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Abstract

We present the first neural machine transla-
tion system for the low-resource language pair
Wayúunaiki–Spanish and explore strategies to
inject linguistic knowledge into the model to
improve translation quality. We explore a wide
range of methods and combine complemen-
tary approaches. Results indicate that incor-
porating linguistic information through linguis-
tically motivated subword segmentation, fac-
tored models, and pretrained embeddings helps
the system to generate improved translations,
with the segmentation contributing most. In
order to evaluate translation quality in a gen-
eral domain and go beyond the available reli-
gious domain data, we gather and make pub-
licly available a new test set and supplementary
material. Although translation quality as mea-
sured with automatic metrics is low, we hope
these resources will facilitate and support fur-
ther research on Wayúunaiki.

1 Introduction

Due to a lack of data (text or speech data), lan-
guages are digitally divided between high and low-
resourced (LRL) (Bender, 2019). Actually, the low-
resource scenario has been identified as one of the
main challenges in the field of Natural Language
Processing (NLP) (Koehn and Knowles, 2017). At
the same time, research conducted and presented
at major conferences often focuses on a few highly
resourced languages, languages with similar char-
acteristics, or a handful of well-studied languages
(Joshi et al., 2020). Fortunately, research in low-
resource settings and with LRLs is slowely becom-
ing quite popular in the NLP community, with a
steadily growing body of work for the low-resource
scenario (Wang et al., 2021). This does not imply
that the division between low- and high-resourced
NLP scenarios has been overcome. In fact, there
are many open challenges for research on and with
LRLs.

The majority of the world’s 7000 languages
are understudied and underresourced (Joshi et al.,
2020), due to the lack of research and resources.
LRLs face a lack of data quality and quantity, NLP
tools, and engagement with native speakers of that
language, which, if overcome, can support the con-
servation and preservation of those languages and
their culture, preserving cultural and linguistic di-
versity.

In this work, we aim at fostering research for
Wayúunaiki by providing data and pretrained Neu-
ral Machine Translation (NMT) models. We
present the first Wayúunaiki–Spanish NMT sys-
tem, and explore different approaches to inject lin-
guistic knowledge to improve translation quality.
We aim at assisting the Wayúu community, whose
language is emerging from an endangered situa-
tion according to Ethnologue.1 Even though the
Wayúu people are the most numerous indigenous
people in Colombia (Departamento Administrativo
Nacional de Estadística, 2021), Wayúunaiki is vul-
nerable, i.e. the language is spoken by children
but only in certain, restricted domains, for instance
at home. Our research hypothesis in this work
is that the injection of linguistic knowledge will
increase the translation quality for the language
pair Wayúunaki–Spanish. We enrich the data to
represent implicit linguistic information (e.g., lin-
guistically motivated subword segmentation, anno-
tating POS tag factors, and pretrained embeddings)
as, if insufficient amounts of training data is avail-
able, linguistic information may help the model
identify patterns present in the text, which may
alleviate the data sparsity problem. We build on
and extend previous work on NMT for LRLs by
Sennrich and Haddow (2016) and Chen and Fazio
(2021). We combine complementary approaches
to maximize improvements. We find that while lin-
guistically motivated subword segmentation helps,
factored models and pretrained embeddings lead

1https://www.ethnologue.com/language/guc/
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to a performance degradation due to data sparsity
and low quality annotations. While the results of
this work do not provide good quality translation
models yet, we expect to contribute to the devel-
opment of NMT systems for LRLs and to inspire
further research. We integrate our best-performing
system for Wayúunaiki to Spanish into the docu-
ment translation interface TransIns2 (Steffen and
van Genabith, 2021) for public use. Our collected
supplementary material, the new general domain
test data set, as well as code are also publicly avail-
able.3

2 Related Work

Various ways of incorporating linguistic knowledge
into NMT systems have been explored. These in-
clude the addition of (linguistic) factors (e.g., Sen-
nrich and Haddow (2016), España-Bonet and van
Genabith (2018), Manzanares, 2020), or using dif-
ferent subword segmentation techniques (e.g., Sen-
nrich et al. (2016), Kudo and Richardson (2018)
Grönroos et al., 2014) with the aim of improv-
ing translation quality. Improvements are possi-
ble, especially in LRL scenarios (e.g., Sennrich
and Zhang, 2019), morphologically rich languages
(e.g., Ortega et al., 2020), and for out-of-domain
texts (e.g., Chen and Fazio, 2021).

Subword segmentation is essential in NMT
since it eases the out-of-vocabulary (OOV) prob-
lem and allows training smaller models (Mielke
et al., 2021). Subword units offer a representation,
that builds a bridge between word and character-
level, based on the statistical properties of the text.
A good choice of subword units will offer a good
balance between the vocabulary size, the size of
the model and therefore the decoding efficiency.

Data-driven, unsupervised subword segmenta-
tion is a statistically-informed process that incorpo-
rates implicit linguistic knowledge present in the
text, like statistical patterns that present regular-
ities of encountered word forms. This approach
is limited to the data used during training the seg-
mentation model, such that text variations (e.g.,
inconsistent orthography or out-of domain context)
might result in segmentation variations and over-
segmentation (Amrhein and Sennrich, 2021).

The Byte-Pair-Encoding (BPE) algorithm (Gage,
1994) is a widely used, unsupervised approach for
subword segmentation. BPE merges the most fre-

2https://transins.dfki.de
3https://github.com/norgrai/wayuunaiki

quent pairs of characters in a corpus to create a new
subunit, and repeats the process until the desired
number of merge operations are performed. With
BPE, common words form a single unit while rare
words are split into subunits. The first application
in MT by Sennrich et al. (2016) lead to a strong im-
provement in performance. Further approaches in-
clude SentencePiece (Kudo and Richardson, 2018),
a tokeniser that implements both BPE and unigram
language model (LM) (Kudo, 2018). In Kudo
(2018) subword segmentation is combined with
a regularization method, offering a robust alterna-
tive to the deterministic BPE. For the segmentation
technique by Kudo (2018), an initial subword set
is pruned, according to the contribution of each
subword to the unigram LM (Mielke et al., 2021).
Another alternative for creating more segmenta-
tion variety in the training data is the regularization
method particularly for BPE called BPE-dropout
(Provilkov et al., 2020).

Semi-supervised segmentation techniques incor-
porate and exploit linguistically labeled training
data to guide the segmentation process. Linguistic
annotation can help to learn the correct segmenta-
tion rules, especially in low quantity and quality
data scenarios (Chen and Fazio, 2021).

The semi-supervised segmentation technique,
Prefix-Root-Postfix-Encoding (PRPE) by Zuters
et al. (2018) is a morphologically guided algorithm,
that incorporates linguistic knowledge without re-
quiring any morphological rules. Nonetheless, a
list of affixes is essential during the construction
of the segmenter. In comparison to the BPE algo-
rithm, subwords that include positional informa-
tion of a word are extracted in form of prefixes,
roots, and postfixes. This subword segmentation
algorithm has been shown to improve translation
quality, measured with BLEU, in comparison to
other systems, in which unsupervised algorithms
were applied (Chen and Fazio, 2021). The algo-
rithm is not thought to be used as a morphological
segmentation tool, even though it produces text that
resembles morphologically segmented text. More-
over, it avoids over-segmentation by sometimes
only partially performing the morphological split-
ting with the motivation that too many subwords
would reduce the translation quality (Zuters et al.,
2018).

FlatCat (Grönroos et al., 2014) is a variant of
the toolkit Morfessor (Smit et al., 2014) for sta-
tistical morphological segmentation which can be
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applied in an unsupervised or semi-supervised man-
ner. The system consists of a category-based hid-
den Markov model (HMM) and a flat lexicon struc-
ture for morphological segmentation. The states
of the HMM are the morph categories (prefix,
stem, suffix, and non-morphs, with the last cat-
egory catching subwords that are not proper mor-
phemes but segments of a longer morph). Mor-
fessor FlatCat is best suited for semi-supervised
training where some morphological splitting guide-
lines are given; in fully unsupervised training
with no annotations over-segmentation or under-
segmentation will probably occur (Grönroos et al.,
2014). Zuters et al. (2018), in their comparison
between PRPE and Morfessor FlatCat, acknowl-
edge previous, small improvements using Morfes-
sor for inflected languages in statistical MT, but
these improvements are not reproduced in their
experiments.

Sennrich and Haddow (2016) were one of the
first to introduce linguistic factors like lemmas,
part-of-speech (POS) tags, dependency labels, and
morphological features as factors into an NMT
model.4 The additional linguistic information is
coupled with each subword by concatenating or
averaging the embeddings. As their main objec-
tive was reducing data sparsity, they tested the fac-
tored architecture on high and LRL pairs, obtain-
ing significant translation improvements in BLEU
for the model with all factors included, for both
high and low resource scenarios. In their experi-
ments, the best results with only one factor were
achieved with a POS tag or lemma factor in a RNN
encoder–decoder architecture with attention for En-
glish to German translation. Similar performance
for lemma factors was observed by Armengol-
Estapé et al. (2021) with the Transformer archi-
tecture (Vaswani et al., 2017). By adding a lemma
factor to the subwords, different inflections of a
words are linked to the same representation. By
introducing POS tags, it is possible to discriminate
between different word categories, that share the
same surface word.

Word embeddings capture both semantic
knowledge (Mikolov et al., 2013; Brunila and
LaViolette, 2022) and, to a lower extent, syntac-
tic knowledge (Mikolov et al., 2013; Andreas and
Klein, 2014). Syntax is more evident in embed-
dings when the training data is scarce (Andreas

4Linguistic information was earlier introduced by Alexan-
drescu and Kirchhoff (2006) in a neural NLP model.

and Klein, 2014). Qi et al. (2018) showed that
leveraging pretrained word embeddings can lead
to significant improvements for certain LRL pairs.
However, Qi et al. (2018) use of pretrained embed-
dings by Bojanowski et al. (2017) limits the scope
of the comparison, since only a few Indigenous lan-
guages, such as Quechua, have access to such rich
representations or have sufficient data available for
training them.

According to Fernandez et al. (2013), there were
very few projects that involve the development of
a translator for Indigenous languages in Colombia
such as Wayúunaiki. At the same time Llerena Gar-
cía (2013) presented the reasons and need for a
“Software traductor de español a lengua wayuu”
(Spanish to Wayúu language translator software).
Unfortunately, to the best of our knowledge, even
now, 10 years after Fernandez et al. (2013) and
Llerena García (2013), there still exists no pub-
licly accessible translation system, that supports
the Wayúu community.

3 Language Description

Wayúunaiki is the native language spoken by a mi-
nority (compared to Spanish) in the Wayúu commu-
nity, located in the Caribbean region, connecting
Colombia and Venezuela. More than half a mil-
lion people of this bi-national community speak
this LRL. The Wayúu community is the most nu-
merous indigenous community in Colombia (De-
partamento Administrativo Nacional de Estadís-
tica, 2021). There are 380,460 Wayúus in Colom-
bia5 and about 415,500 Wayúus in Venezuela (INE,
2012).

Wayúunaiki belongs linguistically to the Arawak
languages. This language family flourished among
ancient, indigenous nations in South America and
consists of polysynthetic, mainly head-marking
languages with different degrees of agglutina-
tion (Méndez-Rivera, 2020). Spanish, the high-
resourced language spoken in the same countries,
is a fusional, inflected language with a flexible syn-
tactic order. The preferred pattern is subject + verb
+ object (SVO), while Wayúunaiki has a VSO order.
Both languages have their own phonological sys-
tem and do not share the same alphabet: Spanish
has 22 consonants and 5 vowels in its phonological
repertoire, while Wayúunaiki has 16 consonant and

5According to the latest census information: the Censo
Nacional de Población y Vivienda (CNPV) was conducted in
2018 by the National Administrative Department of Statistics
(DANE).
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data set # of samples tokens TTR
esp guc esp guc

train 41499 776k 591k 0.029 0.048
development 1001 18.7k 14.0k 0.175 0.220
in-domain test set 1001 18.7k 14.2k 0.181 0.219
Total 43501 814k 620k 0.028 0.047
additional data:
out-of-domain test 1107 15.1k 10.6k 0.203 0.360

Table 1: Description of the bitext data sets: number
of samples, words, and type-token-ratio (TTR) for the
Wayúunaiki (guc) and Spanish (esp) data set from the
Tatoeba MT Challenge with our partitions, and the addi-
tional, manually collected data.

12 vowel phonemes —6 vowel pairs of long and
short ones (Viloria Rodríguez et al., 2022). An in-
consistent writing system for the Wayúu language,
due to the two main "official" orthographic systems,
in combination with a very small amount of writ-
ten material in Wayúunaiki, make the orthographic
situation challenging (Álvarez, 2017).6

4 Data Collection and Preprocessing

Parallel corpora. We use the only online paral-
lel corpus for Wayúunaiki and Spanish available
in the Tatoeba MT Challenge, version v2021-08-
07 (Tiedemann, 2020). The bitext is a subpart of
the no longer available JW300, a parallel corpus
from Agić and Vulić (2019) with religious-themed
data, addressing a wider range of topics including
bible psalms.7 The Wayúunaiki part of the bitext
follows the official writing norm ALIV (Alfabeto
de Lenguas Indígenas de Venezuela, alphabet of
indigenous languages of Venezuela). The corpus
consists of ∼43k sentence pairs, which we divided
into a train, development, and test set. Table 1 gives
a summary of the parallel corpora utilized.

The usage of highly domain-specific (here reli-
gious) data limits the translation quality in other
domains and when used for other domains intro-
duces a strong ideological, and gender-related bias,
given the biblical content: gender pronouns and
person names do not appear in the data with a
balanced frequency,8 nor do they share a similar

6Since 1984, the official Alfabeto de Lenguas Indígenas de
Venezuela, the alphabet of indigenous languages of Venezuela
has been the norm in Colombia and Venezuela, but the system
of Miguel Ángel Jusayú is being utilized alongside.

7The web-crawled data stems from the website jw.org of
a religious society, covering many low-resource languages.
Aside from the Bible, the Jehovah’s Witnesses provide maga-
zines, books, and other multi-media content.

8For instance, the female pronoun ella occurs less than
one-fourth of the times the male pronoun él occurs.

source # of samples parallel sentences
Lozano R. and Mejía V. (2007) 402 yes & aligned text
Álvarez (2016) 211 yes
Álvarez (2011) 425 yes

69 aligned text
Total: 1107

Table 2: Description of out-of-domain data set, collected
bitext for Spanish–Wayúunaiki.

source language # of samples, tokens language unit
de Saint-Exupéry et al. (2016) guc 1933 19.5k sentence
David M. Captain (2005) guc 3177 3.2k word
Total: 5.1k units
WikiDump (Wikipedia, 2020) esp 29.02M 597M sentence

Table 3: Description of monolingual data in Wayúunaiki
(guc) and Spanish (esp).

word context, regarding activities or occupations
(Storks et al., 2019). Furthermore, we asked two
native Wayúunaiki speakers to perform a revision
of random Wayúu sentences in the Tatoeba cor-
pora. The revision showed the low quality of the
resource. Some sentences are not direct translations
and miss important information. In the example be-
low, the personal name (Margaret) is absent in the
Wayúunaiki sentence (a), but given in the official
translation (b). According to bilingual Spanish and
Wayúunaiki speakers, the correct translation would
be (c).

(a) Sü’lakajaaka pireewa sümaa saatsa aainjuushi süka keesü

nayaalu’u na süikeyuukana süka shiain nekaajüin ma’in.

(b) Margaret trajo la comida y la puso en el centro de la mesa,
donde estaban todos sentados.
Margaret brought the food and put it in the center of the
table, where everyone was sitting.

(c) Nos cocinaron fideos en salsa con queso porque es la
comida que comen ellos.
They cooked us noodles in sauce with cheese because
that’s the food they eat.

In order to create a general domain parallel data
set and assess the generalizability of the trans-
lation systems, we collected data from Spanish–
Wayúunaiki dictionaries and illustrative grammar
booklets for non-Wayúunaiki speakers to learn the
language. Table 2 shows the number of samples
and sources we used to build the general domain
test set.

Monolingual corpora Table 3 lists the details
of the monolingual data we collected. We ex-
tracted Wayúunaiki text from the translation9 of

9https://www.academia.edu/37583043/
Pürinsipechonkai
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the book The Little Prince by Antoine de Saint-
Exupery. This corpus is used as monolingual
data, since it does not align at sentence level
with the Spanish version. We also extract from
a bilingual Spanish–Wayúunaiki dictionary (David
M. Captain, 2005) entries in Wayúunaiki, which
we used, one token per line, as additional data. The
Wayúu data follows the the official writing norm
ALIV. For Spanish, we use a subset of 10M sen-
tences from the Spanish Wikipedia dump from May
2020 (Wikipedia, 2020) extracted with WikiTailor
(España-Bonet et al., 2023). Notice the data asym-
metry between Wayúunaiki and Spanish. While we
obtain 5000 sentences in Wayúunaiki, the Spanish
Wikipedia alone has almost 30M sentences. This
reflects the typical data imbalance between high-
and low-resourced languages.

The monolingual corpus is used in our work
combined with the monolingual parts of the parallel
corpus to train word embeddings.

Supplementary Material Some of our experi-
ments require supplementary information in the
form of linguistic annotations, or dictionaries. We
extracted morphological analyses of verb con-
jugations in Wayúunaiki from the work of Ál-
varez (2017) to guide the semi-supervised training
of the segmentation models (Prefix-Root-Postfix-
Encoding and FlatCat). For this, the morph cate-
gories prefix, stem, and suffix were manually an-
notated. An example file is listed in Appendix A
and we make all files available online.10 We per-
form a similar morphological annotation with Span-
ish samples taken from lecture slides from Doctor
Lluís Simarro Lacabra (2014), an educational insti-
tution.

Preprocessing We split the monolingual text into
sentences and tokens using the nltk tokenizer. Since
there is no tokenizer for Wayúunaiki, we use reg-
ular expressions (RE). The character ’ in Wayúu-
naiki, which in the Latin alphabet represents the
glottal stop consonant [P] known as "saltillo", lit-
tle skip, had to be stripped from additional white
spaces. For simplification, all possible saltillos ( ‘ ′

’ ´ ) were mapped to the ' character in the parallel
data sets. Likewise, quotations ( » « “ ” ) were
normalized to ". Bible verses number references
were detected with REs and removed. Enumer-
ations with brackets, numbers with punctuation
at the beginning of the sentence, and URLs were

10https://github.com/norgrai/wayuunaiki

also removed. We train a truecaser with Moses
scripts (Koehn et al., 2007) for each language on
the parallel data and applied them to all data sets
accordingly.

5 NMT Systems

All our models are based on a transformer archi-
tecture (Vaswani et al., 2017) and developed with
Marian v1.11.0 (Junczys-Dowmunt et al., 2018).

5.1 Baseline System

We perform a wide hyperparameter search on a
transformer following van Biljon et al. (2020) (see
Appendix B for the parameters, the ranges we ex-
plore and the best configuration). With the gained
insights from the random search, we chose the con-
figuration of the most promising model, a small
transformer model with 3 encoder, 3 decoder lay-
ers, 4 heads and hidden layers with a size of 1024,
and use it in all systems.

We train a baseline system on unsegmented
data without (BASE) and with (BASE+EMB) pre-
trained embeddings. The embeddings for each
language are trained independently with fastText
(Bojanowski et al., 2017) on the preprocessed, un-
segmented monolingual text, using the continuous
skip-gram model (Mikolov et al., 2010). In our
experiments, the model achieved the best results
with embeddings that have a dimension of 256.

5.2 Subword Segmentation Techniques

We investigate different subword segmentation al-
gorithms and apply them separately for each lan-
guage: BPE without (SUBW-bpe) and with ap-
plied dropout (SUBW-dp), a unigram LM (SUBW-
uni) for segmentation, PRPE (SUBW-prpe), and
Morfessor FlatCat (SUBW-fc).

For SUBW-bpe, we explore both the impact of
separate and joint vocabulary, and of different vo-
cabulary sizes, using the subword-nmt toolkit (Sen-
nrich et al., 2016). The chosen merge operations
range from 100 to 15000 merges. According to
the results (detailed numbers in Appendix C), we
use for SUBW-bpe with 4k merge operations with
separate vocabularies if not stated otherwise.

Reported models with pretrained embeddings
(SUBW-bpe+EMB) are trained with fastText like
the ones for the baseline but with segmented mono-
lingual text.
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5.3 Factored Models

We investigate factored models, where POS tag
information is injected. Since an NLP tool for
POS tagging or lemmatization in Wayúunaiki is
not available, we adapt Spanish–Wayúunaiki dic-
tionaries into linguistic knowledge-based vocabu-
laries: Wayúu vocabulary entries were annotated
with the Spanish translation and POS tag to rep-
resent implicit linguistic information. We use a
bilingual dictionary from the Apertium (Forcada
et al., 2011) GitHub11 and an illustrated dictionary
from David M. Captain (2005). We match their
different POS tag annotations for Wayúu with the
POS tag categories of the FreeLing analyzer (Padró
and Stanilovsky, 2012) for Spanish.12

Approximately 40% of the Wayúu training data
could be annotated in this way, mostly due to anno-
tation of the closed class "punctuation" with makes
up about 15% of the tokens. The high number of
unclassified words is mainly due to the lack of a
lemmatizer: only dictionary entries can be looked
up automatically, so most tokens with inflectional
and derivational variation cannot be matched with
their corresponding POS tag. This stands in stark
contrast to the annotation with FreeLing for Span-
ish, where much more fine-grained classes were
used and every word is assigned a POS tag.

5.4 Evaluation

For the automatic evaluation, we use SacreBLEU
(Post, 2018) to calculate BLEU13 (Papineni et al.,
2002) and chrF2++14 (Popović, 2015). As semantic
metric we use BLEURT15 (Sellam et al., 2020) and
for all cases, we estimate 95% confidence intervals
via bootstrap resampling (Koehn et al., 2003) with
1000 samples.

Since the surface-based n-gram scoring methods
can strongly restrict the expressiveness of aggluti-
native languages like Wayúunaiki, we also include
example model translations for a qualitative manual
comparison.

11https://github.com/apertium/apertium-guc-spa
12See the detailed resulting alignments among languages

and the percentage of categories in our training data in Ap-
pendix A.

13BLEU|nrefs:1|bs:1000|seed:12345|case:mixed|eff:no
|tok:13a|smooth:exp|version:2.3.1

14chrF2++|nrefs:1|bs:1000|seed:12345|case:mixed|eff:yes
|nc:6|nw:0|space:no|version:2.3.1

15BLEURT v0.0.2 using checkpoint BLEURT-20

6 Results and Discussion

We report the translation scores for Wayúunaiki to
Spanish in Tables 4 (religious domain) and 5 (gen-
eral domain) for each method with the best system
per metric boldfaced. In Table 6 we report trans-
lation results for Spanish to Wayúunaiki for the
most representative systems (the best segmentation
approach together with a factored and a pretrained
embeddings model).

Model Architecture. van Biljon et al. (2020)
demonstrated improvements for translating English
text into agglutinative LRLs with a transformer by
halving the model’s depth to 3 encoder and 3 de-
coder layers. We obtain the same conclusion from
the hyperparameter search for translating from and
into Wayúunaiki. Our BASE model is also a small
transformer with 3 encoder and 3 decoder layers
but Wayúunaiki–Spanish turns out to be a challeng-
ing language pair with baseline translation quality
close to zero.

Pretrained embeddings alone do not signifi-
cantly improve the results (BASE+EMB, SUBW-
bpe+EMB), although they have been shown to pro-
vide a better representation of less frequent con-
cepts in LRLs (Haddow et al., 2022). Qi et al.
(2018) showed that pretrained embeddings seem
to be effective for not-too-distant translation pairs.
This may well be the reason for our lack of improve-
ment, Wayúunaiki and Spanish are very distant, but
we conjecture that the most important problem we
face is the lack of sufficient data to train Wayúu
embeddings: the monolingual Wayúu corpus we
use is almost equivalent to the size of the parallel
corpus. Still the results of Qi et al. (2018) indicate
that pretrained embeddings seem to introduce se-
mantic and syntactic information of words improv-
ing translations even for distant translation pairs:
systems are able to capture overall basic language
characteristics and generate more grammatically
well-formed sentences. Qi et al. (2018) indicate
that for very little but sufficient training data, that al-
lows training the system, using pretrained word em-
beddings from (Bojanowski et al., 2017) are most
effective. Their usage of pretrained embeddings
by Bojanowski et al. (2017) make comparison with
our results very difficult, as such embeddings are
trained on billions of tokens.

Notice that our BASE systems trained on unseg-
mented data are well below any subword segmen-
tation we apply. This contradicts the conclusions
for Quechua-Spanish in Chen and Fazio (2021):
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model guc-esp BLEU chrF2 BLEURT
BASE 0.5 ± 0.2 6.0 ± 0.3 0.17 ± 0.01
BASE+EMB 0.7 ± 0.2 11.8 ± 0.4 0.094 ± 0.007
SUBW-bpe 4.2 ± 0.7 20.5 ± 0.8 0.21 ± 0.01
SUBW-dp 3.1 ± 0.5 16.7 ± 0.8 0.22 ± 0.01
SUBW-uni 3.3 ± 0.6 22.0 ± 0.7 0.20 ± 0.01
SUBW-prpe 1.0 ± 0.3 7.0 ± 0.3 0.15 ± 0.01
SUBW-fc 4.5 ± 0.8 21.0 ± 0.8 0.21 ± 0.01
SUBW-bpe+

+FACT 1.0 ± 0.2 8.9 ± 0.4 0.127 ± 0.006
+EMB 0.6 ± 0.2 7.9 ± 0.3 0.090 ± 0.005
+FACT+EMB 0.8 ± 0.2 13.6 ± 0.4 0.115 ± 0.007

Table 4: Automatic evaluation scores of the Wayúu-
naiki to Spanish translations with the religious in-
domain test set.

model guc-esp BLEU chrF2 BLEURT
BASE 0.08 ± 0.04 4.8 ± 0.3 0.106 ± 0.006
BASE+EMB 0.06 ± 0.03 8.8 ± 0.6 0.048 ± 0.004
SUBW-bpe 0.20 ± 0.10 13.2 ± 0.9 0.075 ± 0.006
SUBW-dp 0.14 ± 0.08 8.8 ± 0.7 0.132 ± 0.006
SUBW-uni 0.16 ± 0.08 13.8 ± 0.9 0.070 ± 0.005
SUBW-prpe 0.11 ± 0.08 4.5 ± 0.3 0.104 ± 0.006
SUBW-fc 0.12 ± 0.03 14.0 ± 0.8 0.067 ± 0.005
SUBW-bpe+

+FACT 0.07 ± 0.02 6.5 ± 0.5 0.082 ± 0.004
+EMB 0.07 ± 0.03 6.8 ± 0.6 0.067 ± 0.004
+FACT+EMB 0.03 ± 0.01 9.6 ± 0.6 0.059 ± 0.005

Table 5: Automatic evaluation scores of the Wayúu-
naiki to Spanish translations with the general domain
test set.

in an out-of-domain evaluation their model outper-
formed all of their systems trained with different
segmentation methods (e.g., BPE, unigram LM,
PRPE).

Segmentation technique. Although all segmen-
tation methods yield a statistically significant im-
provement over the baseline, the scores both on
the general and in-domain test set emphasize that
models do not provide good or even reasonable
quality translation yet. Notice also that no single
model outperforms other models in all automatic
evaluation metrics.

While the results show some potential of Mor-
fessor Flatcat to be used as a segmentation tech-
nique,16 the need to tune additional parameters
(perplexity threshold and weight) make the ap-

16Zuters et al. (2018) introduced a method of segmenta-
tion post-processing to control the effective vocabulary size
and support an open vocabulary: they performed the Morfes-
sor subword segmentation in an unsupervised fashion on the
data on which they applied additionally the BPE algorithm.
We tried out this approach but could not achieve comparable
results to the reported SUBW-fc.

proach more complex and provide no statistically
significant improvements with respect to the most
straightforward SUBW-bpe. We therefore use
SUBW-bpe in our factored models.

The unigram LM subword segmentation method
of SentencePiece, used in many NLP systems
(Mielke et al., 2021), offers a non-deterministic
alternative, though with the SUBW-uni model for
the first time in our experiments we observe sub-
words that are ungrammatical. For instance, the
verbs gobernar (Eng: rule) in the reference (2) and
the translation (4), which has an incorrect duplica-
tion of the character "r":

(1) mapa, kettaapa tü miit juya Nuluwataainjachikalü o’u,
nüle’ejireerü tü aluwataayakat nümüin chi nüshikai .

(2) después de gobernar como rey por mil años , le devolverá
el reino a su padre .
and after ruling as king for a thousand years, he will
return the kingdom to his father

(3) finalmente , cuando llegue el día de su vida , comenzó a
gobernarrse con él .
finally, when the day of his life came, he began to govern
himself with it .

Observed word repetitions and hallucinations in
SUBW-uni or SUBW-dp suggest that the training
is still not optimized. The following examples are
common translation outputs (they appear several
times with diffent and unrelated source sentences)
for general domain inputs unrelated to the Bible:

(a) la biblia dice : " el nombre de Jehová

the bible says : " the name of Jehovah

(b) Jesús dijo : " tú , tú , tú ,

Jesus said: " you, you, you,

Fu et al. (2020) argue that the repetition problem
is the expression of human language itself: words
that produce high probabilities tend to be chosen
as the subsequent word again, constructing predic-
tion loops, which result in repetitions. We observe
single-word repetitions; however, word pair repeti-
tions are more common, exemplified with "tú" and
"," in (b).

Similar to the findings of Raunak et al. (2021),
we encounter fluent but “detached”, and non-
grammatical translation outputs with repetitive
structure of hallucinations. The investigation of
Lee et al. (2018) on hallucinations with a medium-
sized corpus (4.5M training sentences) let them
conclude that the noisy and finite characteris-
tics of the data sets are the source for the phe-
nomenon. They propose data augmentation as the
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model esp-guc BLEU chrF2 BLEURT
religious domain:
SUBW-bpe+ 1.2 ± 0.3 13.9 ± 0.4 0.239 ± 0.007

+FACT 0.7 ± 0.2 10.7 ± 0.4 0.240 ± 0.008
+EMB 0.5 ± 0.1 17.1 ± 0.6 0.255 ± 0.008
+FACT+EMB 0.7 ± 0.2 19.3 ± 0.6 0.252 ± 0.008

general domain:
SUBW-bpe+ 0.10 ± 0.06 11.3 ± 0.5 0.205 ± 0.007

+FACT 0.06 ± 0.01 9.9 ± 0.5 0.212 ± 0.007
+EMB 0.01 ± 0.01 9.3 ± 0.7 0.232 ± 0.007
+FACT+EMB 0.02 ± 0.00 13.0 ± 0.8 0.228 ± 0.005

Table 6: Automatic evaluation scores of the Spanish to
Wayúunaiki translations with the religious in-domain
test set (top rows) and the general domain test set
(bottom rows).

most promising approach for preventing halluci-
nations. Still, their techniques require knowledge
of hallucinations and exhaustive filtering of the
training data. Similar conclusions are made by
Raunak et al. (2021); furthermore, they emphasize
that invalid or misaligned sentence pairs that do not
provide accurate translations should be removed.

Although the overall scores are very low, we
find that introduced linguistic knowledge in the
shape of linguistically inspired morphs helps the
system to better accomplish the translation task.
Yet, the segmentation has to be carried out invari-
ably: one possible explanation for the qualitatively
lower translations of the models with applied BPE
Dropout or the SentencePiece unigram LM is the
statistical noise introduced in the segmentation pro-
cess, being both non-deterministic segmentations
contrary to the BPE algorithm.

Linguistic Factors and Embeddings. The per-
formance of the +FACT methods is worse than
the original SUBW-bpe. The same happens when
adding pretrained word embeddings (+EMB). The
introduced linguistic information in the shape of
POS tags, pretrained embeddings, and the com-
bination of both does not help to overcome the
difficulties of this LRL translation pair. The main
reason is the low coverage for Wayúunaiki, both
in the amount of data to train the embeddings and
therefore their quality, and in POS annotations as
explained in Section 5.3.

It is generally acknowledged that introducing
linguistic factors coupled with a word or its sub-
words improves translation quality only to a modest
extent (Sennrich and Haddow, 2016). Hence, for
language pairs in a high resource setting, it is not
advisable to invest time and effort in a factored

NMT approach (Casas et al., 2021). Still, in an
LRL setting that possibly involves morphologically
rich languages, the data sparsity problem can be
eased by converting the plain parallel text into a
factored representation on the source side.

Translation quality should not be evaluated only
automatically though, as low scores are difficult to
compare and different metrics show different trends
(see their correlations in Appendix C). No single
model outperforms all of the others in Table 4 mea-
sured across all three metrics. Although none of the
proposed models achieved a higher BLEU score
than SUBW-bpe for translating into Wayúunaiki in
Table 6, the chrF2 score indicates improvements
(± 3.2), which we verified by manually examining
example translations, e.g., (2) and (3).

(1) input: hablémosle sin prisas .
let’s talk to him without haste .

(2) SUBW-bpe+EMB: püküja nümüin tü alatakat nümüin .
. . ] . ] tell those who cut for him . . . ] . ]

(3) SUBW-bpe: shia süka tü kee’ireekat paa’in .
this is what you want .

(4) reference:
nnojoishii ashapajaainjanain waya waashajaapa nümaa .

7 Conclusion and Future Work

In this work we applied various unsupervised and
semisupervised subword segmentation methods to
enrich the data used to train a transformer-based
NMT model with linguistic information. Addition-
ally, we extended the architecture of the standard
SUBW-bpe model by adding linguistic information
in the form of POS tag factors and/or supplying
the system with pretrained embeddings. In line
with previous research on Indigenous LRL pairs
that include Spanish, we observed that the addi-
tion of subword information is crucial to improve
translation quality (e.g., Ortega et al. (2020), Mager
et al. (2021), Chen and Fazio, 2021). In particular,
the Indigenous languages of America, which are
mostly characterized by a rich morphology, and
part of agglutinative and polysynthetic languages,
benefit from approaches that consider the LRL’s
morphology and apply subword segmentation tech-
niques that are suitable for the language pair. In
contrast, we did not achieve any improvement with
factors and pretrained embeddings. The lack of re-
sources, in terms of data and annotation coverage,
is the likely cause for the low performance of these
models.
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Our next steps are focused on investigating the
effectiveness of injecting linguistic knowledge for
the Wayúu language by exploring datasets without
repetitive sequences and less sparse and noisy anno-
tations. To do this, more sophisticated approaches
to obtain implicit linguistic knowledge from LRL
text, such as introducing linguistic information also
on the target side in the form of POS-tag or lemma
factors are possible.

Problems related to the lack of resources for fac-
tored training could in principle be overcome by
applying a linguistically inspired subword segmen-
tation technique, for instance, Morfessor’s FlatCat.
By splitting a word into its subwords, chances of
determining the stem are higher, if the segmenta-
tion into subwords representing stems and suffixes
is both accurate and consistent. Given the stem, the
word can be annotated with its POS tag from the
linguistic knowledge-based vocabulary. We note
that this is limited to languages without infixation
and would work only for words without assimila-
tory processes between affixes and stem. Still, it
presents a possible approach to obtain labeled data.

Besides enriching the data with linguistic infor-
mation, our observations on word repetitions and
hallucinations indicate that additional cleaning, fil-
tering of unaligned source and target translations,
and orthographic normalization could significantly
enhance data quality and hence translation perfor-
mance.

We believe that injecting linguistic information,
especially for LRL pairs can alleviate the data spar-
sity problem and aid the models with the annota-
tion of implicit linguistic knowledge present in the
data. By enriching the data to represent such in-
formation present in the text (e.g., annotating POS
tags), a model can better identify patterns inherent
in the data. Still, choosing between the different
approaches and techniques requires taking into ac-
count the nature of the LRL pair and the available
resources, particularly supported NMT tools and
data sets.

Limitations

In this work we explored transfer learning ap-
proaches only by using pretrained word embed-
dings. Transfer learning should be explored fur-
ther. Some of the segmentation methods have their
own hyperparameters which are usually obtained
for high-resourced languages and might be sub-
optimal in our case. These hyperparameters should

be systematically explored. Finally, token-free pre-
trained models fine-tuned on our data should be
investigated.

It is costly and difficult to acquire human trans-
lations, due to the limited number of speakers and
exclusive LRL communities; moreover, the fact
that we are not Wayúunaiki speakers limited our
qualitative assessment.
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A Supplementary Material Annotation

A.1 Morph Categories
We manually annotate the morph categories prefix,
stem, and suffix of 26 words in Wayúunaiki and 91
in Spanish for the Morfessor Flatcat approach. To
perform Prefix-Root-Postfix-Encoding, we created
two heuristics that contain the common suffixes,
prefixes and endings for the Wayúu and Spanish
languages. The example below shows 10 words
annotated for Wayúunaiki.

Listing 1 Example annotations for Wayúunaiki
used for semi-supervision in the Morfessor Flatcat
(Grönroos et al., 2014) system. Morph categories
are indicated by PRE (prefix), STM (stem), and
SUF (suffix).
aya’lajaa a/PRE ya’laja/STM a/SUF
aya’lajeewaa a/PRE ya’laja/STM ee/SUF a/SUF
aya’lajiraa a/PRE ya’laja/STM ira/SUF a/SUF
aya’lajünaa a/PRE ya’laja/STM na/SUF a/SUF
apütüshi a/PRE pütü/STM shi/SUF
apütüichi a/PRE pütü/STM i/SUF chi/SUF
apütüeechi a/PRE pütü/STM ee/SUF chi/SUF
apütüinjachi a/PRE pütü/STM inja/SUF chi/SUF
apütüshijachi a/PRE pütü/STM shi/SUF ja/SUF chi/SUF
apütüichipa a/PRE pütü/STM i/SUF chi/SUF pa/SUF

A.2 POS Tagset Alignment
We summarize our alignment between the POS tags
of the different sources in Wayúunaiki and the POS
tag categories of the FreeLing analyzer for Spanish
in Table 7. Due to different categorizations of some
determiners, we replaced entries that were referring
to the determiners as either adverb or pronoun in
David M. Captain (2005) and mapped them uni-
formly to the POS tag D. About 80 references to
another surface form of the same word were looked
up and matched with their corresponding POS tag.

Spanish Wayúunaiki

class abbr. class abbr.

adjective A (1)(2) adjetivo adj.
conjunction C (1) conjunción conj.
determiner D (3) determinante det
punctuation F puntuación punct.
pronoun P (1) pronombre pron.
adverb R (1) adverbio adv.
adposition S (1) posposición posp.

(2) Postposición post.
verb V (1) verbo transitivo v.t.

(1) verbo intransitivo v.i.
(2) verbos vblex

noun N (1) nombre n
(2) Alineable ali.
(2) Inalineable ina.

interjection I (1) interjección interj.
(2) Interjeccion ij

Table 7: Description of Tagset for Spanish (left): POS
classes with the category and the abbreviation used.
Alignment with the Wayúunaiki data (right): (1) refers
to the dictionary in David M. Captain (2005), (2) For-
cada et al. (2011), and (3) the manually extracted, closed
classes in Lozano R. and Mejía V. (2007).
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A.3 POS Tags Distribution

Figure 1: POS tags of the Wayúu training data, which we annotated based on linguistic knowledge-based vocabular-
ies.

Figure 2: POS tags of the Spanish training data, annotated with FreeLing (Padró and Stanilovsky, 2012). We
summarized the subclasses of determiner (D), numbers (Z), and punctuation (F) for representation purposes only.
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B NMT Hyperparameter Exploration

Building upon findings from van Biljon et al.
(2020), we explore different hyperparameters
which are specially relevant in the LR scenario.
Table 8 summarizes the hyperparameter space ex-
plored. Table 9 shows the best configuration that
is used for the baseline system (BASE). Finally,
we show the segmentation-related hyperparameters
used for the segmented-based models (SUBW-*)
in Table 10.

Hyperparameter Values

# attention heads: 2, 4, 8
# of encoder/decoder layers: 2, 3, 4
embedding size: 256, 512, 1024
tied embeddings: True, False
learning-rate: 1e-3, 1e-4

3e-4, 5e-4
warm-up steps: 1000, 4000
adam optimizer beta: 0.98, 0.999
label-smoothing: 0, 0.1, 0.2
layer-normalization: True, False
train-position-embeddings: True, False
exponential-smoothing: 0, 0.0001
clip-norm: 0, 1, 5
seeds: 0, 42, 1111

Table 8: Hyperparameters explored (as required by Mar-
ian software) with the corresponding values considered.

C Systems Evaluation

C.1 Translation Quality vs Vocabulary Size

The size of the vocabulary is very important in
low resourced settings. We therefore perform a
deep exploration of the merge operations in our
SUBW-bpe system. Figure 3 shows translation
quality with the three metrics (BLEU, chrF and
BLEURT) varying the merge operations between
100 and 15000 per language.

Similarly to Ding et al. (2019), we find perfor-
mance drops with increasing merge operations, con-
firming made findings, that in low-resource set-
tings fewer merge operations, hence smaller vocab-
ulary sizes seem to be appropriate (Mielke et al.,
2021). Interestingly, we note a strong decline in
performance for merge operations greater than 2k
and smaller than 4k merges, Figure 3. Since the
merge-depending vocabulary size influences the
final amount of parameters, we suppose that for
2k or 4k, an optimal setting for the SUBW-bpe
architecture is encountered.

type: transformer
hidden layer size: 1024
embedding size: 256
tied embeddings: False
decoder depth: 3
encoder depth: 3
transformer heads: 4
transformer-dim-ffn: 1024
transformer-postprocess: da
transformer-preprocess: n
dropout - transformer: 0.3

- ffn: 0.25
- attention: 0

clip-norm: False
exponential-smoothing: 0
layer normalization: False
label smoothing: 0.1
learning-rate (lr): 3e-4

lr-warmup: 1000
lr-decay-inv-sqrt: 4000

optimizer (betas): adam (0.9, 0.999,1e-9)
seed: 42
early stopping patience: 15
beam size: 5
mini-batch-words: 1000
max-sentence length: 100

Table 9: Network configuration for the baseline BASE.
Operation: d=dropout, a=add, n=normalize. As in Ta-
ble 8, the parameters are those used by Marian.

(0) subword_nmt/learn_bpe.py
bpe_operations: 4000
separate vocabulary setting

(1) subword_nmt/apply_bpe.py
dropout: 0.05

(2) sentencepiece-options:
vocab size: 4000
character coverage: 0.9998
sentencepiece-alphas: 0 0

(3) segmentation:
prefix rate: 32
suffix rate: 500
postfix rate (esp): 180
postfix rate (guc): 500
vocab size: 5000
model training:
dim-vocabs 4000 4000

(4) segmentation:
perplexity (esp): 200
perplexity (guc): 15
α: 0.1
β: 1.0

Table 10: Additional configuration for (0) SUBW-bpe,
(1) SUBW-dp, (2) SUBW-uni, (3) SUBW-prpe, (4)
SUBW-fc.
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1

Figure 3: Automatic evaluation scores of the translations with the religious, in-domain and below the OOD-test set of the
Transformer SUBW-bpe system trained with different BPE merge operations in a seperate vocabulary setting. The confidence
intervals were obtained via bootstrap resampling 82



C.2 The Use of Automatic Metrics
Results in Section 6 show very low scores for the
automatic metrics. Notice, that even if improve-
ments with respect to the baselines are statisti-
cally significant, different metrics point to different
rankings of the systems. This problem appears
generally with low scores and with small differ-
ences between systems, both issues we encounter
in Wayúunaiki–Spanish translation. As result, met-
rics do not correlate well with each other. The
Pearson correlation among pairs of metrics (BLEU,
chrF, BLEURT) is r < 0.6, being far from linearity.
We show in Table 4 the scores of all our systems
projected into the 2D spaces for BLEU-chrF (black
crosses, r = 0.534, ρ = 0.451 ), BLEU-BLEURT
(red stars, r = 0.571, ρ = 0.720) and chrF-BLEURT
(green dots, r = 0.498, ρ = 0.377).

Figure 4: Correlation between the metrics used in the
automatic evaluation. We include all of the model scores
reported in Tables 4, 5 and 6.
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