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Abstract

By aligning the functional components derived
from the activations of transformer models
trained for AES with external knowledge such
as human-understandable feature groups, the
proposed method improves the interpretabil-
ity of a Longformer Automated Essay Scoring
(AES) system and provides tools for perform-
ing such analyses on further neural AES sys-
tems. The analysis focuses on models trained to
score essays based on ORGANIZATION, MAIN
IDEA, SUPPORT, and LANGUAGE. The find-
ings provide insights into the models’ decision-
making processes, biases, and limitations, con-
tributing to the development of more transpar-
ent and reliable AES systems.

1 Introduction

Since its inception over 50 years ago (Page, 1966),
Automated Essay Scoring (AES) has been a valu-
able approach for evaluating large quantities of
student essays. Recent developments in the field
have sought to harness advanced natural language
processing techniques to score essays on par with
human raters, achieving significant progress toward
that goal (Ramesh and Sanampudi, 2022; Huawei
and Aryadoust, 2023; Mizumoto and Eguchi, 2023).
The inability to understand the learned represen-
tations in deep learning based AES models intro-
duces risk and validity concerns to their widespread
use in educational settings (Ding et al., 2020; Ku-
mar et al., 2020, 2023). In response to this con-
cern, we propose a functional component-based ap-
proach to scrutinize the activations of transformer
models trained for AES.

The primary goal of this study is to provide a
method and tool that can provide a coherent and
interpretable understanding of the functions per-

formed by these neural models, comparing their
overlaps and differences, and aligning the learned
functions with human-understandable groups of
features'. Much in the same way that human eval-
uators use rubrics to guide their scoring of essays,
neural models learn a set of features and connec-
tions that, when combined and applied to an essay,
repeatably determine the score that they will as-
sign.Through the comparison and contrast of these
components across models, we investigate how the
models prioritize different aspects of writing and
make stride towards unveiling that their learned
rubrics are, alongside any underlying biases or lim-
itations that they entail. Ultimately, this in-depth
analysis will enhance our understanding of the neu-
ral models’ decision-making processes, thereby
contributing to the development of more transpar-
ent and reliable automated essay scoring systems.

Our proposed methodology involves extending
the emerging domain of neural network interpreta-
tion by using abstract functional components, en-
abling a robust comparison between probed func-
tional components of a network and independent
feature groups. This approach specifically builds
upon recent work on neural probes and derived
methods, aligning a neural network’s activations
with external knowledge such as task metadata and
implicit features (e.g., parts-of-speech, capitaliza-
tion, etc.) (Conneau et al., 2018; Belinkov, 2022).
We focus our interpretation in the domain of AES
where each model in our investigation is trained
to score essays based on distinct evaluation traits,
namely ORGANIZATION, MAIN IDEA, SUPPORT,
and LANGUAGE.

To probe these models, the features are drawn

'Code and tool available at https://github.com/
jfiacco/aes_neural_functional_groups
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from several sources that correspond to concepts of
both high and low validity for essay scoring: statis-
tical features of an essay (e.g. number of sentences,
number of paragraphs, etc.) (Woods et al., 2017),
tree features generated from Rhetorical Structure
Theory (RST) (Mann and Thompson, 1987) parses
of the essays (Jiang et al., 2019; Fiacco et al., 2022),
essay prompt and genre (West-Smith et al., 2018),
and a combination of algorithmically derived (Der-
czynski et al., 2015) and our own human defined
style-based word lists. These features provide a
lens that while unable to capture all of the capabili-
ties of the models, provide insight into some of the
key differences between them.

In the following sections, we provide a detailed
description of the methodology used for this anal-
ysis, discuss the assumptions underpinning the
method, and present potential explanations for cor-
related function/feature pairs through a series of
experiments that validate our method’s ability to
reflect the internal rubric of each of the neural mod-
els.

2 Related Work

From the interpretability angle, the most closely
related work to this is that of neural model
probes (Shi et al., 2016; Adi et al., 2016; Conneau
et al., 2018; Zhu et al., 2018; Kuncoro et al., 2018;
Khandelwal et al., 2018) which have frequently
being used to test whether a model has learned a
set of properties (Ryskina and Knight, 2021; Be-
linkov, 2022). The primary gap we are working to
fill in from this body of literature is that current ap-
proaches, with few exceptions (Fiacco et al., 2019;
Cao et al., 2021), focus on understanding the roles
of individual neurons in the greater neural network.
We contend that studying the interpretability of a
neural network at the individual neuron level can
too easily obscure the broader picture. Our inter-
est lies in further progress incorporating a more
abstract perspective on what is learned by neural
networks, complementing the work that has been
done at the neuron level.

Compared to alternative paradigms for inter-
pretability in machine learning models, such as
LIME (Ribeiro et al., 2016) or SHAP (Lundberg
and Lee, 2017), which evaluate the contribution of
a given feature to the prediction of a model, the
functional component based methods allow for a
more granular identification of important parts of
a model, independent from known features for a
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Figure 1: Diagram visualizing the structure of the
methodology. Nodes of each color represent corre-
lated values.

task. This can enable model analysts to quickly
identify unexplained components and begin to pro-
pose alternative pallets of features. Furthermore,
the functional components can represent interme-
diate steps within the neural network which would
be unobservable with these alternative methods.

From the educational technologies and Auto-
mated Essay Scoring angle, our work primarily ap-
plies to the body of deep learning-based AES mod-
els such as recurrent neural network models (Jin
et al., 2018; Nadeem et al., 2019), convolutional
neural network models (Taghipour and Ng, 2016),
and transformer models (Sethi and Singh, 2022).
While our method could be applied to any type of
neural model, we focus on transformers as they rep-
resent the state-of-the-art. By integrating the inter-
pretability of neural models with the understanding
of the functional components they learn, we hope
to bridge the gap between human-understandable
features and neural network-based essay scoring.
The insights gained from our methodology can
guide the development of more effective and ef-
ficient AES systems, tailored to the specific needs
of educators and students. Furthermore, the lessons
learned from this research may extend beyond the
AES domain, providing valuable insights for the
broader field of natural language processing and
machine learning interpretability.

3 Methods

In this section we present our interpretation ap-
proach (Figure 1), defining the key concepts of
functional components, functional group, feature,
and feature group. Because the approach notably
abstracts away from common terms in the neural
network literature, throughout this section we draw
an analogy to how one can define and describe the
common features between mammals by comparing
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their common and unique characteristics.

3.1 Functional Components and Groups

Functional components refer to the learned func-
tions of a neural network, much like a particular
component of a dog may be a “dog leg”. In a neural
AES system, these would be a group of neurons
that have correlated activations when varying the
input essays. The approach to extracting functional
components (“neural pathways” as described by Fi-
acco et al. (2019)) from a neural network consists
of finding the sets of coordinated neuron activa-
tions, summarized by the following steps:

1. Save the activations of neurons for each data
instance in the validation dataset into an acti-
vation matrix, A of size M x N, where M is
the number of data instances in the validation
set and NNV is the number of neurons being used
for the analysis.

2. Perform a dimensionality reduction,
such as Principal Component Analysis
(PCA) (Hotelling, 1933), on A to get
component activation matrix, 7},o4¢; Of size
M x P, where P is the number of principal
components for a given model.

Functional groups are collections of similar func-
tional components. Continuing the analogy, they
would be compared to the more general concept of
a “leg”. We compute functional groups by concate-
nating the dimensionality reduced matrixes, T}, odei>
of the two models that are to be compared and
performing an additional dimensionality reduction
over that matrix to get a matrix of group activa-
tions, 7'. The functional components that are highly
loaded onto each functional groups are considered
members of that group. An important departure
from Fiacco et al. (2019), stemming from the limi-
tation that does PCA does not guarantee indepen-
dence between components, is that we use Indepen-
dent Component Analysis (ICA) (Comon, 1994)
instead. ICA is a dimensionality reduction tech-
nique that maximizes the independence between
components, resulting in more validity in the tech-
nique’s resulting alignments.

To determine if a functional group is influential
in the performance of the model (designating it
an important functional group), we can compute
the Pearson’s correlation coefficient between each
column of the group activation matrix and the pre-

dictions of the model, the errors of the model, and
the differences between the compared models.

3.2 Independent Feature Groups

Features are human understandable attributes that
can be extracted from an analysis dataset. In the
analogy they would represent potential descriptors
of a components of a mammal, e.g. “hairy”. In an
AES context, these features may manifest as “no
capitalization after a period”. Ideally, it would be
possible to create a direct mapping from each of the
functional components to each of the features for
which the functional component is related. How-
ever, this is non-trivial during a post-hoc analysis
because, without interventions, there are limita-
tions on what information is obtainable. Specifi-
cally, because features are not necessarily indepen-
dent from each other, their correlations cannot be
separated from each other, yielding imprecise inter-
pretations. It is thus required for only independent
features to be used as the unit of analysis when it
comes to alignment with functional components.
Unfortunately, in practice, this is a prohibitive re-
striction and most features that would be interesting
are going to have correlations.

Fortunately, much in the same way that we can
use ICA to extract independent functional com-
ponents from a neural network’s activations, we
can use it to construct independent feature groups
that can be reasonably be aligned with the func-
tional groups of the neural networks. In the analogy,
these independent feature groups can therefore, be
thought of as collections of descriptive terms that
can identify a characteristic of the mammal, such
as “an appendage that comes in pairs and can be
walked on” which would align with the “leg” func-
tional group. In AES, an example feature group
may be “uses punctuation improperly”. It would be
expected that this feature group would align well
with a functional group in a neural AES system that
corresponds with a negative essay score. Further-
more, feature groups for AES can be thought of as
being roughly analogous to conditions that would
be on an essay scoring rubric (as well as potentially
other features that may be intuitive or obvious to
human scorers but contribute to accurate scoring).

The specific process used to define these groups
is to perform a dimensionality reduction on each
set of feature types that may have significant cor-
relations and collecting them into a feature matrix.
We do this process for each feature type rather than
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over all features at once because spurious corre-
lations between some unrelated features may con-
volute the feature groups, making them far more
difficult to interpret.

3.3 Alignment

Using ICA as the dimensionality reduction, the
independent functional groups of the neural model
can reasonably align with the independent feature
groups using the following formal procedure: given
a neural network, N, with activation matrix, A
(as above), a independent component analysis is
performed yielding a set of functional components,
F. Foreach f;, fr € F, f; 1L fx|X,Y, where X
is the set of inputs to the neural network and Y
is the set of predictions from the neural network.
With a sufficient number of components such that
F contains all independent functional components
in A, if there exists a common latent variable in
both N and the set of independent feature groups,
G, with components g; € G, then there will be
some f; ~ gj-

4 Experiments

In this section, we delve into the specific method-
ology used to analyze the activations of the four
transformer models for AES, as well as the steps
taken to prepare the data and features for this anal-
ysis.

4.1 Datasets

Although scoring rubrics are specific to the genre
and grade level of a writing task, there are com-
monalities between each rubric that allow their
traits to be reasonably combined for modeling. All
our rubrics, for example, include LANGUAGE (and
style) and ORGANIZATION traits, though their ex-
pectations vary by genre and grade level. The
generic MAIN IDEA trait corresponds to “Claim”
and “Clarity and Focus” traits, and SUPPORT cor-
responds to "Support and Development" as well
as "Analysis and Evidence." Rubrics and prompts
were developed for validity, and essays were rig-
orously hand-scored by independent raters in the
same manner as described in West-Smith et al.
(2018).

For each generic trait, the training set was sam-
pled down from over 50,000 available essays, re-
sponding to 95 writing prompts. Essays from 77
prompts were selected for the training set, and
another 18 were held out for evaluation. Within

each split, essays were sampled to minimize im-
balance between essay score, genre, grade level,
In the un-sampled data, longer essays tend to be
strongly correlated with essay score, risking over-
fitting to this surface feature. Similarly, among
the subset of data where school district data was
available, districts with predominantly Black enroll-
ment were under-represented among essays with a
score of "4" across all traits. To counteract these
potential biases, the available data was binned by
length and district demographic information for
each score, genre, and grade level, and essays were
under-sampled from the largest bins. In addition to
these balanced essays, about 800 “off topic” essays
representing nonsense language or non-academic
writing were included in the dataset, with a score
of zero.

4.2 Models

Longformers are a transformer-based neural net-
work architecture that have gained prominence in
various NLP tasks (Beltagy et al., 2020). In the
context of AES, each generic trait’s model is a
Longformer with a single-output regression head,
fine-tuned on the trait’s balanced dataset: For the
remainder of this paper, the model fine-tuned on a
given trait will be referred to as “the TRAIT model”
(e.g. the ORGANIZATION model) for simplicity.

Although ordinal scores from 0 to 4 were used
for sampling and evaluation, the training data la-
bels were continuous, averaged from rater scores.
Essays were prefixed with text representing their
genre (e.g., "Historical Analysis") and prompt’s
grade range (e.g., "grades 10-12") before tokeniza-
tion, but no other context for the writing task (e.g.,
the prompt’s title, instructions, or source material)
was included. In addition to Longformer’s sliding
attention window of 512 tokens, the first and last
32 tokens received global attention.

Scores were rounded back to integers between 0
and 4, before evaluation. On the holdout prompts,
overall Quadratic Weighted Kappa (QWK) ranged
from 0.784 for MAIN IDEA to 0.839 for LAN-
GUAGE, while correlation with word count re-
mained acceptably low: 0.441 for LANGUAGE up
to 0.550 for SUPPORT.

The activations of the Longformer model were
saved for each instance in the analysis set at the
“classify” token to create a matrix of activations for
the functional component extraction.
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Model A Model B # Essays Extracted Features # Independent Feature Groups # Aligned IFG
ORGANIZATION MAIN IDEA 407 148 114 24
ORGANIZATION LANGUAGE 275 118 86 39
ORGANIZATION SUPPORT 144 90 63 37
LANGUAGE MAIN IDEA 341 129 95 26
LANGUAGE SUPPORT 72 67 38 23
SUPPORT MAIN IDEA 260 127 94 27

Table 1: Comparing analysis dataset size and numbers of extracted features for each of the model comparisons,

identified by the Model A and Model B columns.

4.3 Features

The features employed in this analysis encompass
statistical properties of the essays, tree features
generated from Rhetorical Structure Theory (RST)
parse trees of the essays, essay prompt and genre, a
combination of algorithmically derived and human-
defined style-based word lists, and certain school-
level demographic features. A description of each
feature type is provided below:

Statistical Features: While statistical features
such as essay word count are often good indicators
of essay score, they are not intrinsically valuable
to the different traits that our models are scoring.
We thus want to see lower alignment with these
features to indicate that the model is not overly
relying on rudimentary shortcuts scoring an es-
say. We also include average word length, essay
paragraph count, essay sentence count, average
sentence length, and the standard deviation of the
sentence length for completeness.

RST Tree Features: These features were inte-
grated to capture the rhetorical structure of the
text, such as the hierarchy of principal and sub-
ordinate clauses, the logical and temporal relations
between propositions, and the coherence of the
argument. These concepts have a high validity
for scoring essays (Jiang et al., 2019), especially
for ORGANIZATION, so high alignment between
functional groups would be expected. To generate
RST trees for each essay, we utilize a pretrained
RST parser specifically fine-tuned for student writ-
ing (Fiacco et al., 2022). We include the pres-
ence of an RST relation as a feature as well as re-
lation triplets (RELpqgrent, RELchild, , RELchild, ) S
tree-equivalent n-gram-like features.

Essay Prompt and Genre: Categorical representa-
tions of the essay prompt and genre were employed
as features to examine if components of the AES
model were preferentially activated based on the
content or topic of the essay, a low validity feature.

Algorithmically Generated Word List Features:
We calculate the frequency of usage of words
within algorithmically derived sets of words in the
essays as a group of features to probe the AES
model’s consideration for stylistic language. To
generate these word lists, we obtain Brown clus-
ters (Brown et al., 1992) from essays. We generate
separate Brown clusters for each prompt in our
dataset and subsequently derive final word lists
based on the overlaps of those clusters. This ap-
proach emphasizes common stylistic features as
opposed to content-based clusters.

Human Generated Word List Features: In addi-
tion to the algorithmically defined word lists, we
devise our own word lists that may reflect how the
AES model scores essays. We created word lists for
the following categories: simple words, informal
language, formal language, literary terms, transi-
tion words, and words unique to African American
Vernacular English (AAVE).

Demographic Features: We used the percent to
participants in the National School Lunch Program
(NSLP) at a school as a weak proxy for the eco-
nomic status of a student. Also as weak proxies for
economic status of essay authors, we include the
school level features of number of students and stu-
dent teacher ratio. Furthermore, we use a school
level distribution of ethnicity statistics as a weak
proxy for the ethnic information of an essay’s au-
thor. These features were employed to investigate
the model’s perception of any relationship between
the writer’s background and the quality, content,
and style of the essay, in order to gain insight of
the equity of the AES model.

4.4 Analysis Settings

To choose the number of components for ICA, a
PCA was performed to determine how many com-
ponents explained 95% of the variance of the acti-
vation (or 99% of the variance for the features) to
be used as the number of components of the ICA.
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Functional Group Extraction

Important Functional Group Alignment

Model A Model B # Comp. A # Comp. B #FG # Aligned FG # A Only #B Only # Mixed
ORGANIZATION MAIN IDEA 119 55 125 22 12 0 10
ORGANIZATION LANGUAGE 96 66 110 29 11 0 18
ORGANIZATION SUPPORT 66 36 68 22 9 1 12
LANGUAGE MAIN IDEA 78 55 93 23 8 3 12
LANGUAGE SUPPORT 34 28 38 13 2 2 9
SUPPORT MAIN IDEA 45 49 64 25 2 2 21

Table 2: Comparing number of functional groups extracted for each model comparison and presenting the num-
ber of functional groups that were both deemed important (Section 3.1) and sufficiently aligned with at least one
feature group. Also specified is the number of functional groups that are unique to a particular model and the
number that are shared between the models of given a comparison pair.

To determine that a functional group was important,
it needed to have an absolute value of Pearson’s r
value of greater than 0.2. This threshold was also
used to determine if a functional group should be
considered aligned with a feature group.

5 Results

In this section, we present aggregate statistics for
each model comparison when it comes to comput-
ing features and independent feature groups (Ta-
ble 1), extracting functional groups and aligning
important functional groups (Table 2), and lastly,
we provide examples taken from the model compar-
ison between the LANGUAGE model and the MAIN
IDEA model. Due to length constraints, we present
detailed examples of this comparison only. Similar
figures and correlation statistics can can be found
on Github?.

5.1 Independent Feature Groups

Since each trained model held out a different set
of prompts from its training set, common prompts
between analysis sets needed to be identified, and
thus the number of features extracted and the re-
sulting independent feature groups vary between
model comparisons. Computing the independent
feature groups for each model comparison (Table 1)
yielded between 70% and 77% of the original ex-
tracted features for all comparisons, except LAN-
GUAGE V SUPPORT, which only yielded 57% as
many independent feature groups compared to orig-
inal features. Despite high variability in the number
of independent feature groups identified during the
process, a much more narrow range of indepen-
dent feature groups was aligned during the analysis.

https://github.com/jfiacco/aes_
neural_functional_groups/tree/main/
supplementary_results
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Figure 2: Alignment diagram for functional groups
(left) that are specific to the MAIN IDEA model with
their alignment to feature groups (right). Only func-
tional groups and feature groups are shown if they
have a positive correlation greater than 0.25 (blue
edges) or a negative correlation less than —0.25 (red
edges). The numbers correspond to the IDs of the
functional group or feature group that the node repre-
sents (see Table 3).

The types of feature groups that were aligned var-
ied considerably between different comparisons.

5.2 Functional Component Groups

The initial extraction of functional components for
each model elicited numbers of functional compo-
nents between 28 and 119. Table 1 and 2 show that
for a given model, fewer functional components
will be extracted given a fewer instances in the
analysis dataset. Despite this noise, a clear pattern
emerges where the ORGANIZATION model has the
most functional components, followed by the LAN-
GUAGE model. The MAIN IDEA model has fewer
functional components, with the SUPPORT model
having the fewest.

When performing the dimensionality reduction
to compute the functional groups, there is a con-
sistent reduction to approximately 61-71% of the
combined total functional components.

5.3 Important Functional Groups

Despite the variance in the number of feature
groups and functional groups extracted per com-
parison, there is a remarkably consistent number of
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Figure 3: Alignment diagram for functional groups
(left) that are common to both the LANGUAGE and
MAIN IDEA models with their alignment to feature
groups (right). Only functional groups and feature
groups are shown if they have a positive correlation
greater than 0.25 (blue edges) or a negative correlation
less than —0.25 (red edges). The numbers correspond
to the IDs of the functional group or feature group that
the node represents (see Table 3).

important functional groups that have at least one

sufficient alignment to a feature group (Table 2).

With the exception of the LANGUAGE V SUPPORT
comparison, all other comparisons had between 21
and 29 aligned functional groups.

As a visual aid for the important functional
groups, see the left sides of Figures 2 and 3. Each
Figure is derived from the functional groups and
feature groups of the LANGUAGE V MAIN IDEA
comparison. The numbers on each node are the
identifiers of a given functional group, a subset of
which are represented in Table 3.

5.4 Alignment of Functional Groups

The entirety of findings from the alignments for
all of the comparisons would be too numerous to
present in a conference paper format. However,
we will present the major trends we found in our
analysis. The first main trend is that all models
had functional groups that we correlated with the

Functional Group 46
Diff: LANGUAGEVSMAINIDEA 7 = —0.39(p < 0.001)

Independent Feature Group 1 r = —0.43(p < 0.001)

ModelErrors:MAINIDEA(+), ModelPairDifference(+),
ModelErrors:LANGUAGE(-)

Functional Group 56
Predictions:MAINIDEA r = —0.13(p < 0.05)

Independent Feature Group 21 r = 0.75(p < 0.001)

EssayStats:STDDEV SENTENCELENGTH(+), Es-
sayStats:NUMSENTENCES(+), EssayStats: MEAN-
WORDLENGTH(+), EssayStats: NUMWORDS (-), Es-
sayStats:NUMPARAGRAPHS(-), EssayStats: MEANSEN-
TENCELENGTH(-)

Functional Group 92
Predictions:LANGUAGE r = —0.13(p < 0.05)

Independent Feature Group 12 = —0.20(p < 0.001)

‘WordCluster:PRIORITIES(+), WordClus-
ter:POPULATIONCOMPARISION(+), WordClus-

ter: EFFICIENCY(+), WordCluster: TEENVALUES(-),
WordCluster:STORYTELLING(-), WordCluster:SCHOOL
(=), WordCluster: PARENTALDECISIONS(-), WordClus-
ter:INFORMAL(-), WordCluster: HISTORICALCONFLICT(-)

Independent Feature Group 69 r = 0.22(p < 0.001)

RST:NNICONTRAST(+),
RST:SNIEVALUATION(NSIELABORATION, LEAF)(+),
RST:SNIBACKGROUND(LEAF, NSIELABORATION)(+),
RST:NSIEVIDENCE(LEAF, NNICONJUNCTION)(+),
RST:NNIJOINT(NNICONJUNCTION, NNIJOINT)(+),
RST:NNICONTRAST(LEAF, LEAF)(+),
RST:NNICONJUNCTION(NSIELABORATION,
NNICONJUNCTION)(+),
RST:SNIEVALUATION(NNICONJUNCTION, LEAF)(-),
RST:NNICONJUNCTION(LEAF, LEAF)(-)

Table 3: Selected examples of correlated functional
group/feature groups. Pearson’s R values for relevant
importance metric (model difference, model predic-
tions) and feature group alignment are presented with
p-values.

statistical features of the essay. Furthermore, by
computing the correlations between the individual
features within that type, it was determined that
number of paragraphs is likely the most salient
contributor.

The second set of trends is presented in Table 4,
where the percent of the total aligned feature groups
per model was computed. This revealed that the OR-
GANIZATION model had considerably more aligned
RST-based features than the other models, while
the MAIN IDEA model had the least proportion.
The LANGUAGE model had the most aligned word
list features, which is the combination of the algo-
rithmically and human-created word list features.
For the last percentage, we combine the prompt
and demographic features and find that the SUP-
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% Word %Demo. &

Model %RST  List Prompt
ORGANIZATION 41 13 21
LANGUAGE 30 26 19
SUPPORT 36 19 13
MAIN IDEA 23 21 23

Table 4: % of aligned feature groups for a given model
by feature type.

PORT model tended to align with fewer of these
types of features. The reason for combining the
demographic and prompt features is discussed in
Section 6.

5.5 Qualitative Analysis

While the method that we presented can quickly
advance one’s understanding of a model from the
black-box neural network to aligned feature groups
directly, understanding what function a feature
group represents can be more difficult. It is thus
necessary to resolve what a feature group repre-
sents to form a strong statement on what the model
is doing. For instance, we found it concerning that
so many of the models were connected with fea-
ture groups that contained demographic features
(colored red in Figures 2 and 3). However, a quali-
tative look at the datasets for which prompts were
included, we found that the distribution of prompts
over the different schools, when controlling for es-
say length, were such that certain schools (with
their demographic features) were the only source
of certain prompts. It, therefore, becomes likely
that many of these feature groups are more topic-
based rather than the potentially more problem-
atic demographic-based. This interpretation was
reinforced by many of the feature groups with
demographic information also including prompts
(e.g. “Independent Feature Group 29” from Ta-
ble 3) and by examining essays that present those
feature groups.

6 Discussion

The results presented in the preceding section
demonstrate the efficacy of the proposed method
in extracting salient feature groups and functional
groups from the neural models, particularly when
applied to the dataset under consideration. The true
potential of this method, however, lies in its capac-
ity to be broadly applied to any neural AES system,
thereby facilitating a deeper understanding of the
models and the underlying processes they employ.

In the following discussion, we will delve further
into the results, emphasizing the prominent trends
observed in the alignment of functional groups and
their correlation with essay features, as well as
the implications of these findings for enhancing
the interpretability and transparency of neural AES
systems.

6.1 Functional Component and Feature
Groups

The proposed method successfully extracted mean-
ingful functional groups from the analyzed neu-
ral models. Notably, the LANGUAGE V SUPPORT
comparison emerged as an outlier in several of our
analyses. This discrepancy is likely attributable
to the considerably fewer essays shared by both
models’ analysis sets, which may result in a nois-
ier analysis and expose a limitation of the method.
As the size of the analysis increases, one would
expect the extraction of feature groups and func-
tion groups to approach their ideal independence
characteristics. Despite this limitation, the method
managed to condense the analysis space from thou-
sands of activations to fewer than 125 while still
accounting for over 90% of the model’s variance.
Interestingly, the ORGANIZATION model exhib-
ited the highest number of functional groups. This
observation suggests that capturing the ORGANIZA-
TION trait is a more intricate process, necessitating
the learning of additional features. This notion is
further corroborated by the comparisons between
ORGANIZATION and other models; models which
displayed very few, if any, functional groups exclu-
sively present in the non-organization models.

6.2 Alignment of Important Functional
Groups

In line with our expectations, the ORGANIZATION
model demonstrated the greatest alignment with
the RST tree features, while the LANGUAGE model
displayed the most significant alignment with the
word list features. It was postulated that ORGA-
NIZATION would necessitate the model to possess
knowledge of how ideas within essays are struc-
tured in relation to each other, a type of knowledge
encoded by rhetorical structure theory. Although
the RST parse trees recovered from the parser are
considerably noisy (RST parsing of student essay
data has been shown to be markedly more challeng-
ing than standard datasets (Fiacco et al., 2022)), the
signal remained significant. Furthermore, we an-
ticipated that the LANGUAGE model would have a
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greater reliance on word choice, a concept mirrored
by the word list-based feature groups.

Contrary to our expectations, the MAIN IDEA
model exhibited the highest number of prompt-
based feature groups. Our most plausible expla-
nation for this observation is that certain prompts
might have clearer expectations for thesis state-
ments than others, a notion generally supported
by a qualitative examination of the essays from
prompts that score higher on MAIN IDEA.

7 Conclusion

The neural network interpretation technique pre-
sented in this paper demonstrates significant
promise in learning the implicit rubrics of neural
automated essay scoring models. By effectively
mapping the intricate relationships between feature
groups and the functional groups of the underlying
scoring mechanism, the technique provides a step
towards an understanding of the factors contribut-
ing to a transformer’s evaluation of essay quality.
This enhanced understanding enables researchers
and educators to not only identify potential biases
in scoring models, but also to refine their models
to ensure a more reliable and fair assessment of
student performance.

The code for this method will be released and
incorporated into an analysis tool for application
to neural models not limited to the ones examined
in this work with the goal to pave the way for the
development of more transparency in neural AES
models. These advancements can contribute to the
overarching goal of promoting ethical and responsi-
ble Al in education by facilitating the examination
and comprehension of complex neural models.
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