts typically focus on diversifying
course content and difficulty (Saule, 2018; Dorod-
chi et al., 2020), however, scaffolding can also take
the form of a conversation. Socratic Questioning
(SQ), also referred to as guided inquiry, folds under
the theory of scaffolding (Wood et al., 1976; Reiser,
2004) where a more knowledgeable person helps a
learner solve a problem that is beyond their zone
of proximal development (Quintana et al., 2004;
Vygotsky, 2012) by interjecting with questions to
guide the student towards a solution. Wood (1994)
analyzed conversations in a math classroom and
proposed two distinct types of questioning. The
first is funneling, which aims to guide a learner us-
ing a set of questions toward the solution. The sec-
ond is focusing, which draws a learner’s attention
to important aspects of a problem (Wood, 1994).
Focusing questions can also probe a student to re-
flect and articulate their own thinking (National
Council of Teachers of Mathematics, 2014; Alic
et al., 2022).

Students can complete a programming exer-
cise but still struggle to explain their own pro-
gram (Lehtinen et al., 2021). To remedy this,
Tamang et al. (2021) showed that using the So-
cratic method to guide students in explaining their
code is effective at inducing learning gains in code
comprehension tasks. To the best of our knowl-
edge, the impact of Socratic questioning on learn-
ing outcomes when guiding student debugging has
not been explored yet. In this work, we create So-

cratic conversations between an instructor and a
student where the instructor aims at guiding the
student towards fixing a bug in their code using
both funneling and focusing questions while limit-
ing instructor utterances that provide information
or facts related to fixing the bug.

▶ AI for Programming Education and Dia-
logue Tutoring Systems. Prior work in AI for
programming education includes intelligent tutor-
ing systems (ITS) and learning support systems for
programming courses. Learning support systems
provide automated feedback on student code sub-
missions and generate programming exercises, unit
tests, and code explanations (Wu et al., 2021; Sarsa
et al., 2022). Most ITS models rely on methods
predating recent developments in large language
models (Crow et al., 2018; Mousavinasab et al.,
2021), such as action-rules, Bayesian networks,
and Fuzzy rules-based systems (Costello, 2012;
Butz et al., 2006; Chrysafiadi and Virvou, 2012).
Some work has been done in building automatic
Socratic tutoring systems, but the Socratic utter-
ances are predefined and manually specified for
each exercise, limiting their generalizability (Al-
shaikh et al., 2020b,a). Existing systems do not
propose learning-centered conversational assistants
that can generalize to unseen programming prob-
lems or focus on using Socratic questions as the
main form of interaction with the learner. Auto-
matically scaffolding learning content is important
for personalized learning. Research by Kim et
al. (2018) has shown that computer-based scaf-
folding techniques, such as hints, have a moder-
ate impact on student learning in STEM education,
paving the way for technologies to assist in the
learning process. One such approach, proposed
by Shridhar et al. (2022), involves automatically
generating funneling Socratic sub-questions for a
given math word problem using a T5 language
model (Raffel et al., 2020) fine-tuned with rein-
forcement learning. Similarly, Tyen et al. (2022)
introduce a re-ranking-based decoding strategy for
language models, which adjusts the difficulty level
of a chatbot to meet the needs of learners studying
English as a new language.

▶ Hint Generation. With the goal of assist-
ing students with programming exercises, recent
work has proposed an array of techniques to auto-
matically generate hints to guide novices by pro-
viding instant and relevant feedback to correct
programming mistakes and advance through ex-

716

ercises (McBroom et al., 2021). Automated hint
generation systems use various approaches includ-
ing extracting common bugs and scaling up instruc-
tor feedback to the common bugs (Lee et al., 2018),
extracting patterns from peer data (Iii et al., 2014;
Lazar et al., 2017), and generating custom solution
paths (Rivers and Koedinger, 2017) which typi-
cally generalize to unseen code states within an
exercise. A super-bug is where a student incor-
rectly "attributes foresightedness" to the written
program where the program executes beyond the
information given or the student assumes there is
more functionality in the written code than what
was written (Pea, 1986). Fragile knowledge is bro-
ken down into four categories: missing knowledge
where necessary knowledge has not been acquired,
inert knowledge where the student has acquired
the necessary knowledge but fails to retrieve it,
misplaced knowledge where knowledge is used in
the wrong context, and conglomerated knowledge
where knowledge is misused by combining two
or more known structures incorrectly (Perkins and
Martin, 1986). Bugs caused by knowledge break-
downs where a student has a misconception are the
most time-consuming to fix. For a survey on stu-
dent misconceptions when learning programming
the reader is referred to (Qian and Lehman, 2017).

▶ Tutoring Dialogue Corpora. Prior work in
curating corpora of tutoring dialogues between an
instructor and a learner includes the CIMA cor-
pus focused on tutoring English speakers to learn
Italian (Stasaski et al., 2020). Similarly, for learn-
ing English, the Teacher-Student Chatroom Cor-
pus (TSCC), curates up to 260 chatroom dialogues
between an experienced teacher and an English
learner (Caines et al., 2020, 2022). TSCC was an-
notated according to the Self-Evaluation of Teacher
Talk framework (Walsh, 2006) which includes: En-
quiry (where the learner asks a question), Display
Question (a question to which the teacher knows
the answer), Form-focused feedback, and Instruc-
tion. Demszky et al. (2021) release a conversa-
tional corpus between math teachers and learners
composed of 2,246 utterance exchanges along with
annotations on teacher uptake where the teacher
builds on what the student has said such as ac-
knowledgment and rephrasing. Chen et al. (2011)
examine computer science tutoring conversations
and classify tutor utterances into 4 categories: The
first category is Direct Procedural Instructions, in
which the tutor directly tells the student what task

to perform. The second category is Direct Declar-
ative Instruction, where the tutor provides facts
about the domain or problem. The third category
is Prompts, in which the tutor attempts to elicit
a contribution from the student, and the last cate-
gory is Feedback where the tutor affirms or rejects
a step a student has completed. One interesting
phenomenon observed in the corpus is tutors us-
ing analogies to communicate data structures con-
cepts such as using Legos as an analogy to explain
stacks (Alizadeh et al., 2015). Prior work focuses
on building corpora of tutoring dialogues that con-
tain instructor teaching, and tutorials. There seems
to be limited work on building corpora where the
instructor’s role is limited to guiding the student to
discover the bug and any necessary knowledge to
fix it on their own using Socratic questioning.
▶ Evaluating the Educational Abilities of

Language Models. Tack and Piech (2022) pro-
pose using pairwise comparison tests to compare
generated responses by BlenderBot (Roller et al.,
2021) and GPT-3 (Brown et al., 2020) and find
that both language models perform significantly
worse than real teachers on understanding a stu-
dent, helping a student, and speaking like a teacher
on the TSCC (Caines et al., 2020, 2022), and the
Uptake (Demszky et al., 2021) corpora which focus
on English and Mathematics tutoring respectively.

6 Conclusion & Limitations

This paper presents a dataset of expert-curated So-
cratic conversations where instructors assist novice
programmers in fixing buggy solutions to simple
computational problems. The dataset serves as a
benchmark for evaluating the Socratic debugging
capabilities of LMs. While GPT-4 outperforms
GPT-3.5, its precision, and recall remain below hu-
man expert levels (70.0), highlighting the need for
further research. We find that GPT-family language
models may generate repetitive and irrelevant So-
cratic utterances that could mislead learners. The
utterances may also appear too early in the conver-
sation, causing confusion, and can be overly direct,
potentially diminishing learning outcomes. Study
limitations include: The automatic metrics are lim-
ited in capturing the correctness, helpfulness, and
relevance of a Socratic utterance, and the bench-
mark dataset may not represent all common novice
misconceptions. Moreover, the manual evaluation
is limited to 5 dialogues and could be expanded,
but this process is highly time-consuming.

717

Acknowledgements

We would like to thank Sandra Wiktor, Anusha
Reddy, Justin Smith, and Qiong Cheng for all their
time and effort in contributing dialogues to the
benchmark dataset. We also acknowledge Ilan Ak-
tanova and Frank Garcia for their contributions
to the programming exercises used in the dataset
and Abraham Sanders for his discussions related
to dialogue system evaluations. This research was
partly supported by the United States Air Force
(USAF) under Contract No. FA8750-21-C-0075.
Any opinions, findings, conclusions, or recommen-
dations expressed in this material are those of the
author(s) and do not necessarily reflect the views
of the USAF.

References
Sterling Alic, Dorottya Demszky, Zid Mancenido, Jing

Liu, Heather Hill, and Dan Jurafsky. 2022. Computa-
tionally identifying funneling and focusing questions
in classroom discourse. BEA 2022, page 224.

Mehrdad Alizadeh, Barbara Di Eugenio, Rachel Hars-
ley, Nick Green, Davide Fossati, and Omar AlZoubi.
2015. A study of analogy in computer science tuto-
rial dialogues. Trees, 53(19.2):1–6.

Zeyad Alshaikh, Lasagn Tamang, and Vasile Rus. 2020a.
A socratic tutor for source code comprehension. In
Artificial Intelligence in Education: 21st Interna-
tional Conference, AIED 2020, Ifrane, Morocco, July
6–10, 2020, Proceedings, Part II 21, pages 15–19.
Springer.

Zeyad Alshaikh, Lasang Jimba Tamang, and Vasile Rus.
2020b. Experiments with a socratic intelligent tutor-
ing system for source code understanding. In The
Thirty-Third International Florida Artificial Intelli-
gence Research Society Conference (FLAIRS-32).

Stella Biderman and Edward Raff. 2022. Fooling moss
detection with pretrained language models. In Pro-
ceedings of the 31st ACM International Conference
on Information & Knowledge Management,
CIKM ’22, page 2933–2943, New York, NY, USA.
Association for Computing Machinery.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877–1901.

Cory J Butz, Shan Hua, and R Brien Maguire. 2006. A
web-based bayesian intelligent tutoring system for
computer programming. Web Intelligence and Agent
Systems: An International Journal, 4(1):77–97.

Andrew Caines, Helen Yannakoudakis, Helen Allen,
Pascual Pérez-Paredes, Bill Byrne, and Paula Buttery.
2022. The teacher-student chatroom corpus version
2: more lessons, new annotation, automatic detec-
tion of sequence shifts. In Proceedings of the 11th
Workshop on NLP for Computer Assisted Language
Learning, pages 23–35, Louvain-la-Neuve, Belgium.
LiU Electronic Press.

Andrew Caines, Helen Yannakoudakis, Helena Edmond-
son, Helen Allen, Pascual Pérez-Paredes, Bill Byrne,
and Paula Buttery. 2020. The teacher-student chat-
room corpus. In Proceedings of the 9th Workshop
on NLP for Computer Assisted Language Learning,
pages 10–20, Gothenburg, Sweden. LiU Electronic
Press.

Tracy Camp, W Richards Adrion, Betsy Bizot, Susan
Davidson, Mary Hall, Susanne Hambrusch, Ellen
Walker, and Stuart Zweben. 2017. Generation cs: the
growth of computer science. ACM Inroads, 8(2):44–
50.

Lin Chen, Barbara Di Eugenio, Davide Fossati, Stellan
Ohlsson, and David Cosejo. 2011. Exploring effec-
tive dialogue act sequences in one-on-one computer
science tutoring dialogues. In Proceedings of the
Sixth Workshop on Innovative Use of NLP for Build-
ing Educational Applications, pages 65–75, Portland,
Oregon. Association for Computational Linguistics.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan,
Henrique Ponde, Jared Kaplan, Harri Edwards, Yura
Burda, Nicholas Joseph, Greg Brockman, et al. 2021.
Evaluating large language models trained on code.
arXiv preprint arXiv:2107.03374.

Konstantina Chrysafiadi and Maria Virvou. 2012. Eval-
uating the integration of fuzzy logic into the student
model of a web-based learning environment. Expert
systems with applications, 39(18):13127–13134.

Robert Costello. 2012. Adaptive intelligent person-
alised learning (aipl) environment. Ph.D. thesis.

Tyne Crow, Andrew Luxton-Reilly, and Burkhard Wuen-
sche. 2018. Intelligent tutoring systems for program-
ming education: a systematic review. In Proceedings
of the 20th Australasian Computing Education Con-
ference, pages 53–62.

Dorottya Demszky, Jing Liu, Zid Mancenido, Julie
Cohen, Heather Hill, Dan Jurafsky, and Tatsunori
Hashimoto. 2021. Measuring conversational uptake:
A case study on student-teacher interactions. In Pro-
ceedings of the 59th Annual Meeting of the Associa-
tion for Computational Linguistics and the 11th Inter-
national Joint Conference on Natural Language Pro-
cessing (Volume 1: Long Papers), pages 1638–1653,
Online. Association for Computational Linguistics.

Mohsen M Dorodchi, Nasrin Dehbozorgi, Aileen Bene-
dict, Erfan Al-Hossami, and Alexandria Benedict.
2020. Scaffolding a team-based active learning

718

https://doi.org/10.1145/3511808.3557079
https://doi.org/10.1145/3511808.3557079
https://aclanthology.org/2022.nlp4call-1.3
https://aclanthology.org/2022.nlp4call-1.3
https://aclanthology.org/2022.nlp4call-1.3
https://aclanthology.org/2020.nlp4call-1.2
https://aclanthology.org/2020.nlp4call-1.2
https://aclanthology.org/W11-1408
https://aclanthology.org/W11-1408
https://aclanthology.org/W11-1408
https://www.proquest.com/dissertations-theses/adaptive-intelligent-personalised-learning-aipl/docview/1654740829/se-2
https://www.proquest.com/dissertations-theses/adaptive-intelligent-personalised-learning-aipl/docview/1654740829/se-2
https://doi.org/10.18653/v1/2021.acl-long.130
https://doi.org/10.18653/v1/2021.acl-long.130

course to engage students: A multidimensional ap-
proach. In 2020 ASEE Virtual Annual Conference
Content Access.

James Finnie-Ansley, Paul Denny, Brett A. Becker, An-
drew Luxton-Reilly, and James Prather. 2022. The
robots are coming: Exploring the implications of
openai codex on introductory programming. In Aus-
tralasian Computing Education Conference, ACE
’22, page 10–19, New York, NY, USA. Association
for Computing Machinery.

Zvi Galil. 1986. Efficient algorithms for finding maxi-
mum matching in graphs. ACM Computing Surveys
(CSUR), 18(1):23–38.

Alex Gerdes, Bastiaan Heeren, Johan Jeuring, and
L Thomas Van Binsbergen. 2017. Ask-elle: an adapt-
able programming tutor for haskell giving automated
feedback. International Journal of Artificial Intelli-
gence in Education, 27(1):65–100.

Prakhar Gupta, Shikib Mehri, Tiancheng Zhao, Amy
Pavel, Maxine Eskenazi, and Jeffrey P Bigham. 2019.
Investigating evaluation of open-domain dialogue
systems with human generated multiple references.
In Proceedings of the 20th Annual SIGdial Meeting
on Discourse and Dialogue, pages 379–391.

Pengcheng He, Xiaodong Liu, Jianfeng Gao, and
Weizhu Chen. 2020. Deberta: Decoding-enhanced
bert with disentangled attention. arXiv preprint
arXiv:2006.03654.

Dan Hendrycks, Steven Basart, Saurav Kadavath, Man-
tas Mazeika, Akul Arora, Ethan Guo, Collin Burns,
Samir Puranik, Horace He, Dawn Song, and Jacob
Steinhardt. 2021. Measuring coding challenge com-
petence with apps. NeurIPS.

Sebastian Hobert. 2019. Say Hello to ‘Coding Tutor’!
Design and Evaluation of a Chatbot-based Learning
System Supporting Students to Learn to Program.
ICIS 2019 Proceedings.

Barry Peddycord Iii, Andrew Hicks, and Tiffany Barnes.
2014. Generating hints for programming problems
using intermediate output. In Educational Data Min-
ing 2014. Citeseer.

Johan Jeuring, L. Thomas van Binsbergen, Alex Gerdes,
and Bastiaan Heeren. 2014. Model solutions and
properties for diagnosing student programs in ask-
elle. In Proceedings of the Computer Science Educa-
tion Research Conference, CSERC ’14, page 31–40,
New York, NY, USA. Association for Computing
Machinery.

Nam Ju Kim, Brian R Belland, and Andrew E Walker.
2018. Effectiveness of computer-based scaffolding
in the context of problem-based learning for STEM
education: Bayesian meta-analysis. Educational Psy-
chology Review, 30:397–429.

Timotej Lazar, Martin Možina, and Ivan Bratko. 2017.
Automatic extraction of ast patterns for debugging
student programs. In Artificial Intelligence in Edu-
cation: 18th International Conference, AIED 2017,
Wuhan, China, June 28–July 1, 2017, Proceedings
18, pages 162–174. Springer.

Victor CS Lee, Yuen-Tak Yu, Chung Man Tang, Tak-
Lam Wong, and Chung Keung Poon. 2018. Vida:
A virtual debugging advisor for supporting learning
in computer programming courses. Journal of Com-
puter Assisted Learning, 34(3):243–258.

Teemu Lehtinen, Aleksi Lukkarinen, and Lassi Haara-
nen. 2021. Students struggle to explain their own
program code. In Proceedings of the 26th ACM Con-
ference on Innovation and Technology in Computer
Science Education V. 1, pages 206–212.

Chin-Yew Lin. 2004. ROUGE: A package for auto-
matic evaluation of summaries. In Text Summariza-
tion Branches Out, pages 74–81, Barcelona, Spain.
Association for Computational Linguistics.

Mary Lou Maher, Celine Latulipe, Heather Lipford, and
Audrey Rorrer. 2015. Flipped classroom strategies
for cs education. In Proceedings of the 46th ACM
Technical Symposium on Computer Science Educa-
tion, pages 218–223.

Jessica McBroom, Irena Koprinska, and Kalina Yacef.
2021. A survey of automated programming hint gen-
eration: The hints framework. ACM Computing Sur-
veys (CSUR), 54(8):1–27.

Diba Mirza, Phillip T Conrad, Christian Lloyd, Ziad
Matni, and Arthur Gatin. 2019. Undergraduate teach-
ing assistants in computer science: a systematic lit-
erature review. In Proceedings of the 2019 ACM
Conference on International Computing Education
Research, pages 31–40.

Elham Mousavinasab, Nahid Zarifsanaiey, Sharareh
R. Niakan Kalhori, Mahnaz Rakhshan, Leila Keikha,
and Marjan Ghazi Saeedi. 2021. Intelligent tutor-
ing systems: a systematic review of characteristics,
applications, and evaluation methods. Interactive
Learning Environments, 29(1):142–163.

National Council of Teachers of Mathematics. 2014.
Principles to actions: Ensuring mathematical suc-
cess for all. NCTM, National Council of Teachers of
Mathematics, Reston, VA.

OpenAI. 2022. Introducing chatgpt.

OpenAI. 2023. Gpt-4 technical report. arXiv.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic evalu-
ation of machine translation. In Proceedings of the
40th Annual Meeting of the Association for Compu-
tational Linguistics, pages 311–318, Philadelphia,
Pennsylvania, USA. Association for Computational
Linguistics.

719

https://doi.org/10.1145/3511861.3511863
https://doi.org/10.1145/3511861.3511863
https://doi.org/10.1145/3511861.3511863
https://aisel.aisnet.org/icis2019/learning_environ/learning_environ/9
https://aisel.aisnet.org/icis2019/learning_environ/learning_environ/9
https://aisel.aisnet.org/icis2019/learning_environ/learning_environ/9
https://doi.org/10.1145/2691352.2691355
https://doi.org/10.1145/2691352.2691355
https://doi.org/10.1145/2691352.2691355
https://aclanthology.org/W04-1013
https://aclanthology.org/W04-1013
https://openai.com/blog/chatgpt
https://openai.com/research/gpt-4
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135

Roy D Pea. 1986. Language-independent conceptual
“bugs” in novice programming. Journal of educa-
tional computing research, 2(1):25–36.

David N Perkins and Fay Martin. 1986. Fragile knowl-
edge and neglected strategies in novice programmers.
In Papers presented at the first workshop on empiri-
cal studies of programmers on Empirical studies of
programmers, pages 213–229.

Yizhou Qian and James Lehman. 2017. Students’ mis-
conceptions and other difficulties in introductory pro-
gramming: A literature review. ACM Transactions
on Computing Education (TOCE), 18(1):1–24.

Chris Quintana, Brian J. Reiser, Elizabeth A. Davis,
Joseph Krajcik, Eric Fretz, Ravit Golan Duncan,
Eleni Kyza, Daniel Edelson, and Elliot Soloway.
2004. A scaffolding design framework for software
to support science inquiry. Journal of the Learning
Sciences, 13(3):337–386.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. Journal of Machine Learning Research, 21:1–
67.

Brian J Reiser. 2004. Scaffolding complex learning:
The mechanisms of structuring and problematizing
student work. The Journal of the Learning sciences,
13(3):273–304.

Kelly Rivers and Kenneth R Koedinger. 2017. Data-
driven hint generation in vast solution spaces: a self-
improving python programming tutor. International
Journal of Artificial Intelligence in Education, 27:37–
64.

Stephen Roller, Emily Dinan, Naman Goyal, Da Ju,
Mary Williamson, Yinhan Liu, Jing Xu, Myle Ott,
Eric Michael Smith, Y-Lan Boureau, and Jason We-
ston. 2021. Recipes for building an open-domain
chatbot. In Proceedings of the 16th Conference of
the European Chapter of the Association for Compu-
tational Linguistics: Main Volume, pages 300–325,
Online. Association for Computational Linguistics.

Sami Sarsa, Paul Denny, Arto Hellas, and Juho
Leinonen. 2022. Automatic generation of program-
ming exercises and code explanations using large
language models. In Proceedings of the 2022 ACM
Conference on International Computing Education
Research - Volume 1, ICER ’22, page 27–43, New
York, NY, USA. Association for Computing Machin-
ery.

Erik Saule. 2018. Experiences on teaching parallel
and distributed computing for undergraduates. In
2018 IEEE International Parallel and Distributed
Processing Symposium Workshops (IPDPSW), pages
361–368.

Kumar Shridhar, Jakub Macina, Mennatallah El-Assady,
Tanmay Sinha, Manu Kapur, and Mrinmaya Sachan.
2022. Automatic generation of socratic subquestions
for teaching math word problems. In Proceedings of
the 2022 Conference on Empirical Methods in Nat-
ural Language Processing, pages 4136–4149, Abu
Dhabi, United Arab Emirates. Association for Com-
putational Linguistics.

Katherine Stasaski, Kimberly Kao, and Marti A Hearst.
2020. Cima: A large open access dialogue dataset for
tutoring. In Proceedings of the Fifteenth Workshop
on Innovative Use of NLP for Building Educational
Applications, pages 52–64.

Anaïs Tack and Chris Piech. 2022. The AI teacher test:
Measuring the pedagogical ability of blender and
GPT-3 in educational dialogues. In Proceedings of
the 15th International Conference on Educational
Data Mining, pages 522–529, Durham, United King-
dom. International Educational Data Mining Society.

Lasang Jimba Tamang, Zeyad Alshaikh, Nisrine Ait
Khayi, Priti Oli, and Vasile Rus. 2021. A compara-
tive study of free self-explanations and socratic tu-
toring explanations for source code comprehension.
In Proceedings of the 52nd ACM Technical Sympo-
sium on Computer Science Education, SIGCSE ’21,
page 219–225, New York, NY, USA. Association for
Computing Machinery.

Gladys Tyen, Mark Brenchley, Andrew Caines, and
Paula Buttery. 2022. Towards an open-domain chat-
bot for language practice. In Proceedings of the 17th
Workshop on Innovative Use of NLP for Building Ed-
ucational Applications (BEA 2022), pages 234–249,
Seattle, Washington. Association for Computational
Linguistics.

Lev S Vygotsky. 2012. Thought and language. MIT
press.

Steve Walsh. 2006. Investigating classroom discourse.
Routledge.

Judith D Wilson. 1987. A socratic approach to helping
novice programmers debug programs. ACM SIGCSE
Bulletin, 19(1):179–182.

David Wood, Jerome S Bruner, and Gail Ross. 1976.
The role of tutoring in problem solving. Child Psy-
chology & Psychiatry & Allied Disciplines.

Terry Wood. 1994. Patterns of interaction and the cul-
ture of mathematics classrooms. In Cultural perspec-
tives on the mathematics classroom, pages 149–168.
Springer.

Mike Wu, Noah Goodman, Chris Piech, and Chelsea
Finn. 2021. Prototransformer: A meta-learning ap-
proach to providing student feedback. arXiv preprint
arXiv:2107.14035.

720

https://doi.org/10.1207/s15327809jls1303_4
https://doi.org/10.1207/s15327809jls1303_4
https://doi.org/10.18653/v1/2021.eacl-main.24
https://doi.org/10.18653/v1/2021.eacl-main.24
https://doi.org/10.1145/3501385.3543957
https://doi.org/10.1145/3501385.3543957
https://doi.org/10.1145/3501385.3543957
https://doi.org/10.1109/IPDPSW.2018.00068
https://doi.org/10.1109/IPDPSW.2018.00068
https://aclanthology.org/2022.emnlp-main.277
https://aclanthology.org/2022.emnlp-main.277
https://doi.org/10.5281/zenodo.6853187
https://doi.org/10.5281/zenodo.6853187
https://doi.org/10.5281/zenodo.6853187
https://doi.org/10.1145/3408877.3432423
https://doi.org/10.1145/3408877.3432423
https://doi.org/10.1145/3408877.3432423
https://doi.org/10.18653/v1/2022.bea-1.28
https://doi.org/10.18653/v1/2022.bea-1.28

Aman Yadav, Sarah Gretter, Susanne Hambrusch, and
Phil Sands. 2016. Expanding computer science ed-
ucation in schools: understanding teacher experi-
ences and challenges. Computer Science Education,
26(4):235–254.

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q.
Weinberger, and Yoav Artzi. 2020. Bertscore: Eval-
uating text generation with bert. In International
Conference on Learning Representations.

721

https://openreview.net/forum?id=SkeHuCVFDr
https://openreview.net/forum?id=SkeHuCVFDr

A Data Contribution Web Application

We developed a 7-page data contribution web application tool using the Streamlit Python library6 to
collect dialogues and code snapshots. The application loads a repository of programming problems and
bugs from a Google Spreadsheet using the Google Spreadsheet API through the gsheetsdb Python library7.
The web app consists of the following pages:

• Getting Started: This page (Figure 1) orients the users on the task and provides a link to the
guidelines document.

• Browse Bugs: Contributors browse and select a bug (Figure 2) to create a Socratic dialogue for.

• 4 Data Contribution Pages: These pages contain a code editor and a chat area (Figure 3) where
contributors create an initial conversation and up to 3 conversational threads.

• Review and Submit: This page (Figure 7) allows contributors to review their work and submit the
exported dialogues for review.

During the data contribution process, contributors can add main and alternative utterances, undo added
utterances or code snapshots, and edit the chat history text area and code in the code editor. When the
contributor edits the code in the Code Editor, they can choose to compile and run the code within the web
application and they can also add a code snapshot to the chat history by clicking the "Add Code to Chat
History" button (Figure 4). Once the bug has been fixed, the contributor compiles and runs the code in the
Code Editor, as demonstrated in Figure 5. Contributors can then use the import and export buttons shown
in Figure 6 to save their work. The export button generates a standardized form of the dialogue and code
states, while the import button allows contributors to load previously exported dialogues back into the
tool. After completing their data contribution, contributors submit the exported dialogues for review.

Figure 1: Screenshot of the web application’s Getting Started page where contributors get familiarized with the task
and go through the guidelines document.

6https://streamlit.io/
7https://github.com/betodealmeida/gsheets-db-api

722

https://streamlit.io/
https://github.com/betodealmeida/gsheets-db-api

Figure 2: Screenshot of the interface. Contributors first browse a repository of bugs created from a set of
programming problems. Each bug is displayed with the problem description, test cases, a buggy code, the bug
description, and bug fixes. Contributors select a bug to create a dialogue for.

Figure 3: Screenshot of the tool used to collect dialogues and code snapshots. Contributors are able to add a main
utterance, an alternative utterance, and undo an adding utterance or a code snapshot. Additionally, the chat history
text area is editable.

723

Figure 4: Screenshot of the tool adding a code snapshot by clicking the Add Code to Chat History button.

Figure 5: Screenshot of the tool compiling and running the code in the Code Editor after the bug has been fixed.

724

Figure 6: Screenshot of the tool’s import and export buttons. Upon completing a dialogue contributors use the
export button to export the dialogue and code states into a standardized form. Additionally, contributors can import
any dialogue exported from this tool using the import button.

Figure 7: Screenshot of the web application’s Review & Submit page where contributors are instructed to review
their data contribution and submit their exported version.

725

B Language Model Prompt

This section describes the prompt template that was used for language models in this paper. {{text}}
denotes a data point from the benchmark dataset. The steering prompt was adapted from the GPT-4 blog
post8. The ‘1.’ is added at the end of the instruction to prompt the language model to generate an itemized
list of utterances that can then be parsed.
Steering Prompt:

You are a tutor that always responds in the Socratic style. You *never* give the student the answer,
but always try to ask just the right question to help them learn to think for themselves. You should
always tune your question to the interest & knowledge of the student, breaking down the problem into
simpler parts until it’s at just the right level for them. Socratic utterances are utterances that guide the
user and do not give them the solution directly. In each of your responses, provide a comprehensive
list of Socratic responses that you can give to the user to help them solve the problem on their own,
based on the conversation so far.

Prompt:

<problem>
{{Problem Description}}
</problem>
<bug_code>
{{Buggy Code}}
</bug_code>
<bug_desc>
{{Bug Description}}
</bug_desc>
<bug_fixes>
{{Bug Fixes}}
</bug_fixes>
<unit_tests>
{{Unit Tests}}
</unit_tests>

User: {{User Turn 1}}
Assistant: {{Assistant Turn 1}}
...
User: {{User Turn N}}
<code>
{{Code State at Turn N}}a

</code>

Respond to the user with all possible distinct Socratic utterances that guide the user to dis-
cover and fix the bug described between ‘<bug_desc>’ and ‘</bug_desc>’. Student code is written
between ‘<code>’ and ‘</code>’ throughout the conversation. Utterances that have the same meaning
but different words are considered duplicates. Assume that the student has run the test cases.
1.

aIncluded only if turn N has a code state.

8https://openai.com/research/gpt-4

726

https://openai.com/research/gpt-4

