
Proceedings of the The First Arabic Natural Language Processing Conference (ArabicNLP 2023), pages 232–243
December 7, 2023 ©2023 Association for Computational Linguistics

A Multitask Model and Toolkit for Arabic Natural Language Generation

AbdelRahim Elmadanyξ,⋆ El Moatez Billah Nagoudiξ,⋆ Muhammad Abdul-Mageedξ,λ,⋆

ξ Deep Learning & Natural Language Processing Group, The University of British Columbia
λDepartment of Natural Language Processing & Department of Machine Learning, MBZUAI

{a.elmadany,moatez.nagoudi,muhammad.mageed}@ubc.ca

Abstract

Understanding Arabic text and generating
human-like responses is a challenging endeavor.
While many researchers have proposed models
and solutions for individual problems, there is
an acute shortage of a comprehensive Arabic
natural language generation toolkit that is capa-
ble of handling a wide range of tasks. In this
work, we present a novel Arabic text-to-text
Transformer model, namely AraT5v2. Our new
model is methodically trained on extensive and
diverse data, utilizing an extended sequence
length of 2, 048 tokens. We explore various
pretraining strategies including unsupervised,
supervised, and joint pertaining, under both sin-
gle and multitask settings. Our models outper-
form competitive baselines with large margins.
We take our work one step further by develop-
ing and publicly releasing OCTOPUS, a Python-
based package and command-line toolkit tai-
lored for eight Arabic generation tasks all ex-
ploiting a single model. We release the models
and the toolkit on our public repository.1

1 Introduction

Natural Language Generation (NLG) is a funda-
mental component of natural language processing
that aims to generate human-like, coherent, contex-
tually fitting, and linguistically precise text from
structured data or various other input formats. NLG
systems find applications in various aspects of daily
life, including education, healthcare, business, and
more. The recent emergence of generative models
has significantly impacted the field of NLG. While
important progress has been made in NLG research,
the majority of existing tools, systems, and mod-
els are primarily focused on English (Jhaveri et al.,
2019; Khan et al., 2021; Lauriola et al., 2022), leav-
ing behind many languages, including Arabic.

1https://github.com/UBC-NLP/octopus
⋆Equal contributions

Figure 1: OCTOPUS is a jointly pretrained to cover eight
NLG tasks, all shown in the illustration.

Although it is one of the most widely spoken
languages in the world, and one with a rich linguis-
tic structure and diverse dialects, Arabic remains
underrepresented in NLG. One reason is the com-
plex morphology and syntax of Arabic. Hence, the
primary focus of our research here is to develop
an advanced tool capable of performing several
key Arabic NLG tasks. For example, we target
tasks such as text summarization, question answer-
ing, question generation, news headline generation,
and paraphrasing. These are tasks that necessitate
a deep understanding of semantics, syntax, and
pragmatics of Arabic. We also focus on tasks that
require an understanding of both the syntax and
morphology such as diacritization, transliteration,
and grammatical error correction. Our main con-
tributions are as follows:

1. We pretrain better and faster-to-converge ver-
sions of the text-to-text transformer model
AraT5, collectively dubbed AraT5v2. Com-
pared to Nagoudi et al. (2022b), we train these
new versions on a larger and more diverse
dataset, as well as a larger sequence length.

2. To develop our models, we investigate diverse
training strategies that integrate a combina-
tion of supervised and unsupervised training
techniques.

232

https://github.com/UBC-NLP/octopus

3. We introduce OCTOPUS, a Python-based
toolkit for eight Arabic NLG tasks. Our tool
can be used as a strong baseline or as a core
enabling technology that facilitates other de-
velopments.

4. We will make OCTOPUS publicly available
to the research community.

2 Related Work
In the following section, we offer a concise
overview of publicly available Arabic NLU and
NLG tools, along with the Arabic and multilingual
sequence-to-sequence (S2S) language models that
we employ in this work.

2.1 Arabic NLP Tools
NLU tools. Numerous attempts have been
made to develop tools for assisting with Ara-
bic. Some tools focus on aspects such as mor-
phosyntax, encompassing tasks like morphologi-
cal analysis, disambiguation, part-of-speech tag-
ging, and diacritization. Notable examples in-
clude Stanford CoreNLP (Manning et al., 2014),
MADAMIRA (Pasha et al., 2014), Farasa (Darwish
and Mubarak, 2016), and CAMeL tools (Obeid
et al., 2020). Other tools, such as Mazajek (Farha
and Magdy, 2019), and AraNet (Abdul-Mageed
et al., 2019), are dedicated to social meaning tasks
such as sentiment analysis, emotion detection, age
and gender prediction, and sarcasm detection.
NLG Tools. Regarding Arabic NLG, as far as we
know, the only publicly available tools are primar-
ily focused on many-to-Arabic machine translation
(MT). These include OPEN-MT (Tiedemann and
Thottingal, 2020), NLLB (Costa-jussà et al., 2022),
and Turjuman (Nagoudi et al., 2022d).

2.2 Arabic S2S Language Model.
Here, we overview the Arabic sequence-to-
sequence models we employ as baseline in this
work.
mT5. This is the multilingual version of T5
model (Raffel et al., 2019) introduced by Xue et al.
(2020). Pretraining of mT5 is performed on the ex-
tensive mC4 (Multilingual Colossal Clean Crawled
Corpus) which covers 101 languages, including
Arabic.
mT0. Developed by Muennighoff et al. (2022), this
is a group of S2S models ranging from 300M to
13B parameters trained to investigate cross-lingual
generalization through multitask fine-tuning. The
models are finetuned from pre-existing mT5 (Xue

et al., 2020) multilingual language models using a
cross-lingual task mixture called xP3.
AraBART. Introduced by (Eddine et al., 2022),
this is a pretrained encoder-decoder model de-
signed specifically for abstractive summarization
tasks in the Arabic language. AraBART follows
the architecture of BART (Lewis et al., 2019a) and
has been pretrained on a 73GB of Arabic text data.
AraT5. Presented by Nagoudi et al. (2022c), this is
an Arabic text-to-text Transformer model dedicated
to MSA and Arabic dialects. It is similar in config-
uration and size to T5 (Raffel et al., 2019) and is
trained on 248GB of Arabic text (70GB MSA and
178GB tweets). We now introduce our new model.

3 AraT5v2

In this section, we present a novel version of AraT5,
the Arabic-specific sequence-to-sequence model.
We refer to this novel version as AraT5v2. This
new version represents a substantial evolution of
the original AraT5v1 model,2 marked by notable
improvements. These include (1) training on an
expanded dataset comprising both labeled and un-
labeled data, (2) larger sequence length of 2, 048
tokens, and (3) diverse training strategies that in-
tegrate a combination of unsupervised and super-
vised training techniques. Table 1 provides a com-
parison between AraT5v1 and AraT5v2.
Pretraining data. As we mentioned previously,
our pretraining (unlabeled and labeled) dataset is
linguistically diverse, covering all categories of
Arabic (i.e., CA, DA, and MSA). as we will now
describe.

3.1 Unlabled Data
We collect approximately 250GB of Arabic
MSA text, which corresponds to around 25.6B
tokens.3 We use different sources includ-
ing AraNewsv2 (Nagoudi et al., 2020), El-
Khair (El-Khair, 2016), Gigaword,4 OSIAN (Ze-
roual et al., 2019), Wikipedia Arabic, Hindawi
Books,5 OSCAREgyptian (Suárez et al., 2019), and
AraC4 (Nagoudi et al., 2022a).6 To obtain Classi-
cal Arabic (CA) data, we utilize the Open Islami-
cate Texts Initiative (OpenITI) corpus (v1.6) (Nigst
et al., 2020). The OpenITI corpus consists of 11K

2In this paper, we refer to the original AraT5 (Nagoudi
et al., 2022b) as AraT5v1.

3We note that AraT5v1 trained only on 70GB MSA data.
4https://catalog.ldc.upenn.edu/LDC2009T30.
5https://www.hindawi.org/books.
6We note that AraC4 contains a diverse Arabic dialect as

described in (Nagoudi et al., 2022a).

233

https://catalog.ldc.upenn.edu/LDC2009T30
https://www.hindawi.org/books/

AraT5v1 AraT5v1-MSA AraT5v1-TWT AraT5v2

Data size 248 GB 70 GB 178 GB 250 GB
Tokens count 29 B 7.1 B 21.9 B 25.6 B
Linguistic diversity MSA, Tweets† MSA Tweets† CA, DA, MSA
Sequence length 512 512 512 2, 048

Table 1: Comparison between AraT5v1 and AraT5v2 models. It is worth noting that our new model (AraT5v2) does
not include tweets, whereas 71.77% of AraT5v1 data is from Twitter (with the remaining 28.23% sourced from
other sources). CA: Classical Arabic. DA: Dialectical Arabic. MSA: Modern Standard Arabic. Notably, Tweets†

may encompass content in CA, DA, and MSA.

Islamic books, primarily collected from sources
such as Shamela Library,7 Al-Jami Al-Kabir col-
lection (JK),8 books digitized by the Jordanian pub-
lisher Markaz Al-Turāth, and the Shia Library.9

3.2 Labeled Data
Recently, Nagoudi et al. (2023) introduced Dol-
phin, an NLG benchmark for Arabic. Dolphin cov-
ers MSA, Classical Arabic, and various Arabic di-
alects. It is composed of 40 datasets, making it the
largest and most diverse Arabic NLG benchmark.
Due to the availability of the powerful Arabic ma-
chine translation toolkit, TURJUMAN (Nagoudi
et al., 2022d), we shift our focus away from ma-
chine translation, code-switching, and Arabization
tasks in this paper. Hence, we utilize datasets from
eight out of the total thirteen NLG tasks in Dolphin.
In the following sections, we will provide a brief
description of each of these tasks.
(1) Diacritization. Is the computational procedure
of adding missing diacritics or vowels to Arabic
texts. For this task, we use the Arabic diacritization
dataset presented by Fadel et al. (2019).
(2) Grammatical Error Correction. The GEC
task is centered around the analysis of written text
with the aim of automatically identifying and cor-
recting a range of grammatical errors. We use three
GEC datasets: QALB 2014 (Mohit et al., 2014),
QALB 2015 (Rozovskaya et al., 2015), and ZAE-
BUC (Habash and Palfreyman, 2022).
(3) News Title Generation. The objective of this
task is to generate a suitable headline for a given
news article. To accomplish this, we use two
datasets: Arabic NTG (Nagoudi et al., 2022c) and
XLSum (Hasan et al., 2021).10

7https://shamela.ws.
8http://kitab-project.org/docs/openITI.
9https://shiaonlinelibrary.com.

10We note that XLSum (Hasan et al., 2021) contains news
articles that are annotated with both summaries and titles. For
the NTG task, we use the pairs of articles and titles used to
create the training data.

(4) Paraphrasing. In this task, we use four para-
phrasing datasets: AraPara, a multi-domain Arabic
paraphrase dataset (Nagoudi et al., 2022c), ASEP,
an Arabic SemEval paraphrasing dataset (Cer
et al., 2017), Arabic paraphrasing benchmark
(APB) (Alian et al., 2019), and TaPaCo (Scherrer,
2020).11

(5) Question Answering. In this task, four pub-
licly available extractive QA datasets are employed:
ARCD (Mozannar et al., 2019) and the Arabic
part of the following three multilingual datasets:
MLQA (Lewis et al., 2019b), XQuAD (Artetxe
et al., 2020), and TyDiQA (Artetxe et al., 2020).
(6) Question Generation. The goal of this task
is to create simple questions that are pertinent to
passages, along with their corresponding answers.
For this, we utilize triplets consisting of passages,
answers, and questions, all extracted from the same
QA datasets.
(7) Text Summarisation. This task includes five
publicly available datasets, including both Arabic
and multilingual data: MassiveSum (Varab and
Schluter, 2021), XLSum Hasan et al. (2021), Cross-
Sum (Bhattacharjee et al., 2021), ANT (Chouigui
et al., 2021), and MarSum (Gaanoun et al., 2022).
(8) Transliteration. This task involves converting
words or text from one writing system to another
while maintaining the original language’s pronun-
ciation and sound. Three datasets are used to cre-
ate this component: ANETA (Ameur et al., 2019),
ATAR (Talafha et al., 2021), and NETranslitera-
tion (Merhav and Ash, 2018).

4 Training Strategies

In this section, we describe the different strategies
we use to pretrain and finetune AraT5v2.

4.1 Unsupervised Pretraining.
Here, we focus on using only our unlabeled data
(see Section 3.1) for pretraining our AraT5v2.

11We use the Arabic part only of TaPaCo.

234

https://shamela.ws
http://kitab-project.org/docs/openITI
https://shiaonlinelibrary.com

The objective function does not rely on labels
but instead imparts the model with transferable
knowledge that can be effectively applied to var-
ious downstream tasks. We follow Raffel et al.
(2019) in using a masked language modeling “span-
corruption” objective. This approach involves re-
placing consecutive spans of input tokens with a
mask token, and the model is trained to reconstruct
the masked tokens.

4.2 Supervised Finetuning
We use the labeled data (see Section 3.2) to finetune
the AraT5v2 models under two settings: (i) single
task and (ii) multitask finetuning.
Single task finetuning. We individually finetune
our AraT5v2 models on each of the eight NLG
tasks we select from the Dolphin NLG bench-
mark (Nagoudi et al., 2023).
Multitask finetuning. We additionally explore
multitask learning (Caruana, 1997; Ruder, 2017)
using our AraT5v2 models. This strategy involves
training the model on several tasks concurrently,
allowing the model and its parameters to be shared
across all tasks. The ultimate goal is to enhance
performance on each individual task over time. To
indicate the intended task for the model, we incor-
porate a task-specific text “prefix” to the original
input sequence before it is fed into the model. For
example, for the paraphrase task, the source will be:
paraphrase: ÑjÊË@ úÍ@
 ÉK. @ñ�JË @

	­J
 	��� �è

@QÓ@. The model

should predict Q�®J. Ë @ ÑmÌ úÍ@
 �HA 	KñºÖÏ @ 	­J
 	��� �è

@QÓ@
.

4.3 Joint Pretraining and Finetuning
In this scenario, we establish a uniform training
objective for both pretraining and finetuning. The
model is trained using a maximum likelihood ob-
jective, employing “teacher forcing" (Raffel et al.,
2019; Williams and Zipser, 1989), regardless of the
specific task.

5 Empirical Evaluation
5.1 Baselines
We evaluate our models across various scenar-
ios, contrasting them with both multilingual and
Arabic sequence-to-sequence pretrained language
models. Specifically, we make use of mT5 (Xue
et al., 2020) and mT0 (Muennighoff et al., 2022)
as multilingual pretrained models; while com-
paring to AraBART (Eddine et al., 2022) and
AraT5v1 (Nagoudi et al., 2022b) as Arabic models.
We evaluate our AraT5v2 models (under different
settings) and the selected baseline models on all

eight NLG tasks (i.e., labeled data) described in
Section 3.2.

5.2 Experimental Setup
For our experiments, we have two settings: one for
the pretrained models and another for models we
finetuning. We now describe each of these settings.

5.2.1 Pretrained Models
To pretrain our AraT5v2 model from scratch, we
use the unsupervised pertaining strategy described
in Section 4.1. We pretrain for one million steps on
a Google TPU POD v3-128.12 We employ a con-
stant learning rate of 1e-3 and a dropout rate of 0.1.
We use a batch size of 1, 024 with sequence length
2, 048. We further pretrain AraT5v2 incorporating
both unsupervised and supervised data (i.e., joint
strategy; see Section 4.3), with the same hyperpa-
rameters for an additional 200K steps. We refer to
the resulting model as AraT5v2-joint.

5.2.2 Single Task Finetuning
We finetune both AraT5v2 and AraT5v2-joint, as
well as baseline models, on the eight NLG tasks
(20 datasets) for 20 epochs. We use a learning
rate of 5e-5, a batch size of 8, and a maximum
sequence length of 512.13 In all single task experi-
ments, we consistently select the best checkpoint
for each model based on performance on the re-
spective development set. Subsequently, we report
performance of each model on the respective test
set.

5.2.3 Multitask Finetuning
We extend the pretraining of AraT5v2 and AraT5v2-
joint with labeled data by an additional 100K steps
for each model, all within the multitask finetuning
setting. These experiments are conducted using a
Google TPU POD v3-128 with the same hyper-
parameters as the initial pretraining.14 For model
comparisons in the single task setting, we calcu-
late the average of three runs of finetuned Arabic
and multilingual models on the test sets of each
task. However, for the joint and multitask models,
we incorporate labeled data during the subsequent
pretraining phase, employing a fixed number of
steps—200K for the joint model and 100K for the
multitask model. As a result, we conduct a single
evaluation run for these models due to the high
computation costs.

12https://sites.research.google/trc/about/
13For GEC, we use a maximum sequence length of 1, 024.
14AraT5v2-mTask trains for a total of 1.1M steps, whereas

AraT5v2-joint-mTask undergoes training for 1.3M steps.

235

https://sites.research.google/trc/about/

Task Test Set Metric Baselines AraT5v2 AraT5v2-Joint

mT0 mT5 AraBART AraT5v1
† sTask mTask⋆ Joint⋆ sTask mTask⋆

DIAC ADT ↓ CER 1.58±0.13 1.64±0.11 23.43±1.51 2.58±0.19 1.30±0.20 1.97 2.20 1.90±0.24 1.74

GEC
QALB 2014

F0.5 (M2)
65.86±0.67 66.45±0.22 68.67±0.08 64.92±0.23 70.52±0.15 62.36 62.36 70.73±0.27 64.36

QALB 2015 L1 66.90±0.92 66.68±0.08 69.31±1.55 64.22±0.82 70.8±0.12 62.46 62.46 71.17±0.16 64.93

ZAEBUC 47.33±3.34 46.90±0.87 82.08±7.54 75.78±2.43 85.52±0.69 37.89 42.25 84.87±0.58 78.30

PARA
TAPACO

Belu
15.43±0.64 14.89±0.28 17.90±1.06 15.90±0.06 16.82±0.41 11.73 10.39 18.14±0.84 11.68

APB 38.36±0.14 24.29±13.98 37.66±1.01 20.34±1.82 35.04±0.89 19.57 16.92 36.89±0.44 16.93

SemEval 20.49±0.13 20.23±0.03 24.52±0.62 19.33±0.08 25.52±0.58 72.53 68.57 27.02±0.53 72.72

QA

ARCDQA F1 53.24±0.24 51.63±1.01 50.26±0.99 58.12±0.16 61.72±0.89 55.43 53.84 62.49±0.69 54.81

TyDiQAQA 76.31±0.09 74.99±0.23 73.32±1.21 39.55±1.96 82.99±0.47 72.37 71.72 84.21±0.47 72.44

XSQUADQA 54.55±0.76 47.43±0.91 47.33±0.87 48.71±0.5 57.79±1.08 63.73 63.39 59.42±0.72 64.89

LMQAQA 49.17±0.34 45.13±0.35 47.24±0.13 51.95±0.09 54.48±0.12 47.50 46.63 55.02±0.26 48.70

QG

ARCDQG

Belu

17.73±0.99 17.62±2.1 22.79±0.66 16.8±1.32 24.13±0.20 19.86 19.23 22.48±1.30 21.54

TyDiQAQG 30.22±0.91 31.0±0.97 33.64±0.13 22.09±1.85 33.50±0.75 25.37 24.50 34.05±0.34 26.18

XSQUADQG 10.04±0.01 9.96±0.03 10.27±0.31 9.21±0.09 10.98±6.91 6.65 1.94 11.50±0.41 7.30

MLQAQG 6.04±0.08 6.00±0.38 7.02±0.09 6.12±0.42 7.56±0.27 3.96 3.25 7.28±0.11 3.66

SUM

XLSum

RougeL

21.46±0.54 20.64±0.31 26.64±0.04 22.71±1.36 27.15±0.09 63.59 52.25 28.12±0.12 65.66

CrossSum 21.00±0.38 20.29±0.01 25.89±0.09 22.14±1.53 26.57±0.06 59.45 50.82 27.56±0.06 61.31

MarSum 23.00±0.17 22.57±0.21 26.49±0.03 21.71±0.39 26.64±0.06 20.49 19.04 26.81±0.06 20.78

MassiveSum 25.57±0.11 22.88±0.12 30.0±0.11 15.89±0.4 23.00±0.00 27.22 25.75 27.69±0.07 26.97
ANTCorp 90.29±0.11 88.84±0.91 90.0±0.20 86.64±0.22 90.94±0.14 87.39 86.92 90.85±0.12 88.22

TG
Arabic NTG

Bleu
19.03±0.34 19.23±0.01 22.75±0.09 19.55±0.16 22.13±0.08 22.54 21.33 22.37±0.06 22.94

XLSum 6.50±0.17 6.51±0.11 8.98±0.18 7.44±0.11 9.59±0.17 6.21 5.91 9.82±0.14 6.11

TR
ANTAEC ↓ CER 19.21±0.48 18.93±0.30 18.29±0.29 20.74±0.17 18.06±0.21 31.50 33.00 19.25±0.06 31.66

ATAR ↓ CER 16.79±0.15 16.68±0.22 17.70±0.05 36.51±1.53 14.96±0.05 33.63 35.90 14.70±0.05 33.19

NETTrans Belu 55.70±0.18 55.02±0.47 54.15±0.75 51.89±0.64 58.33±0.70 43.69 42.65 57.81±0.66 43.18

H-Score ↑ 37.01 35.42 39.86 34.59 41.90 41.41 38.73 42.56 42.89

L-Score ↓ 12.53 12.42 19.81 19.94 11.44 22.37 23.70 11.95 22.20

Table 2: Average of three runs of finetuned Arabic and multilingual models on OCTOPUS test. L-Score: refers to the
macro-average scores of tasks where a lower score ↓ is better. H-Score: refers to the macro-average scores of tasks
where a higher score ↑ is better. OCTOPUS task clusters taxonomy: (DIAC, Diacritization), (GEC, Grammatical Error
Correction), (PARA, Paraphrase), (QA, Question Answering), (QG, Question Generation), (SUM, Summarization),
(TG, News Title Generation), and (TR, Transliteration). †We refer to vanilla AraT5 (Nagoudi et al., 2022b) as
AraT5v1. ⋆For the joint and multitask models, we utilize the labeled data during the further pretraining phase.
Consequently, we employ it only once, as opposed to the regular single fine-tuning, which involves three runs.
Bold and green: best score in the individual task. Bold and orange: best average scores over all tasks.

5.3 Evaluation Metrics

We present the results of our models and the base-
line models independently on each task of evalu-
ated datasets, using the relevant metric. We em-
ploy Bleu score as an evaluation metric for para-
phrase, question generation, title (i.e. headline
news) generation, and sentence-level translitera-
tion tasks. Additionally, we use RougeL, F1, and
F0.5 (M2) as evaluation metrics for summarization,
question answering, and grammatical error correc-
tion, respectively. For diacritization and word-level
transliteration datasets, we utilize the character er-
ror rate (CER) metric. We split the evaluation scores
into “L-Score” where lower ↓ is better (e.g., CER)
and “H-Score” where higher ↑ is better, i.e., Bleu,
F1, F0.5, and RougeL.

5.4 Results

Table 2 shows that our proposed models, across dif-
ferent settings, outperform the baseline models in
∼ 90% of the individual test sets (18 out of 20). No-
tably, AraT5v2 significantly outperforms the vanilla
AraT5v1 (Nagoudi et al., 2022b) by 7.3 and 8.58
points in terms of the macro-average scores for
tasks where higher (↑) and lower (↓) score is better,
respectively. Furthermore, AraT5v2 markedly out-
paces the second-ranked baseline model, AraBART,
by an average of 2.04 (↑) and 8.45 (↓) in the macro-
average scores.

Additionally, the AraT5v2-joint single-task
model achieves the highest score in 8 out of 20
(∼ 40%) for the individual tasks, followed by the
AraT5v2 models and the AraT5v2-joint multitask
model, each achieving the best score in 4 out of 20

236

Input text Ñ�Ê�®Ë @ð �A£Q�®Ë@ð l×QË@ð 	­J
�Ë@ð *** ù
 �
	J 	̄Qª�K Z @Y�J
J. Ë @ð É�J
ÊË @ð É�J
	mÌ'@

Target �Ñ�
�
Ê ��®Ë @ �ð ��A£�Q�®Ë@ð �l×�QË @ �ð �	­J
 ��Ë@ �ð *** ù
 �

	J�	̄Q�ª
��K �Z @Y��J
�J. Ë @ �ð

�
É��J

�
ÊË @ �ð

�
É��J

�	mÌ'@

Multitask model Ñ� �Ê
��®
�
Ë @ �ð ��A �£�Q�̄� �ð

�l �× ��QË @ �ð �	­�J
 ���Ë@ �ð *** ù
 �
	J�	̄Q�

�ª��K �XCJ
J.�
�
Ë @ �ð É�J

��
ÊË @ �ð É� �J

�	m
�Ì'@

Single task model �Õ
�
Î
��®
�
Ë @ �ð ��A �£�Q�®�

�
Ë @ �ð �l �× ��QË @ �ð �	­�J
 ��Ë@ �ð *** ú

	æ�
�	̄Q�
�ª��K �Z @ �Y�J
�J.

�
Ë @ �ð

�
É�J

��
ÊË @ �ð

�
É�J

�	m
�Ì'@

Input text

AêËð

@ éË �HAJ
K.

AK. Qî �D ��@ , ú
×C�@
 Q«A

�� , ú

	GAîD. 	JË @

	­J
 	J» 	áK. Õæ
ë@QK. @

ÈñªÓ 	àAÓ 	QË @ I. K
P úÎ« ��
Ëð *** ÉÔg.

@ QmÌ'AK. Q�.�Ë@ 	àA

	̄ 	Qª�K
. �é�AÒmÌ'@ Z @Qª �� 	áÓ ñëð é�KAJ
K.

@ H. X

B@ I. �J» �IÊ�̄ A 	J�K

Target

Aê
�
Ë ��ð
�

@ �é

�
Ë �H� AJ

�K.
�

AK.� �Qî�

��D ���@ , ��ú
×C�@

�Q«A �� , ��ú

	G� Aî
�D.
��	JË @ 	­�

�J

�	J
�
» 	áK. �Õæ
ë@QK. @

È �ñ �ª�Ó 	à� A
�Ó �	QË @ I.�

�K
 �P ú
�
Î �« ����

�
Ë �ð ***

�
É�Ô �g.

�

@ Q�

�m
�Ì'AK. �Q��. ��Ë@ �	àA
�

�	̄ �	Q �ª��K
. �é� ��AÒ

�mÌ'@ Z� @Q �ª
��� �	áÓ� �ñ �ëð �é��KAJ
K.

@ H.� X

B@ �I.

��J
�
» ��I

�
Ê��̄ A 	J�K

Multitask model

A�ê
�
Ë ��ð
�

@ �é

�
Ë �H� A

�J
�K.
�

AK.� �Qî�

��D ���
�
@ , ��ú
×�C

� ��@

�̈ A ��� , ��ú

	G� A
�î �D.
��	JË @ �� �

	J�
�
» 	áK. Õæ
ë@QK. @
�

È �ñ �ª�Ó 	à� A
�Ó ��	QË @ I.�

�K
 �P ú
�
Î �« ����

�
Ë �ð ***

�
É�Ô �g.

�

@ ��Q �k

�

B
�
AK.� �I.

���Ë@
��	àA
�
�	̄ �	Q �ª��K

. �é� ��A
�Ò�m
�Ì'@ Z� A�J. �ª

��� �	áÓ� �ñ �ë �ð é� �K� A�J
�K.
�

@ H.�

�X
�

B@ �I.

��J
�
» ��I

�
Ê��̄ A�	J��K

Single task model

A�ê
�
Ë ��ð
�

@ �é

�
Ë �H� A

�J
�K.
�

AK.� �Qî�

��D ���
�
@ , ��ú
×�C

� ��@
 �Q«� A
��� , ��ú

	G� A
�î �D.
��	JË @ 	­�

�J

�	J
�
» �	á�K. �Õæ
ë� @ �Q

�K. @

�
È ��ñ �ª�Ó 	à� A

�Ó ��	QË @ I.�
�K
 �P ú

�
Î �« ����

�
Ë �ð ***

�
É�Ô �g.

�

@ ��Q�m

�Ì'AK.�
�Q��.
���Ë@

��	àA
�
�	̄ �	Q �ª��K

. �é� ��A
�Òm�
�Ì'@ Z� @ �Q �ª

��� �	áÓ� �ñ �ë �ð é� �K� A�J
�K.
�

@ H.�

�X
�

B@ �I.

��J
�
» ��I

�
Ê��̄ A�	J��K

Table 3: Examples of negative task interference in the diacritization task, both in a single-task and multitask.
Color taxonomy: “blue” refers to the original text, “red” denotes a word-level error, “light red” indicates a partial
diacritization error on one more letter, and “green” signifies correctness. For single task, we use “AraT5v2-sTask”
whereas we use “AraT5v2-joint-mTask” model as the multitask model.

(∼ 20%) tasks. It is also noteworthy that AraBART
and mT0 each obtain the best score in only one
task.

5.5 Discussion

Exploring different pretraining settings allows us
to derive unique insights. Examples of insights that
can be gleaned from Table 2 include:
Addressing open-domain problems. We ob-
serve that sequence-to-sequence models like T5
encounter challenges when tackling open-domain
question-answering tasks. For example, the results
on the MLQA dataset demonstrate notably low per-
formance across all evaluated models.
Handling lengthy sentences. Multitasking proves
effective in addressing challenges when working
with long texts, such as paragraphs or documents.
It significantly excels in tasks involving long se-
quences. For instance, paraphrasing text such as
the SmEval dataset and abstractive summarization
like ARCD and XLSum all include long sequences.
Conversely, it does not lead to significant improve-
ments in short-text paraphrasing, such as those

at the sentence level in datasets like APPB and
TAPACO.
Negative task inference. Notably, multitask train-
ing in our experiments has a negative impact on
character-level tasks. For instance, we randomly se-
lect two examples from an Arabic poetry website15,
remove diacritics from the input text, and require
both the AraT5v2-joint multitask and AraT5v2 sin-
gle task models to diacritize these examples. As
shown in Table 3, the multitask model alters the
words themselves, while the single task model pre-
serves the input words (i.e., it focuses solely on
adding diacritization to the character sequences).

5.6 Performance Comparison
One of our primary objectives in developing a
new version of AraT5 is to improve the time re-
quired for the finetuning process (i.e., convergence
time). Therefore, we conduct a comparison be-
tween AraT5v1 and AraT5v2, as well as the base-
lines models in this respect. This allows us to
analyze their computational efficiency and gain

15https://poetry.dctabudhabi.ae/

237

https://poetry.dctabudhabi.ae/

News Article

AÓY 	J«Q�
 	g

B@ ú

	̄ é�JK. Qj. �JK. ©J
Òm.Ì'@
�
@Q» 	YÓ ú
æ�

	�Q 	®Ë @ ø
 PðYË@ 	áÓ �èñ�̄ Q��»

@ �HAK. ø
 Xñª�Ë@ ø
 PðYË@

	à

@ ÈCêË@ ø
 XA

	K Ñk. AêÓ PAÒJ
 	K ú
ÎK

	P@Q�. Ë @ Ñj. 	JË @ Y»

@

:ø
 Xñª�Ë@ ø
 PðYË@ 	á« éË@
ñ� øYË �éJ
ÊK
 	P@Q�. Ë @ @PAK. ú

	̄ ÐA �®Ó ù

	®m�� QÖ �ß
ñÓ ÈC 	g PAÒJ
 	K l� 	�ð

@ð .2017 	­J
� 	àAÓQ�
g. 	àA� ��
PAK. úÍ@
 É

�®�J 	K @
ø
 PðYË@ 	áÓ øñ�̄

@ �HAK. ø
 Xñª�Ë@ ø
 PðYË@

	àA

	̄ Z AÖÞ�

B@ úÍ@
 Q 	¢	JËAK. ð

	¬@Yë

B@ 	àñÊj. ��
 ð AîD� 	® 	K ù
 ë

�èQºË@ , AîD� 	® 	K ù
 ë ÐY�®Ë@ �èQ» 	à

@ ½Ë Y»
ð

@ð

ø
 Xñª�Ë@ ø
 PðYË@
	à

@ Y�®�J«@ ©J
Òm.Ì'@ :

	¬A 	�

@ð . ÈCêË@ ©Ó l .�'
ñ�J�JË @ð Q�
J.» É¾ ���. ¼A 	Jë 	Pñ 	®ÊË ù

KCÓ 	Pð A 	K

@ ��¢ª�J 	Kð �èYK
Y �� ¼A 	Jë �HAJ. K
PY�JË @ . ú
æ�

	�Q 	®Ë @
	á�
ª 	̄ @YÖÏ @ ÉJ. �̄ 	áÓ ú

�GAJ
k ú

	̄ H. Qå 	�

@ ÕË ú

	æºË é� 	® 	K QÓ

B@ �A 	JË @ 	á 	£ Aî 	DJ
k , ú
æ�

	�Q 	®Ë @ ø
 PðYË@ úÍ@

�IÊ�®�J 	K @ AÓY 	J« ù
 ªÓ

�HYg é� 	® 	K QÓ

B@ð 	­J
ª 	�

	áË é 	K

@ Y»

A�JÓ A 	K

@ð ø
 Xñª�Ë@ ø
 PðYË@ ú

	̄ I. ªÊË @
�éK. ñª� øYÓ 	àñÒÊªK
 ¼A 	Jë 	àñJ.ªÊK
 	áK

	YË @ 	àñJ.«CË@ :ø
 Xñª�Ë@ ø
 PðYË@ Èñk
	àAK.

@ð . ¼A 	Jë 	áÓQ��»

@

ú

	̄ AJ
 	®J
ËñK. ÐAÓ

@ ÉK
 	P@Q�. Ë @ I. ªÊ�Kð . @Yg. �é�®J
 ��ð �éª�JÜØ �éËñ¢�. 	àñº�J�ð , XYg. 	á�
J.«CK. Aê 	̄ñ 	®� �H 	P 	Q« ��Q 	®Ë @ 	à

B �é�®K. A�ÖÏAK. 	Pñ 	®Ë @ CîD� @QÓ

@ 	àñºK

. �éJ
K. ñ 	Jm.Ì'@ A¿Q�
Ó

@ �HAJ. 	j�� 	JÖÏ ÕË AªË @ �

A¿ �HAJ
 	®��� 	áÖÞ 	� ZAªK. P

B@ ÐñK
 ðQ�
K. ék. @ñ�K 	à

@ ÉJ. �̄ �I�.�Ë@ ÐñK
 �éJ
ÊK
 	P@Q�. Ë @ @PAK.

Title Generation

Output

ø
 Xñª�Ë@ ø
 PðYË@ ú

	̄ I. ªÊË @ ú

	æªK
 @ 	XAÓ 	¬Q«

@ :PAÒJ
 	K

ú
æ�
	�Q 	®Ë @ 	áÓ øñ�̄

@ ø
 Xñª�Ë@ ø
 PðYË@ :PAÒJ

	K
ø
 Xñª�Ë@ ø
 PðYË@ ú

	̄ �HAK
PAJ. ÖÏ AK. 	Pñ 	®Ë @ ú

	æªK
 @ 	XAÓ 	¬Q«

@ :PAÒJ
 	K

ú
æ�
	�Q 	®Ë @ 	áÓ øñ�̄

@ ø
 Xñª�Ë@ ø
 PðYË@

	à

@ ú

	æªK
 @ 	XAÓ 	¬Q«

@ :PAÒJ
 	K

ú
æ�
	�Q 	®Ë @ ø
 PðYË@ 	áÓ øñ�̄

@ ø
 Xñª�Ë@ ø
 PðYË@

	à

@ 	¬Q«

@ :PAÒJ
 	K

Question Answering

Question no. 1 ?ÉK
 	P@Q�. Ë @ ð AJ
 	®J
ËñK. �è @PAJ.Ó ÐA�®�K ú

�æÓ

Output �I�.�Ë@
Question no. 2 ? 	àAÓQ�
g. 	àA� ��
PAK. ú
Í@ PAÒJ

	K É�®�J 	K @ ú

�æÓ

Output 2017 	­J
�
Question Generation

Answer �I�.�Ë@ ÐñK
 �éJ
ÊK
 	P@Q�. Ë @ @PAK. ú

	̄ AJ
 	®J
ËñK. ÐAÓ

@ ÉK
 	P@Q�. Ë @ I. ªÊ�K

Output ? ÕËAªË @ �

A¿ �HAJ
 	®��� ú

	̄ ÉK
 	P@Q�. Ë @ ÉK. A �®K
 	áÓ

Table 4: OCTOPUS output examples based on a randomly picked article from a news website. We prompt
OCTOPUS to generate five potential titles, answers based on the questions, and questions for the provided answer.

insights into their convergence behavior. To quan-
tify this, we measure the required average time for
convergence (in hours) and the average number of
epochs needed to achieve convergence based on
model results on development datasets. For a fair
comparison, we finetune all models for a maximum
of 20 epochs across all tasks. Notably, the evalua-
tion results carry on the average of three separate
runs using three different seeds, thereby enhancing
the robustness and reliability of our comparison.

Convergence time. In general, we observe that
AraBART and AraT5v2 need on average 12 and 13
epochs, respectively, till convergence compared to
AraT5v1, which needs an average of 16 epochs to
achieve the best performance. So, we notice that
AraBART requires only 2.9 hours to converge and
achieve the optimal performance, while AraT5v2,
and AraT5v1, need an average of 3.77 and 5.20
hours, respectively, to reach the best score. So,
we observe that AraT5v2 is approximately 35.19%

faster than AraT5v1 in terms of training times.16

6 OCTOPUS Toolkit

6.1 Model Selection

Our objective is to introduce a versatile language
generation toolkit capable of handling a wide range
of tasks, all within a single model. To achieve this
goal, we have explored multiple training strategies,
as described in Section 4. Based on our empirical
evaluations, we observe that finetuned AraT5v2-
joint under the multitask setting outperforms the
other models.17 Therefore, we utilize this model as
the foundation for developing our OCTOPUS toolkit
(illustrated in Figure 1).

16We note that AraBART requires a shorter time to converge
due to the vocabulary size of the model (32K) compared to
(110K) for AraT5-based models.

17As Table 2 shows, AraT5v2-joint-mTask outperforms other
models where a higher score is better and remains highly
competitive in scenarios where a lower score is preferred.

238

Paraphrase

Input

, XCJ. Ë @ ÈAÖÞ
�� ú

	̄ 	á�
�J 	¢ 	̄ Am× �IK. Qå 	�ð Qå�Ó úÍ@
 A 	��

@ ÈAJ
 	K @X �é 	®�AªË@ �IÊ�ð , AîE. Qå 	� ø

	YË@
�
ÈAJ
 	K @X

�
@ PA�«B
 @ Z @Qk.

��Qå��Ë @ ú

	̄ AÒJ
�B AJ
�. J
Ë PA 	® 	J���@ ©Ó 	áÓ@ 	Q��ËAK.

�I	J�
K. ð . �éK
PY	Jº�B
 @ð hðQ¢Óð �èñJ
�ð ÐñÊ�Ë@ 	àYÓ �IÊÖÞ��ð , XCJ. Ë @ H. Q
	« �éK
Qå�ÖÏ @ XðYmÌ'@ ��£A 	JÓ �é 	®�AªË@ �I¢ 	« Y�® 	̄ �éK
PY	Jº�B
 @ð hðQ¢Ó úæ�QÓ AÒë

. AêË �éJ.kA�ÖÏ @ �éK. Q�K

B@ð �é 	®Ê�J 	jÖÏ @ I. j�Ë@ 	áÓ �HA�®J.£ �HQê 	£

@ð . �éK
Qå�ÖÏ @ H. @ñK.

B@ �I�̄Q£ ú

�æË@ �é 	®�AªË@ É¾ �� �éJ
«A 	J�Ë@ PAÔ�̄

B@ Pñ�Ë �é 	®Ê�J 	jÖÏA�K @ñ 	J �®Ë @

Output

. �éK
PY	Jº�B
 @ð hðQ¢Ó úæ�QÓ AÒëð , XCJ. Ë @ ÈAÖÞ
�� 	á�
�J 	¢ 	̄ Am× ù
 ¢

	ª�JË Qå�Ó úÍ@

�é 	®�AªË@ �IÊ�ð , ÈAJ
 	K @X PA�«@
 I. �.��. AJ
�. J
Ë ��Qå�� ú

	̄ I. ë

A�JË @ �éËAg ©Ó 	áÓ@ 	Q��ËAK.

, ÐñÊ�Ë@ð �HQå� ú

�æ 	JK
YÓ ú

	̄ AÒJ
� Bð ,Qå�Ó ��Qå�� Q�
J.» Yg úÍ@
 �I¢ 	« ú

�æË @ð , AJ
�. J
Ë �IK. Qå 	� ú

�æË @ �é 	®�AªË@ É¾ �� �éJ
«A 	J�Ë@ PAÔ�̄

B@ Pñ� 	­Ê�J	m× �HQê 	£

@ð

. AêË �éJ.kA�ÖÏ @ �HAK. A 	ªË @ð ÐñJ
 	ªË @ �HA�®J.£ 	­Ê�J	m× �HQê 	£

@ AÒ»

Summarization

Input

é�Jm.k 	� 	̄P ø
 Qº�ªË@ ú
æ
	�A�®Ë @ 	áºËð , 	àA�J�	�A 	ª 	̄

@ ú

	̄ 	àAJ. Ë A£ Qå�A 	J«ð 	á�
ÒÊ�ÖÏ @ �éK
AÒm�'. Aj. j. j�JÓ , Xñ	Jm.Ì'@ É�J�®K. , é� 	® 	K 	á« © 	̄ @YK
 ø

	YË@ , 	á�k ÈA 	�	� 	¬Q��«@

�éK
ñÓX Q��»

B@ �HXAmÌ'@ Q�. �JªK
ð . Ð@Y«B
 @

�éK. ñ�®« ék. @ñJ
� é 	KA

	̄ 	áK
Q 	k

�
@ hQk. ð A�	m��� 13 É�J�®K. , AÓA« 42 QÒªË@ 	áÓ 	©ËAJ. Ë @ , 	á�k 	áK
X

@ @ 	X @
ð ." 	áK
Q 	k

�
B@ �éK
AÒm�'."

Xñ	Jm.Ì'AK. i. ª�K
�éj�Ó 2009 ÐA« ú

	GA�JË @ Q�. Ô
	̄ñ 	K 5 ú

	̄ É 	gX 	àAJ
« XñîD�� ÈA�̄ð . �éJ
ºK
QÓ

@ �éK
Qº�« �èY«A�̄ ú

	̄ �Iª�̄ð ú

�æË @ �éJ
ËA�J �®Ë @ Q�
 	« �HAÒj. êË @ 	á�
K. 	áÓ

. hC�Ë@ �é
JJ.ª�K �èXA«B
 B@

	­�̄ñ�K 	àðX , éK
YJ
K. 	á�
gC� 	áÓ PA 	JË @ ��Ê£

@ð ,I. �JºÓ úÎ« Yª� Õç�' ,iJ
�®Ê�JË @ ð

@ �éJ
J.£ �HA�ñm 	̄ Z @Qk. @
 ÑëP@ðX

@ 	àðQ 	¢�J 	�K
 @ñ 	KA¿ 	áK

	YË @
ÉJ. �̄ �HA«A� , 	àAJ. Ë A£ð " 	á�
K
XAêm.Ì'@

�
@ 	á« A�Jm�'. ©

�̄ @ñÖÏ @ Pð 	QK
 	àA¿ð , �é 	̄Q¢�JÖÏ @ PA¾ 	̄

B@ úÍ@
 ÈAÓ 	á�k 	à

AK. YJ
 	®�K �éËX

@ ZA«XB@ ñÊ�JÜØ ÐY�®J
�ð �éK
Aî 	E ½Òî�E Y�̄ ©J
 	�@ñÓ

�HXAmÌ'@ �éJ
ºK
QÓ

B@ ¨A 	̄ YË @ �èP@ 	Pð �I 	® 	J�ð "ÉÒªË@ 	àA¾Ó ú

	̄ 	­	J«" . éÓñj. ë
	Y 	® 	JK
 	à

@ ÉJ. �̄ 	àA�J�	�A 	ª 	̄

@ ú

	̄ �éJ
ºK
QÓ

B@ �H@ñ�®ËAK. ��j�JÊJ
� 	á�k Y
K@QË @ 	àA¿ð . Ðñj. êË @

ú

	̄ , �I 	�K
 @QK. ½ 	K , ú
æ� ú
G. ú
G. É�@QÓ éK. XA 	̄

@ AÓ I. �k , AK
Aj 	�Ë@ �HC
KA« I. 	� 	«

@ AÓ ñëð ," AJ
K. AëP@
 CÔ«" é 	®J
 	���� 	áÓ BYK. "ÉÒªË@ 	àA¾Ó ú

	̄ A 	® 	J«" èPAJ. �J«AK.
¨A 	̄ YË @ úÍñ�J�
� é 	K

B �éÒºjÖÏ @ �é«A�̄ ú

	̄ è AK
Am�
	� 	áÓ @XY« 	á�k ék. @ñJ
�ð . �éÒºjÖÏ @ ÐAÓ

@ Ñî�E@XAëA ���. �HXAmÌ'@ úkQk. 	áÓ YK
YªË@ ú
ÍYK

	à

@ ©�̄ñ�JK
ð . Xñë �HðQ 	̄

.PA 	JË @ �éK
Qº�ªË@ �èY«A�®Ë @ ú

	̄ ù
 £Qå

�� éJ
Ê« ��Ê£

@ AÓY 	J« ,ÉÊ ��ËAK. I. �
�

@ é 	K

B A¿Qj�JÓ AJ
�Q» ÐY 	j�J��
 ñëð . é� 	® 	K 	á«

Output
�éK. A�@
ð A�	m��� 13 É�J�®K.

	¬Q��«@ ø

	YË@ , 	á�k ÈA 	�	� , ú
¾K
QÓ

B@ ø
 Qº�ªË@ ú
æ�

	® 	JË @ I. �
J.¢Ë@
�éJ
 	��̄ ú

	̄ ÐñJ
Ë @ 	áÓ ��kB �I�̄ð ú

	̄ �éJ
ºK
QÓ

@ �éK
Qº�« �éÒºm× Q 	¢	J�K

. Ð @ñ«

@ �éªK. P

@ 	Y 	JÓ Xñë �HPñ 	̄ �èY«A�®K. PA 	K ��C£@
 ú

	̄ 	áK
Q 	k
�
@ 	á�
�KC�K 	áÓ Q��»

@

Grammatical Error Correction

Input

@ñJ. îE
 	à@ ÑîD
Êª 	̄ , é 	JJ
êÖÏ @ éËXAªÖÏ @ è 	YîE. 	àñ 	���QK
 B 	àñK
Pñ�Ë@ 	àA¿ @ 	X @ ½Ë 	YÊ 	̄ , éJ.�	JÓ 	á« éJ
Ê	m�
�' 	áÓ é 	®Ê¿ É�̄ @ �A 	JË @ ÐB

�
@ð h@ðP@ 	à@ 	á 	¢�
 éjJ
�. ��Ë@ Q�
J.» È@ 	P B

AJ
ËA 	« 	àñºJ
� 	áÒ�JË @ð È 	YË@ð ¨ñ	J	mÌ'@ 	áÓð ÐA« 	á�
ªK. P@ 	áÓ Q��» @ 	áÖ �ß © 	̄ Y 	K ù

KAJ.k

@ AK
 A 	J 	K @ , èñ 	J« éK. A�ªË@ è 	Yë 	áÓ Ñê�̄ñ�®k ð 	Y 	gAK
ð èYg@ð éK
ñ�̄ éJ.ë

�HAJ
j 	��JË @ è 	Yë Éë

A�J��
 é 	JºËð

Output

@ñJ. îE
 	à

@ ÑîD
Êª 	̄ , �é 	JJ
êÖÏ @ �éËXAªÖÏ @ è 	YîE. 	àñ 	���QK
 B 	àñK
Pñ�Ë@ 	àA¿ @ 	X @
 ½Ë

	YÊ 	̄ , éJ.�	JÓ 	á« éJ
Ê	m�
�' 	áÓ �é 	®Ê¿ É�̄

@ �A 	JË @ ÐB

�
@ð h@ðP

@ 	à

@ 	á 	¢�
 �éjJ
�. ��Ë@ Q�
J.» È@ 	PB

, AJ
ËA 	« 	àñºJ
� 	áÒ�JË @ð , È 	YË@ð ¨ñ	J	mÌ'@ 	áÓð , ÐA« 	á�
ªK. P

@ 	áÓ Q��»

@ 	áÖ �ß © 	̄ Y 	K ù

KAJ.k

@ AK
 A 	J 	K @
 .

�èñ 	J« �éK. A�ªË@ è 	Yë 	áÓ Ñê�̄ñ�®k @ð 	Y 	g

AK
ð , �èYg@ð �éK
ñ�̄ �éJ.ë

. �HAJ
j 	��JË @ è 	Yë Éë

A�J��
 é 	JºËð

Table 5: OCTOPUS output examples for grammatical error correction, paraphrasing, and summarization.

6.2 Task Coverage

OCTOPUS is designed for eight machine genera-
tion tasks, encompassing diacritization, grammat-
ical error correction, news headlines generation,
paraphrasing, question answering, question gen-
eration, and transliteration. This comprehensive
package includes a Python library along with as-
sociated command-line scripts. Table 4 illustrates
the output of OCTOPUS, generating five potential
titles, answers derived from questions related to
the content, and questions corresponding to a pro-
vided answer based on a randomly selected article
from a news website. Moreover, Table 5 showcases
examples of OCTOPUS for grammatical error cor-
rection, paraphrasing, and summarization. We now
describe the intricacies of implementation and de-
sign of the OCTOPUS toolkit, along with its various
configurable settings.

6.3 Implementation

We distribute OCTOPUS as a modular toolkit built
using standard libraries including PyTorch (Paszke

et al., 2019) and HuggingFace (Lhoest et al., 2021).
It is implemented in Python and can be easily in-
stalled using the pip package. It is compatible with
Python versions 3.8 and later, Torch version 2.0
and later, and the HuggingFace Transformers li-
brary version 4.30 or higher.18 We offer three usage
options with varieties of arguments: (i) Command-
Line Interface (CLI), (ii) Python integration pack-
age, and (iii) an interactive web interface.
CLI ommands. We offer three command-line in-
terfaces for task selection and output generation as
follows: First, the “octopus_interactive” command
provides an interactive mode that allows users to
actively engage with the system. With this com-
mand, users can efficiently select their desired task
and input text and then apply the chosen task to
generate output. For instance, if a user wants to
diacritize several sentences, they can initiate the
diacritization task and input the sentences one by
one to undergo the diacritization process. Second,

18Installation instructions and documentation can be found
at: https://github.com/UBC-NLP/octopus.

239

https://github.com/UBC-NLP/octopus

Argument Description

Basic
- - help [-h] To display the arguments details
- - cache-dir [-c] Specify the path to the cache directory.
- - logging-file [-l] Define the file path for logging.

Task - - prefix [-p]
Task prefix should be one of the following: [’diacritize’, ’correct_grammar’,
’paraphrase’, ’answer_question’, ’generate_question’, ’summarize’,’generate_title’,
’translitrate_ar2en’, ’translitrate_en2ar’]

Input & Output

- - text [-t] Provide the input text for generative tasks.
- - input-file [-f] Specify the path of the input file.
- - max-outputs [-o] Define the number of hypotheses to generate as output.
- - batch-size [-bs] Set the number of input sentences processed in a single iteration.
- - seq-length [-s] Specify the maximum sequence length for the generative text.

Decoding

- - search-method [-m] Choose the decoding method from the options [‘greedy’, ‘beam’, ‘sampling’].
- - nbeam [-nb] If using beam search, specify the beam search size.

- - no-repeat-ngram-size [-ng] Avoid repeating the same n-gram size in the generated text.
- - top-k [-k] Utilize sampling with a top-k strategy.
- - top-p [-p] Implement sampling with a top-p strategy.

Table 6: OCTOPUS command line argument list.

the main command “octopus” offers two options:
users can either directly input the text or specify a
file path, allowing flexibility in applying multiple
tasks to a large amount of data points. Finally, the
task-specific command “octopus-taskname” offers
seven task-specific commands, each corresponding
to one of the supported tasks. For instance, there
are “octopus-diacritize” and “octopus-paraphrase”
commands. These task-specific commands follow
the same usage pattern as the “octopus” command,
but are designed for individual tasks.
Python integration package OCTOPUS is a
Python library that offers numerous functions for
seamless integration with various dataframe archi-
tectures, including Pandas, PySpark, Dask, and
more. It takes as input the function to be integrated
into user code and returns both generative text and
processing logs.
Interactive web interface. We offer a dynamic in-
teractive web interface that allows users to try OC-
TOPUS tasks. Furthermore, to facilitate adoption,
we provide a Google Colab notebook with detailed
instructions on how to use the OCTOPUS tool and
model, and integrate them with user’s code.

6.4 Arguments
Each of the command lines (i.e., octopus-
interactive, octopus, or octopus-taskname supports
or requires several arguments. Furthermore, OC-
TOPUS supports four decoding methods on the de-
coder side: greedy search, beam search (Koehn,
2009), top-k sampling (Fan et al., 2018), and nu-
cleus sampling (Holtzman et al., 2019). We set as
the default setting beam search with a beam size of
5, and a maximum sequence length of 2, 048. Ta-

ble 6 shows detailed descriptions of the arguments
and their usage. This information helps users un-
derstand and utilize the provided arguments effec-
tively.

7 Conclusion
We introduced a suite of powerful Arabic text-to-
text Transformer models trained on large and di-
verse datasets, with an extended sequence length of
up to 2, 048. We also explored various pretraining
strategies, including unsupervised and joint pertain-
ing, using both single and multitask settings. Our
models outperform competitive baselines, demon-
strating their effectiveness. Furthermore, we in-
troduced OCTOPUS, a publicly available Python-
based package and command-line toolkit tailored
for eight Arabic natural language generation tasks.
OCTOPUS is designed to be extensible, and we plan
to expand its capabilities by adding more tasks and
increasing the capacity of our back-end model.

8 Limitations
We identify the following limitations:

• Dialectal Arabic. In this paper, our primary
focus is on MSA tasks. Nevertheless, we are
committed to expanding our scope to cover
tasks in available Arabic dialects in the fu-
ture. Currently, there is a recognized necessity
within the community to facilitate the creation
of datasets tailored to multiple Arabic dialects.
For example, there is currently a deficiency in
dialectal resources for sequence-to-sequence
tasks such as summarization, paraphrasing,
and question-answering. As more resources

240

are created for dialects covering these tasks,
we anticipate enhancing the coverage and ca-
pabilities of OCTOPUS exploiting these re-
sources. Fortunately, our toolkit and core
back-end models are extensible and hence
would allow for such a development seam-
lessly.

• Task Coverage. OCTOPUS currently encom-
passes only eight generation tasks. However,
we have plans to expand its capabilities by
including additional tasks. These upcoming
additions can involve, for example, dialgoue
geeration and tasks involving code-switching.
Again, adding more tasks to OCTOPUS will
not be onerous, once respective datasets are
available.

• Intended Use. OCTOPUS is a natural lan-
guage generation toolkit designed to handle
eight different tasks. We have tried the toolkit
under different scenarios and found it to per-
form well. However, before any real-world
usecases, we strongly encourage further and
more extensive evaluations under diverse con-
ditions.

9 Ethical Considerations

Our pretraining datasets are sourced from the pub-
lic domain. Similarly, the labeled datasets used for
model finetuning have been collected from pub-
licly available data, made possible through the
dedicated efforts of numerous researchers over the
years. Consequently, we do not have significant
concerns regarding the retrieval of personal infor-
mation from our trained models. It is essential to
note that the datasets we gather to construct OC-
TOPUS may contain potentially harmful content.
Furthermore, during model evaluation, there is a
possibility of exposure to biases that could lead
to unintended content generation. For release, all
our pretrained models and the toolkit are publicly
available for non-malicious use.

Acknowledgments

We acknowledge support from Canada Research
Chairs (CRC), the Natural Sciences and Engineer-
ing Research Council of Canada (NSERC; RGPIN-
2018-04267), the Social Sciences and Humanities
Research Council of Canada (SSHRC; 435-2018-
0576; 895-2020-1004; 895-2021-1008), Canadian
Foundation for Innovation (CFI; 37771), Digital

Research Alliance of Canada,19 and UBC ARC-
Sockeye.20 We thank the Google TFRC program
for providing us with free TPU access.21

References
Muhammad Abdul-Mageed, Chiyu Zhang, Azadeh

Hashemi, and El Moatez Billah Nagoudi. 2019.
AraNet: A Deep Learning Toolkit for Arabic Social
Media. arXiv preprint arXiv:1912.13072.

Marwah Alian, Arafat Awajan, Ahmad Al-Hasan, and
Raeda Akuzhia. 2019. Towards building arabic para-
phrasing benchmark. In Proceedings of the Second
International conference on Data Science E-learning
and Information Systems (DATA’ 2019), pages 1–5.

Mohamed Seghir Hadj Ameur, Farid Meziane, and
Ahmed Guessoum. 2019. Anetac: Arabic named
entity transliteration and classification dataset. arXiv
preprint arXiv:1907.03110.

Mikel Artetxe, Sebastian Ruder, and Dani Yogatama.
2020. On the cross-lingual transferability of mono-
lingual representations. In Proceedings of the 58th
Annual Meeting of the Association for Computational
Linguistics, pages 4623–4637.

Abhik Bhattacharjee, Tahmid Hasan, Wasi Uddin Ah-
mad, Yuan-Fang Li, Yong bin Kang, and Rifat Shahri-
yar. 2021. Crosssum: Beyond english-centric cross-
lingual abstractive text summarization for 1500+ lan-
guage pairs. CoRR, abs/2112.08804.

Rich Caruana. 1997. Multitask learning. Machine
learning, 28(1):41–75.

Daniel Cer, Mona Diab, Eneko Agirre, Inigo Lopez-
Gazpio, and Lucia Specia. 2017. Semeval-2017
task 1: Semantic textual similarity-multilingual and
cross-lingual focused evaluation. arXiv preprint
arXiv:1708.00055.

Amina Chouigui, Oussama Ben Khiroun, and Bilel
Elayeb. 2021. An arabic multi-source news corpus:
Experimenting on single-document extractive sum-
marization. Arabian Journal for Science and Engi-
neering, 46:3925–3938.

Marta R Costa-jussà, James Cross, Onur Çelebi, Maha
Elbayad, Kenneth Heafield, Kevin Heffernan, Elahe
Kalbassi, Janice Lam, Daniel Licht, Jean Maillard,
et al. 2022. No language left behind: Scaling
human-centered machine translation. arXiv preprint
arXiv:2207.04672.

Kareem Darwish and Hamdy Mubarak. 2016. Farasa:
A new fast and accurate Arabic word segmenter. In
Proceedings of the Tenth International Conference
on Language Resources and Evaluation (LREC’16),
pages 1070–1074, Portorož, Slovenia. European Lan-
guage Resources Association (ELRA).
19https://alliancecan.ca
20https://arc.ubc.ca/ubc-arc-sockeye
21https://sites.research.google/trc/about/

241

http://arxiv.org/abs/1503.06733
http://arxiv.org/abs/1503.06733
https://dl.acm.org/doi/abs/10.1145/3368691.3368708
https://dl.acm.org/doi/abs/10.1145/3368691.3368708
https://www.aclweb.org/anthology/2020.acl-main.421/
https://www.aclweb.org/anthology/2020.acl-main.421/
http://arxiv.org/abs/2112.08804
http://arxiv.org/abs/2112.08804
http://arxiv.org/abs/2112.08804
https://link.springer.com/article/10.1023/A:1007379606734
https://arxiv.org/abs/1708.00055
https://arxiv.org/abs/1708.00055
https://arxiv.org/abs/1708.00055
https://aclanthology.org/L16-1170
https://aclanthology.org/L16-1170
https://alliancecan.ca
https://arc.ubc.ca/ubc-arc-sockeye
https://sites.research.google/trc/about/

Moussa Kamal Eddine, Nadi Tomeh, Nizar Habash,
Joseph Le Roux, and Michalis Vazirgiannis. 2022.
Arabart: a pretrained arabic sequence-to-sequence
model for abstractive summarization.

Ibrahim Abu El-Khair. 2016. 1.5 billion words arabic
corpus. arXiv preprint arXiv:1611.04033.

Ali Fadel, Ibraheem Tuffaha, Bara’ Al-Jawarneh, and
Mahmoud Al-Ayyoub. 2019. Arabic text diacritiza-
tion using deep neural networks.

Angela Fan, Mike Lewis, and Yann Dauphin. 2018.
Hierarchical neural story generation. arXiv preprint
arXiv:1805.04833.

Ibrahim Abu Farha and Walid Magdy. 2019. Mazajak:
An online arabic sentiment analyser. In Proceedings
of the Fourth Arabic Natural Language Processing
Workshop, pages 192–198.

Kamel Gaanoun, Abdou Naira, Anass Allak, and Imade
Benelallam. 2022. Automatic Text Summarization
for Moroccan Arabic Dialect Using an Artificial In-
telligence Approach, pages 158–177.

Nizar Habash and David Palfreyman. 2022. ZAEBUC:
An annotated Arabic-English bilingual writer corpus.
In Proceedings of the Thirteenth Language Resources
and Evaluation Conference, pages 79–88, Marseille,
France. European Language Resources Association.

Tahmid Hasan, Abhik Bhattacharjee, Md Saiful Islam,
Kazi Samin, Yuan-Fang Li, Yong-Bin Kang, M. So-
hel Rahman, and Rifat Shahriyar. 2021. Xl-sum:
Large-scale multilingual abstractive summarization
for 44 languages.

Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and
Yejin Choi. 2019. The curious case of neural text
degeneration. arXiv preprint arXiv:1904.09751.

Nisarg Jhaveri, Manish Gupta, and Vasudeva Varma.
2019. clstk: The cross-lingual summarization tool-
kit. In Proceedings of the Twelfth ACM International
Conference on Web Search and Data Mining, pages
766–769.

Saad Khan, Jesse Hamer, and Tiago Almeida. 2021.
Generate: A nlg system for educational content cre-
ation. In EDM.

Philipp Koehn. 2009. Statistical machine translation.
Cambridge University Press.

Ivano Lauriola, Alberto Lavelli, and Fabio Aiolli. 2022.
An introduction to deep learning in natural language
processing: Models, techniques, and tools. Neuro-
computing, 470:443–456.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Ves Stoyanov, and Luke Zettlemoyer. 2019a. Bart:
Denoising sequence-to-sequence pre-training for nat-
ural language generation, translation, and compre-
hension. arXiv preprint arXiv:1910.13461, pages
7871–7880.

Patrick Lewis, Barlas Oguz, Ruty Rinott, Sebastian
Riedel, and Holger Schwenk. 2019b. Mlqa: Eval-
uating cross-lingual extractive question answering.
arXiv preprint arXiv:1910.07475.

Quentin Lhoest, Albert Villanova del Moral, Yacine
Jernite, Abhishek Thakur, Patrick von Platen, Suraj
Patil, Julien Chaumond, Mariama Drame, Julien Plu,
Lewis Tunstall, et al. 2021. Datasets: A community
library for natural language processing. In Proceed-
ings of the 2021 Conference on Empirical Methods
in Natural Language Processing: System Demonstra-
tions, pages 175–184.

Christopher D Manning, Mihai Surdeanu, John Bauer,
Jenny Rose Finkel, Steven Bethard, and David Mc-
Closky. 2014. The stanford corenlp natural language
processing toolkit. In Proceedings of 52nd annual
meeting of the association for computational linguis-
tics: system demonstrations, pages 55–60.

Yuval Merhav and Stephen Ash. 2018. Design Chal-
lenges in Named Entity Transliteration. In Proceed-
ings of the 27th International Conference on Compu-
tational Linguistics, pages 630–640, Santa Fe, New
Mexico, USA. Association for Computational Lin-
guistics.

Behrang Mohit, Alla Rozovskaya, Nizar Habash, Wa-
jdi Zaghouani, and Ossama Obeid. 2014. The first
QALB shared task on automatic text correction
for Arabic. In Proceedings of the EMNLP 2014
Workshop on Arabic Natural Language Processing
(ANLP), pages 39–47, Doha, Qatar. Association for
Computational Linguistics.

Hussein Mozannar, Karl El Hajal, Elie Maamary, and
Hazem Hajj. 2019. Neural arabic question answering.
arXiv preprint arXiv:1906.05394.

Niklas Muennighoff, Thomas Wang, Lintang Sutawika,
Adam Roberts, Stella Biderman, Teven Le Scao,
M Saiful Bari, Sheng Shen, Zheng-Xin Yong, Hai-
ley Schoelkopf, Xiangru Tang, Dragomir Radev,
Alham Fikri Aji, Khalid Almubarak, Samuel Al-
banie, Zaid Alyafeai, Albert Webson, Edward Raff,
and Colin Raffel. 2022. Crosslingual generalization
through multitask finetuning.

El Moatez Billah Nagoudi, Muhammad Abdul-Mageed,
AbdelRahim Elmadany, Alcides Alcoba Inciarte, and
Md Tawkat Islam Khondaker. 2022a. Jasmine: Ara-
bic gpt models for few-shot learning. arXiv preprint
arXiv:2212.10755.

El Moatez Billah Nagoudi, Ahmed El-Shangiti,
AbdelRahim Elmadany, and Muhammad Abdul-
Mageed. 2023. Dolphin: A challenging and di-
verse benchmark for arabic nlg. arXiv preprint
arXiv:2305.14989.

El Moatez Billah Nagoudi, AbdelRahim Elmadany, and
Muhammad Abdul-Mageed. 2022b. AraT5: Text-
to-text transformers for Arabic language generation.
In Proceedings of the 60th Annual Meeting of the

242

https://arXiv preprint arXiv:2203.10945
https://arXiv preprint arXiv:2203.10945
https://arxiv.org/abs/1611.04033
https://arxiv.org/abs/1611.04033
http://arxiv.org/abs/1905.01965
http://arxiv.org/abs/1905.01965
https://doi.org/10.1007/978-3-031-06458-6_13
https://doi.org/10.1007/978-3-031-06458-6_13
https://doi.org/10.1007/978-3-031-06458-6_13
https://aclanthology.org/2022.lrec-1.9
https://aclanthology.org/2022.lrec-1.9
http://arxiv.org/abs/2106.13822
http://arxiv.org/abs/2106.13822
http://arxiv.org/abs/2106.13822
https://doi.org/10.1017/CBO9780511815829
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://arxiv.org/pdf/1910.07475.pdf
https://arxiv.org/pdf/1910.07475.pdf
https://aclanthology.org/2021.emnlp-demo.21/
https://aclanthology.org/2021.emnlp-demo.21/
https://aclanthology.org/C18-1053
https://aclanthology.org/C18-1053
https://doi.org/10.3115/v1/W14-3605
https://doi.org/10.3115/v1/W14-3605
https://doi.org/10.3115/v1/W14-3605
https://arxiv.org/pdf/1906.05394.pdf
http://arxiv.org/abs/2211.01786
http://arxiv.org/abs/2211.01786
https://aclanthology.org/2022.acl-long.47
https://aclanthology.org/2022.acl-long.47

Association for Computational Linguistics (Volume
1: Long Papers), pages 628–647, Dublin, Ireland.
Association for Computational Linguistics.

El Moatez Billah Nagoudi, AbdelRahim Elmadany, and
Muhammad Abdul-Mageed. 2022c. AraT5: Text-
to-text transformers for Arabic language generation.
In Proceedings of the 60th Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 628–647, Dublin, Ireland.
Association for Computational Linguistics.

El Moatez Billah Nagoudi, AbdelRahim Elmadany, and
Muhammad Abdul-Mageed. 2022d. TURJUMAN:
A public toolkit for neural Arabic machine transla-
tion. In Proceedinsg of the 5th Workshop on Open-
Source Arabic Corpora and Processing Tools with
Shared Tasks on Qur’an QA and Fine-Grained Hate
Speech Detection, pages 1–11, Marseille, France. Eu-
ropean Language Resources Association.

El Moatez Billah Nagoudi, AbdelRahim Elmadany,
Muhammad Abdul-Mageed, Tariq Alhindi, and
Hasan Cavusoglu. 2020. Machine generation and
detection of arabic manipulated and fake news. In
Proceedings of the Fifth Arabic Natural Language
Processing Workshop, pages 69–84, Barcelona, Spain
(Online). Association for Computational Linguistics.

Lorenz Nigst, Maxim Romanov, Sarah Bowen Sa-
vant, Masoumeh Seydi, and Peter Verkinderen. 2020.
Openiti: a machine-readable corpus of islamicate
texts. http://doi. org/10.5281/zenodo, 4075046.

Ossama Obeid, Nasser Zalmout, Salam Khalifa, Dima
Taji, Mai Oudah, Bashar Alhafni, Fadhl Eryani,
Alexander Erdmann, and Nizar Habash. 2020. Camel
tools: An open source python toolkit for arabic natu-
ral language processing.

Arfath Pasha, Mohamed Al-Badrashiny, Mona Diab,
Ahmed El Kholy, Ramy Eskander, Nizar Habash,
Manoj Pooleery, Owen Rambow, and Ryan Roth.
2014. MADAMIRA: A fast, comprehensive tool
for morphological analysis and disambiguation of
Arabic. In Proceedings of the Ninth International
Conference on Language Resources and Evaluation
(LREC’14), pages 1094–1101, Reykjavik, Iceland.
European Language Resources Association (ELRA).

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, et al. 2019. Pytorch: An imperative style,
high-performance deep learning library. Advances
in neural information processing systems, 32:8026–
8037.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2019. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. arXiv preprint arXiv:1910.10683.

Alla Rozovskaya, Houda Bouamor, Nizar Habash, Wa-
jdi Zaghouani, Ossama Obeid, and Behrang Mohit.
2015. The second QALB shared task on automatic
text correction for Arabic. In Proceedings of the
Second Workshop on Arabic Natural Language Pro-
cessing, pages 26–35, Beijing, China. Association
for Computational Linguistics.

Sebastian Ruder. 2017. An overview of multi-task
learning in deep neural networks. arXiv preprint
arXiv:1706.05098.

Yves Scherrer. 2020. TaPaCo: A corpus of sentential
paraphrases for 73 languages. In Proceedings of the
Twelfth Language Resources and Evaluation Confer-
ence, pages 6868–6873, Marseille, France. European
Language Resources Association (ELRA), European
Language Resources Association.

Pedro Javier Ortiz Suárez, Benoît Sagot, and Laurent
Romary. 2019. Asynchronous pipeline for process-
ing huge corpora on medium to low resource infras-
tructures. In 7th Workshop on the Challenges in the
Management of Large Corpora (CMLC-7). Leibniz-
Institut für Deutsche Sprache.

Bashar Talafha, Analle Abuammar, and Mahmoud Al-
Ayyoub. 2021. Atar: Attention-based lstm for arabizi
transliteration. International Journal of Electrical
and Computer Engineering, 11:2327–2334.

Jörg Tiedemann and Santhosh Thottingal. 2020. OPUS-
MT — Building open translation services for the
World. In Proceedings of the 22nd Annual Con-
ferenec of the European Association for Machine
Translation (EAMT), Lisbon, Portugal.

Daniel Varab and Natalie Schluter. 2021. Mas-
siveSumm: a very large-scale, very multilingual,
news summarisation dataset. In Proceedings of the
2021 Conference on Empirical Methods in Natural
Language Processing, pages 10150–10161, Online
and Punta Cana, Dominican Republic. Association
for Computational Linguistics.

Ronald J Williams and David Zipser. 1989. A learn-
ing algorithm for continually running fully recurrent
neural networks. Neural computation, 1(2):270–280.

Linting Xue, Noah Constant, Adam Roberts, Mihir Kale,
Rami Al-Rfou, Aditya Siddhant, Aditya Barua, and
Colin Raffel. 2020. mt5: A massively multilingual
pre-trained text-to-text transformer. arXiv preprint
arXiv:2010.11934.

Imad Zeroual, Dirk Goldhahn, Thomas Eckart, and Ab-
delhak Lakhouaja. 2019. Osian: Open source interna-
tional arabic news corpus-preparation and integration
into the clarin-infrastructure. In Proceedings of the
Fourth Arabic Natural Language Processing Work-
shop, pages 175–182.

243

https://aclanthology.org/2022.acl-long.47
https://aclanthology.org/2022.acl-long.47
https://aclanthology.org/2022.osact-1.1
https://aclanthology.org/2022.osact-1.1
https://aclanthology.org/2022.osact-1.1
https://aclanthology.org/2020.wanlp-1.7
https://aclanthology.org/2020.wanlp-1.7
http://doi. org/10.5281/zenodo
http://doi. org/10.5281/zenodo
http://www.lrec-conf.org/proceedings/lrec2014/pdf/593_Paper.pdf
http://www.lrec-conf.org/proceedings/lrec2014/pdf/593_Paper.pdf
http://www.lrec-conf.org/proceedings/lrec2014/pdf/593_Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf
https://www.jmlr.org/papers/volume21/20-074/20-074.pdf
https://www.jmlr.org/papers/volume21/20-074/20-074.pdf
https://www.jmlr.org/papers/volume21/20-074/20-074.pdf
https://doi.org/10.18653/v1/W15-3204
https://doi.org/10.18653/v1/W15-3204
https://arxiv.org/pdf/1706.05098.pdf
https://arxiv.org/pdf/1706.05098.pdf
https://aclanthology.org/2020.lrec-1.848
https://aclanthology.org/2020.lrec-1.848
https://hal.inria.fr/hal-02148693/document
https://hal.inria.fr/hal-02148693/document
https://hal.inria.fr/hal-02148693/document
https://doi.org/10.11591/ijece.v11i3.pp2327-2334
https://doi.org/10.11591/ijece.v11i3.pp2327-2334
https://doi.org/10.18653/v1/2021.emnlp-main.797
https://doi.org/10.18653/v1/2021.emnlp-main.797
https://doi.org/10.18653/v1/2021.emnlp-main.797
https://arxiv.org/abs/2010.11934
https://arxiv.org/abs/2010.11934
https://aclanthology.org/W19-4619
https://aclanthology.org/W19-4619
https://aclanthology.org/W19-4619

