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Abstract
This paper introduces the top-performing ap-
proach of "Aambela" for the BLP-2023 Task
2: "Sentiment Analysis of Bangla Social Me-
dia Posts". The objective of the task was to
create systems capable of automatically detect-
ing sentiment in Bangla text from diverse so-
cial media posts. My approach comprised fine-
tuning a Bangla Language Model with three
distinct classification heads. To enhance perfor-
mance, we employed two robust text classifica-
tion techniques. To arrive at a final prediction,
we employed a mode-based ensemble approach
of various predictions from different models,
which ultimately resulted in the 1st place in the
competition.

1 Introduction

In recent years, Natural Language Processing
(NLP) has advanced significantly, highlighting the
importance of sentiment analysis. This application
provides insights into public opinion and social me-
dia trends. In the context of Bangla text, sentiment
analysis is crucial, aiding businesses in interpreting
customer feedback, assisting policymakers in un-
derstanding public sentiment, and boosting media
engagement. Concerning the importance of senti-
ment analysis, the organziers of BLP-Shared Task
1 (Hasan et al., 2023a) provide one of the largest
manually annotated datasets for sentiment analy-
sis which encompasses sentiment across multiple
platforms.

The proposed sentiment analysis approach in-
volves fine-tuning the Bangla Language Model,
such as BanglaBERT(Bhattacharjee et al., 2022),
and utilizing three distinct classification heads to
enhance model performance. To address overfitting
and ensure robust generalization, strategies like
cross-validation and adversarial perturbation tech-
niques are employed. Task-specific pretraining of
BanglaBERT on both the train and train+validation
datasets is explored, yielding performance improve-
ments. Different classification heads in various

techniques focus on distinct aspects of sentiment
classification reasoning. To capture these diverse
perspectives, a mode-based ensemble technique is
applied. The ensemble predictions prove to be the
best-performing model in the experiments, secur-
ing the top position on the leaderboard.

2 Background

2.1 Task & Dataset Description

The primary aim of this task (Hasan et al., 2023a)
is to conduct sentiment analysis on Bengali textual
data, focusing on multi-class sentiment classifica-
tion. In essence, it involves categorizing text into
one of three distinct sentiment classes: Positive,
Negative, or Neutral. The overarching objective
is to create a model that can effectively and pre-
cisely assign text to these sentiment categories by
discerning its emotional context.

Data
Splits

Total
Samples Class wise Samples

Negative Positive Neutral
Train 35266 15767 12364 7135
Dev 3934 1753 1388 793
Test 6707 3338 2092 1277

Table 1: Dataset Statistics for Shared Task 2 (Sentiment
Analysis Task).

The dataset for this shared task is a fusion of two
distinct sources: MUBASE (Hasan et al., 2023b)
and SentNob (Islam et al., 2021). SentNob encom-
passes public comments sourced from diverse so-
cial media platforms, spanning 13 domains includ-
ing politics, education, and agriculture. Conversely,
the MUBASE dataset comprises an extensive col-
lection of multi-platform data, featuring manually
labeled Tweets and Facebook posts. The dataset
statistics along with class wise sample size is pro-
vided in Table 1.
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2.2 Observations and Baselines
Upon analyzing the dataset, several key observa-
tions emerged. Firstly, despite the presence of nu-
merous URLs, they appeared to have no substantial
influence on the dataset’s attributes. Additionally,
there was an absence of class dependency linked to
these URLs. Moreover, emojis within the dataset
did not appear to significantly impact the analysis.
And also, the dataset exhibited a notable prevalence
of error words, a common feature in text collected
from YouTube comments. These observations of-
fer valuable insights into the dataset’s nature and
characteristics.

The organizers have also provided baseline re-
sults for this task on both the Dev-Test and Test
Dataset. Three different methods were employed:
the Random Baseline, Majority Baseline, and the
n-gram Baseline. Notably, the n-gram Baseline
demonstrated better performance, surpassing the
other two methods by a good margin. In the test
dataset, the n-gram Baseline achieved an impres-
sive 55.14% micro F1 score, while on the Dev-Test
dataset, it reached 57.36%.

3 Method Description

3.1 ITPT
withIn Task PreTraining (ITPT) is a popular ap-
proach while solving text classification problem. It
was proposed by (Sun et al., 2019). We also use
this ITPT techniques in our task. BanglaBERT un-
dergoes training in a broad domain, characterized
by a distinct data distribution when compared to
the target domain. So we perform additional pre-
training on BanglaBERT using data specific to the
target domain. Actually, we futher perform Masked
Langugae Modeling (MLM) (Devlin et al., 2019)
using the pretrained BanglaBERT on our training
corpus.

3.2 AWP
Adversarial Weight Perturbation (AWP) (Wu et al.,
2020) is a regularization technique that encourages
neural networks to have stable and robust weights
by penalizing sensitivity to parameter perturbations.
This regularization improves the model’s general-
ization and robustness, making it less susceptible
to adversarial attacks.

In the neural network, the loss function is de-
noted as L(Θ), where Θ represents the model pa-
rameters. The objective is to minimize this loss on
a training dataset. AWP introduces a regularization

term to penalize the sensitivity of the model’s out-
put to small perturbations in its parameters. This is
added to the loss function:

LAWP(Θ) = L(Θ) + λ · AWP(Θ)

Here, λ controls the regularization strength, and
AWP(Θ) is the AWP term. The AWP term is de-
signed to adversarially perturb the model’s weights
and is formulated as:

AWP(Θ) =
1

2

∑

i
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∂L
∂Θi

∥∥∥∥
2

2

This term quantifies the sensitivity of the loss func-
tion to changes in each parameter Θi and encour-
ages stable and robust weight values. During train-
ing, the combined loss function LAWP(Θ) is opti-
mized. AWP’s regularization helps prevent overfit-
ting and enhances the model’s resistance to adver-
sarial attacks.

3.3 Classification Heads
For an input sentence S, we obtain S =
{t1, t2, . . . , tn} after processing the sentence with
the BanglaBERT tokenizer, where ti represents
the i-th token. Then the sentence S through a
BanglaBERT model, we obtain contextual repre-
sentations of last layer for each token ti, denoted
as H = {h1, h2, . . . , hn}, where hi represents the
contextual representation of token ti.

3.3.1 FFN Head on CLS Token
In order to obtain a fixed-size representation for the
entire sentence to use in classification, we utilize
the special [CLS] token representation, denoted as
hCLS which is fed into a two-layer Feed Forward
Neural Network (FFN). The resulting representa-
tion z is employed for the classification process by
following method.

z = W2 · (ReLU(W1 · hCLS + b1)) + b2

3.3.2 Mean, Max, Min Pooling
As our model does batchwise operations, so the
sequence may contain padded values for equal
length. BanglaBERT model provides an input
mask vector M for a sentence in a batch where
M = [m1,m2, . . . ,mn] to indicate valid tokens.
mi = 1 for valid tokens and 0 for padded values.
Then we apply MeanPooling, MinPooling, Max-
Pooling (Minaee et al., 2021) as followings:
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Performance Metrics
Techniques Classification Head CV Score Dev Set Test Set

Micro F1 Accuracy Macro F1 Accuracy Macro F1

CLS + MLP 72.36 72.67 68.82 71.05 66.29

Without AWP Dropouts Enhanced MLP 72.24 73.00 69.19 70.81 65.65

[Mean, Max, Min] Pooling 72.38 71.73 68.72 71.15 67.33

Reinit Last Two Layers 72.39 72.32 68.50 71.48 66.74

CLS + MLP 73.21 74.12 70.05 72.64 67.58

With AWP Dropouts Enhanced MLP 72.90 73.87 69.29 72.72 67.30

[Mean, Max, Min] Pooling 73.24 72.34 69.83 71.72 68.42

Reinit Last Two Layers 73.47 72.52 69.62 71.58 68.00

CLS + MLP 73.83 - - 72.40 67.32
Including

Dev Dataset Dropouts Enhanced MLP 73.77 - - 72.42 67.41

[Mean, Max, Min] Pooling 73.76 - - 71.28 67.41

Reinit Last Two Layers 73.91 - - 71.50 67.34

CLS + MLP 73.49 74.17 70.26 72.76 67.97
ITPT on

Training Data Dropouts Enhanced MLP 73.47 74.17 70.23 72.89 67.83

[Mean, Max, Min] Pooling 73.60 72.88 70.18 71.76 68.29

Reinit Last Two Layers 73.42 72.47 69.82 70.85 67.60

CLS + MLP 73.74 74.07 70.12 72.66 67.84
ITPT on Train +
Validation Data Dropouts Enhanced MLP 73.79 74.10 70.07 72.51 67.63

[Mean, Max, Min] Pooling 73.94 73.31 70.52 71.48 67.99

Reinit Last Two Layers 73.59 72.93 70.27 71.39 68.03

Ensemble - - - 73.10 68.74

Table 2: Performance of BanglaBERT in Sentiment Analysis in Shared Task 2 with different Techniques. While
experiments were done with including validation (dev) dataset the measurement on dev set were skipped. Ensemble
model was the final model which place first in the leaderboard. Scores with underline can also be the top scorer.

Mean_Pool = MeanPooling(X,M)

=
1∑n

i=1mi

n∑

i=1

mi · hi

Min_Pool = MinPooling(X,M)

=
n

min
i=1

(mi · hi)

Max_Pool = MaxPooling(X,M)

=
n

max
i=1

(mi · hi)

Then we concat those pooling and passed them
into a two layer MLP for finding class logits for
classification as follows:

z = W2 · (PReLU(W1 · [Mean_Pool,

Min_Pool,Max_Pool]) + b1)) + b2

3.3.3 Dropout-Enhanced CLS Token Head

In this case, an expanded classification head is
incorporated, which is an enhancement of the
CLS_MLP head discussed in Section 3.3.1. In this
variation, we apply dropout to the FFN layer. We
explore a range of distinct dropout rates denoted as
D = d1, d2, . . . , dk, where di signifies the dropout
rate for the i-th rate. For a specific dropout rate
di, we calculate class representations zi using the
subsequent equation:
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zi = W2 · (DropOut(di)(ReLU(W1 · hCLS)

+ b1)) + b2

After acquiring m unique class representations
(logits), we calculate the final representation z by
taking the average of these representations, follow-
ing the equation:

z =
1

m

m∑

i=1

zi

3.3.4 Re-initialization of last 2 layers of
BanglaBERT

In this case, we re-initialize the last two layers
for BanglaBERT like (Zhang et al., 2020) did. If
the original BERT model as MBanglaBERT , which
comprises multiple layers. When we say we are re-
initializing the last two layers, it means we are mod-
ifying these layers to create a new model, which
we’ll call MNew. The re-initialized model MNew

can be defined as

MNew = MBanglaBERT[: L− 2]+

Reinitialize(MBanglaBERT[L− 2 :])

For involving classification task in this case, we
use MLP Head on CLS token similar to we describe
in Section 3.3.1.

4 Result and Analysis

Different models and experiments were done dur-
ing the development phase which are reproted
in Appendix B. The experiment set up and hy-
per parameters details are described in Appendix
A. Another experiments for model choice encom-
passed machine learning models (SVM, Random-
Forest, XGBoost) using TF-IDF feature extraction,
deep learning models (LSTM, LSTM+Attention),
and multilingual Transformer models (mBERT,
mDeBerta, XLMRoberta base), with mDeBerta
showing superior performance. Additionally, two
Bangla Language Models were considered, with
the csebuetnlp-BanglaBERT model emerging as
the top performer. Table 3 summarizes the experi-
mental results for model selection.

Table 3 displays key experiments using the cse-
buetnlp/banglabert model backbone for contextu-
alized word representations, coupled with various
classification heads as discussed in Section 3.3.

Model Name Acc ↑ F1 ↑
TF-IDF + SVM 55.74 44.41
TF-IDF + RandomForest 58.41 50.65
TF-IDF + XGBoost 60.99 53.95
LSTM 65.91 61.88
LSTM + Attention 67.82 63.76
mBERT-case 66.29 62.19
mDeBerta-v3 base 70.84 64.35
XLM-Roberta-base 69.67 61.58
SagorSarker-BanglaBERT 67.08 61.30
csebuetnlp-BanglaBERT 72.57 66.42

Table 3: Different Types of Model Performance in Vali-
dation (Dev) Dataset.

These experiments employ 5-fold cross-validation.
The inclusion of AWP (Section 3.2) enhances both
cross-validation scores and generalization to valida-
tion and test datasets by approximately 1-2%. How-
ever, incorporating the validation data into training
yields a slightly lower test set performance despite
boosting the CV score. ITPT (Section 3.1) on train-
ing data significantly enhances performance across
all classification heads. Conversely, including the
validation data during ITPT yields mixed results,
with slight improvements in some heads and minor
reductions in others.

A final prediction is made by ensembling all
classification heads from different techniques. The
ensemble technique employed is a Mode-based
Ensemble, aggregating predictions from all mod-
els across techniques and selecting the mode as the
final prediction. This approach achieved an accu-
racy of 73.10% (micro F1) and 68.74% (macro F1)
on the test set, placing it at the top of the leader-
board. Though the model has a highest score in
the leaderboard, it has some limiations and scope
for improvements which are describe in Limiation
5 section and Appendix C.

5 Conclusion

In this work,we have experimented with fine-tuning
BanglaBERT in different aspects using different
classification heads. The result showed that it gives
a better score. Adverserial training and cross valida-
tion made the model more robust. In task pretrain-
ing helped the model to further investigate different
classes of sentiment analysis. Our finding is that
using adverserial training and in task pretraining
we can improve our model further and build up a
better model.

320



Limitations

The proposed models are struggled to predict the
Neutral samples. Besides a good amount of sen-
tences have token length larager than 512. To
fit those sentences, we need to truncate the token
length to 512. More on error analysis and scopes
for improvement can be found at Appendix C.
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A Experimental Setup &
Hyperparameters

In every dataset, we conducted critical prepro-
cessing steps for text, encompassing the elimi-
nation of punctuation, emojis, and any existing
URLs. We applied different types of models includ-
ing TF-IDF+SVM, TF-IDF+RandomForest, TF-
IDF+XGBoost, LSTM, LSTM+Attention, mBERT-
case, mDeBerta-v3 base, XLM-Roberta-base
and SagorSarker-BanglaBERT and csebuetnlp-
BanglaBERT for Dev dataset. To extract hidden
representations from the text, we employed two
distinct models: LSTM and BERT, as the text en-
coding methods.

When using the LSTM-based models, an embed-
ding layer with an embedding dimension of 128
was employed to convert the tokens into vector rep-
resentations. The LSTM model’s hidden dimension
was set to 256. We used a learning rate of 10−3

and a batch size of 8 for this configuration.
On the other hand, for the BERT model, we

utilized the Bangla-bert variants that enables us
to extract contextual representations through fine-
tuning. Bert model along with other transformers
models include the hidden dimension 768. The
learning rate for BERT was 2× 10−5, max length
was 512 and a batch size of 8 were used for the
models. This token length was consider because
of its performance shown for Dev dataset from
table 4, while from table 5 for Dev dataset showed
batch size 8 performed better than other batch size
configurations. Which encouraged the usage of the
batch size 8 along with maximum length 512 in
this study for transformer based models.

Both configurations employed the AdamW op-
timizer with β1 = 0.9 and β2 = 0.99. To ensure
robustness, we performed five-fold cross-validation
and three different random seeds. Additionally, we
set λ = 10 for all experiments. An ablation study
investigating the effect of different λ values is pre-
sented in Table. All experiments were conducted
using Python (version 3.8) and PyTorch, leverag-
ing the free NVIDIA Tesla K80 GPU available in
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Google Colab, as well as a single NVIDIA Tesla
P100 GPU provided by Kaggle.

B Ablation Study

In this section detailed ablation study was per-
formed which contains max length effects, batch
size effects and effects of different loss was mea-
sured and analyzed.

B.1 Token Length analysis

In table 4, for validation (Dev) dataset BanglaBert
with ’csebuetnlp/BanglaBert’ was applied for dif-
ferent max lengths. For 512 max length maximum
accuracy and f1 score was achieved with outper-
forming other variation by 1%-2%.

Max Length Dev Acc ↑ Dev F1 ↑
64 72.24 67.12

128 71.2 66.1
256 72.22 66.93
512 73.34 68.52

Table 4: Token Length Effect of csebuetnlp/BanglaBert
in Validation (Dev) Dataset. Epoch Size 3

B.2 Batch Size Effects

Table 5 depicts the batch size for which the max-
imum accuracy and F1 score was achieved. For
batch size 8 bested other variation by slight margin,
ranging from 0.5% to 1%.

Batch Size Dev Acc ↑ Dev F1 ↑
8 72.52 67.74
16 72.22 66.93
32 72.31 67.01

Table 5: Batch Size Effect of csebuetnlp/BanglaBert in
Validation (Dev) Dataset while Max Length = 512 were
considered. Epoch Size 3

B.3 Ablation On Losses

In this study, table 6 represent the effects of differ-
ent loss variation were measured. From the table,
Cross Entropy Loss(CE Loss) outperformed other
variations including Weighted CE Loss, and Focal
loss along with Cross Entropy Loss. Cross Entropy
Loss showed improvement in its performance ma-
trices by 1%-2% for all other losses.

Loss Name Dev Acc ↑ Dev F1 ↑
CE Loss 73.31 68.41

Weighted CE Loss 72.5 67.12
0.5*Focal + 0.5*CE 72.72 67.41
0.3*Focal + 0.7*CE 71.35 66.36

Table 6: Batch Size Effect of csebuetnlp/BanglaBert in
Validation (Dev) Dataset while Max Length = 128 were
considered with Batch Size = 16. Epoch Size 5. Here
CE indicates the Cross Entropy Loss and Focal means
the Focal Loss

Figure 1: The list of words that are considered as new
tokens to the model.

B.4 Text Preprocessing Effects

Different preprocessing variations were also con-
sidered for this research endeavour. Removing
URLs, Punctuation & Emoji’s, Removing Punc-
tuation only and Removing Emoji’s only showed
least improvement in the performance matrices,
containing almost similar values. No preprocess-
ing and Removing punctuation showed improve-
ment by 1% from the previous variations. Applying
BN-Unicode Normalizer after removing URLs +
HTML Tag showed, or adding Normalizer after
removing URLs + HTML Tag showed the most im-
provement by 1%-2% from aforementioned models.
While, normalizing after removing URLs + HTML
Tag bested all other preprocessing variations in
terms of performance matrices.

C Error Analysis & Scope for
Improvements

In Figure 1, the classification report for mode-base-
ensembel, which gives the top performance score
in leaderbaoard is reported. From the classification
report it is easily seen that the proposed models are
struggled when the class label is Neutral. One of
reasons for the poor performance on the Neutral
class labelled is that we have fewer samples for this
class rather than the remaining classes 1. Besides
there may overlapping words for the classses.

There are few scopes for improvements by which
the model may be more efficient. Increasing class
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Preprocessing Dev Acc ↑ Dev F1 ↑
No Preprocessing 71.2 66.10

Removing URLs, Punctuation & Emoji’s 70.67 66.56
Removing Punctuation Only 70.01 65.52

Removing URLs & HTML Tags 71.59 66.46
Removing Emoji’s Only 70.87 66.84

Adding Normalizer after removing URLs + HTML Tag 72.57 67.12
Adding BN-Unicode Noramlizer after removing URLs + HTML Tag 72.22 66.93

Table 7: Effect of different preprocessing techniques in devset performance for BanglaBERT. Each experiment was
trained for 3 epochs.

samples for Neural class may help. An external
data can be used for this. As a good amount sen-
tences have token length greater than 512, differ-
ent techniques like (Chunking or Sliding Window,
Document-Level Embeddings and so on) can be
used. Besides different augmentation techniques
can also be examined.
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