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Abstract

Named entity recognition (NER) in clinical
documentation is often hindered by the use of
highly specialised terminology, variation in lan-
guage used to express medical findings and
general scarcity of high-quality data available
for training. This short paper compares a Con-
ditional Random Fields model to the previously
established dictionary-based approach and eval-
uates its ability to extract information from a
small corpus of annotated pathology reports.
The results suggest that including token de-
scriptors as well as contextual features signif-
icantly improves precision on several concept
categories while maintaining the same level of
recall.

1 Introduction

Invasive fungal infections (IFIs) are a significant
medical concern, particularly, among immunocom-
promised individuals. These infections, caused by
fungal pathogens that breach the body’s primary
barriers and infiltrate deeper tissues or dissemi-
nate through the bloodstream, can lead to severe
morbidity and heightened mortality rates. Early
detection and appropriate antifungal treatment are
paramount, but they may be difficult to identify in
clinical populations (Even et al., 2011).

To support IFI surveillance, Rozova et al.
(2023b) sought to establish an automated system to
identify markers of IFI in cytology and histopathol-
ogy reports. The authors introduced a corpus called
CHIFIR (Rozova et al., 2023a), the Cytology and
Histopathology Invasive Fungal Infection Reports,
to support the development and evaluation of NLP
methods for concept recognition of clinical con-
cepts relevant to IFIs.They constructed an anno-
tation framework to detect specific terms directly
indicative of a confirmed IFI diagnosis. Central
to their methods was a dictionary-based approach,
which relied on exact term matches in texts.

However, the dictionary-based approach has sev-
eral limitations:

• Lexical variation: the same entity can be de-
scribed in different ways which complicates
the task of exact matching. As an illustration,
while "lung" is categorized as Positive, its syn-
onym "pulmonary" is not recognized by the
dictionary.

• Context is paramount: a term can convey dif-
ferent meanings based on its surrounding text
and where in the report it is located. For in-
stance, while "cryptococcal organism" is clas-
sified as "Fungus", the term "organism" alone
may refer to bacteria, fungi, etc.

In contrast, Machine Learning (ML) algorithms,
when compared with dictionary methods, present a
promising alternative. These algorithms have the
capability to learn the patterns of usage of relevant
concepts or entities, based on consideration of the
context of words.

In this work, we aim to explore the effectiveness
of the ML approach by applying Conditional Ran-
dom Fields (Lafferty et al., 2001) to the CHIFIR
dataset and comparing its performance with the
original dictionary-based solution.

The following sections will delve deeper into the
methodology and outline the results of this compar-
ison, highlighting the advantages of CRF over the
dictionary approach.

2 Background

Histopathology reports are structured documents
that outline findings from microscopic examination
of biopsied tissue. The language used is special-
ized, often employing a combination of medical
terminology, abbreviations, and sometimes subjec-
tive descriptions based on the pathologist’s observa-
tions and interpretations. The complexity and vari-
ability of the narrative, which can differ between
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pathologists and institutions, make standardization
difficult. Subtle nuances and contextually driven in-
terpretations are pivotal in histopathology, making
it challenging for algorithms to consistently inter-
pret and draw accurate conclusions. Moreover, the
occasional use of ambiguous or equivocal terms
to describe uncertain or borderline findings can
further complicate machine interpretation.

Extracting relevant concepts from clinical re-
ports is part of a broader field of information
extraction (IE). Several rule-based systems and
dictionary-based entity recognition tools have been
proposed offering more flexibility to combat the
inherent variability in language. For instance, Funk
et al. (2014) compares a ConceptMapper (Tanen-
blatt et al., 2010) based system with MetaMap
(Aronson and Lang, 2010). While these methods
offer reliability and precision, they still lack the
ability to make context-specific interpretations.

In this paper, we will focus on applying Condi-
tional Random Fields (CRFs) (Sutton et al., 2012;
Sha and Pereira, 2003; Lafferty et al., 2001), which
have been successfully applied to the related task
of named entity recognition. CRFs are a class
of statistical modeling methods and are particu-
larly well-suited for sequence labeling tasks. CRFs
consider the entire sequence, allowing for a more
comprehensive contextual understanding. Addi-
tionally, CRFs are capable of ingesting a diverse
set of features which can be helpful in dealing with
linguistic nuances and inconsistencies across dif-
ferent reports. The model’s flexibility enables it to
effectively handle ambiguities in clinical narratives.
One successful example of CRF implementation
for biomedical entity recognition is BANNER (Lea-
man and Gonzalez, 2008).

It is worth noting that the rapid advancements
in deep learning have led to the emergence of
more sophisticated models, such as LSTMs and
Transformer-based architectures. Such models can
automatically extract features and have demon-
strated superior performance across a variety of
NLP tasks (Chiu and Nichols, 2016) (Santos et al.,
2015). Recent literature has suggested that the
use of contextualised lexical representations (e.g.
in BERT (Vaswani et al., 2017)) as well as the
ability to capture long-range dependencies and se-
mantic relationships in text (Lample et al., 2016)
may be particularly useful in the complex and nu-
anced domain of histopathology reports. However,
such models might not be effective in learning IFI-
specific terms because of the small and specialised

nature of the CHIFIR dataset.

3 Methods

3.1 Dataset

The dataset employed for this research is the CHI-
FIR corpus (Rozova et al., 2023a)1, consisting of
283 cytology and histopathology reports pertaining
to 201 patients.

A characteristic feature of the cytology and
histopathology reports is their extended textual
format, with CHIFIR reports having an average
character count of 1,384. These reports have a
semi-structured layout, with headers delineating
various segments for clinical annotations, macro-
scopic assessments, microscopic evaluations, and
conclusive diagnoses.

3.2 Preparation of dataset

In this study, partitioning into development (n=230)
and test (n=53) sets was replicated exactly from the
original study. To ensure the results are comparable
to the original study, the same stratified group k-
fold cross-validation with 10 splits was applied to
the development set.

Using gold standard annotations, we identified
known concepts in text reports and labeled them
with the corresponding categories (Table 1). The
class distribution of labels is displayed in Table 2.
The remaining text was tokenized into individual
tokens, and each token was labeled with a default
0 label.

3.3 Model & Features

We utilized CRFSuite (Lafferty et al., 2001) as an
implementation for the model and a proper set of
features is needed to capture the underlying pat-
terns in the data. We expect these features should
be able to generalize, i.e., correctly discriminate
the entities on new samples.

We included features that offer information on
how a word appears in the text (i.e., capitalization,
prefixes, suffixes) and its context. We conducted
an empirical evaluation to refine the feature set:
we experimented with adding semantic features,
such as POS tags and special characters; sentence-
level position features, such as if the word is at
the start or the end of a sentence; and word-level
context features, such as previous word and next
word. Contrary to our intuition, the inclusion of

1https://physionet.org/content/
corpus-fungal-infections/1.0.0/

131

https://physionet.org/content/corpus-fungal-infections/1.0.0/
https://physionet.org/content/corpus-fungal-infections/1.0.0/


Concept Description

ClinicalQuery Clinical query of IFI indicates the presence of an IFI.
FungalDescriptor Descriptor for the presence of fungal organism.
Fungus Mentions of specific fungal organisms.
Invasiveness Descriptors for the depth and degree of fungal invasion into tissues.
Stain Histological stains used to visualize fungal elements.
SampleType Specification of the sampled organ, site, or tissue source.
Positive Affirmative expression.
Equivocal Expression of uncertainty.
Negative Negating expression.

Table 1: List of concepts related to the IFI diagnosis.

Concept Total #reports with at #unique Lexical
occurrences least one occurence phrases diversity

ClinicalQuery 65 53 36 0.55
FungalDescriptor 282 128 67 0.24
Fungus 106 60 15 0.14
Invasiveness 37 12 25 0.68
Stain 172 100 13 0.08
SampleType 198 179 55 0.28
Positive 118 42 37 9.31
Equivocal 7 5 5 0.71
Negative 152 104 11 0.07

Table 2: Summary statistics for the IFI-related concepts in the CHIFIR dataset.

those features either did not improve or worsened
the performance of the model. The final list of
included features appears in Table 3.

3.4 Experimental Framework

We tokenize each report and extract relevant fea-
tures as described above. To tune hyperparameters
and refine the feature set, we used cross-validation
whereby within each fold, a CRF model is initial-
ized with ‘lbfgs’ algorithm and a maximum itera-
tion of 100. The final model with hyperparameters
c1=0.01 and c2=0.01 was trained on the entire train-
ing dataset to generate predictions on the test set.

For evaluation, we used full-term identification.
We calculated the number of true positive, false
positive, and false negative concepts in each report
by comparing the predictions to the gold standard
annotations. For each concept category, we summa-
rize model performance using precision and recall,
and record incorrectly identified concepts for error
analysis.

4 Results

4.1 Overview

Overall, the CRF approach outperformed the
dictionary-based approach utilized in the original
paper (Rozova et al., 2023b). Table 4 shows a sig-
nificantly higher precision in detecting categories
FungalDescriptor, SampleType, Positive, and Neg-
ative. For other concept categories, the CRF model
had on average higher precision although the differ-
ence was not statistically significant. Table 5 shows
that recall is on average comparable to that of the
dictionary-based approach. Table 6 summarises
the performance as F1 score showing significant
improvement in categories SampleType, Positive,
Equivocal, and Negative.

4.2 Strengths

First, let us consider the challenge of lexical varia-
tion. The ability of the dictionary-based approach
to generalize is limited; to make a correct predic-
tion a concept has to appear in the same form as in
the training sample. For our CRF model, we found
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Feature Description

word The word itself.
start_pos and end_pos The start and end position of the word.
is_capitalized Checks if the first letter is capitalized.
is_all_caps and is_all_lower Check for casing details.
capitals_inside Checks if there are capital letters inside the word.
prefix and suffix Use the 3 prefix and 3 suffix characters of each word as context.
has_hyphen Whether the word has hyphens.
is_numeric Whether the word has numeric.

Table 3: List of features.

Concept Precision Precision Precision Precision
CV Dict CV CRF TEST Dict TEST CRF

ClinicalQuery 0.92 (±0.13) 0.83 (±0.20) 1.00 1.00
FungalDescriptor 0.75 (±0.10) 0.92 (±0.05) 0.68 0.98
Fungus 0.82 (±0.30) 0.95 (±0.07) 0.88 0.94
Invasiveness 0.45 (±0.41) 0.69 (±0.41) 0.33 1.00
Stain 0.94 (±0.05) 0.97 (±0.05) 1.00 0.97
SampleType 0.15 (±0.03) 0.92 (±0.08) 0.14 1.00
Positive 0.04 (±0.02) 0.82 (±0.16) 0.03 1.00
Equivocal 0.01 (±0.02) 1.00 (±NaN) 0.00 0.00
Negative 0.14 (±0.04) 0.97 (±0.05) 0.15 1.00

Table 4: Comparison of dictionary and CRF approach precision during cross-validation and on unseen test data.

Concept Recall Recall Recall Recall
CV Dict CV CRF TEST Dict TEST CRF

ClinicalQuery 0.53 (±0.35) 0.72 (±0.20) 0.69 1.00
FungalDescriptor 0.93 (±0.04) 0.90 (±0.05) 0.93 0.96
Fungus 0.92 (±0.15) 0.88 (±0.16) 0.94 0.94
Invasiveness 0.60 (±0.39) 0.63 (±0.30) 0.12 0.50
Stain 0.95 (±0.09) 0.98 (±0.04) 1.00 1.00
SampleType 0.86 (±0.10) 0.81 (±0.11) 0.86 0.79
Positive 0.83 (±0.17) 0.89 (±0.13) 0.73 0.95
Equivocal 0.58 (±0.50) 0.20 (±0.45) 0.00 0.00
Negative 0.98 (±0.05) 0.96 (±0.08) 0.90 1.00

Table 5: Comparison of dictionary and CRF approach recall during cross-validation and on unseen test data.

that about 82% of the correctly predicted concepts
in the test set were exact matches from the training
set, and the rest were variations of known concepts.

The CRF model can identify and combine parts
of annotated concepts. For instance, "branching hy-
phae" was not present in the training set. CRF
generalizes "branching" and "hyphae" by learn-
ing from two concepts in the training data, "acute
angle branching" and "septate hyphae", which
were annotated as FungalDescriptor. The suf-

fix "cosis" was also captured as an indicator of
the Fungus category. The model captures linguis-
tic/capitalization/syntax variations, for instance,
"duodenum" is generalized from "duodenal", and
"groccot" from "Groccot". Besides, CRF demon-
strated the ability to learn complex patterns: "?
infection PJP" is detected based on the FungalDe-
scriptor "PJP" present in the training data and the
fact that a "?" followed by a FungalDescriptor of-
ten makes up a ClinicalQuery. The model captures
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Concept F1 F1 F1 F1
CV Dict CV CRF TEST Dict TEST CRF

ClinicalQuery 0.68 (±0.27) 0.75 (±0.16) 0.81 1.00
FungalDescriptor 0.83 (±0.07) 0.91 (±0.03) 0.79 0.97
Fungus 0.91 (±0.09) 0.90 (±0.09) 0.91 0.94
Invasiveness 0.71 (±0.25) 0.68 (±0.27) 0.18 0.67
Stain 0.94 (±0.05) 0.97 (±0.03) 1.0 0.98
SampleType 0.26 (±0.04) 0.86 (±0.08) 0.24 0.88
Positive 0.08 (±0.03) 0.84 (±0.10) 0.05 0.97
Equivocal 0.05 (±0.03) 1.00 (±NaN) NaN NaN
Negative 0.24 (±0.06) 0.96 (±0.04) 0.26 1.00

Table 6: Comparison of dictionary and CRF approach F1 during cross-validation and on unseen test data.

the intuition that certain labels are more likely to
appear after certain other labels. Lastly, phrases
not present in the training data, such as "punch
biopsies", "pericardium", and "abdomen" were cor-
rectly predicted, showing that the model can make
inferences based on relevant contexts.

Secondly, the model did a generally good job of
addressing ambiguity in the medical text. Words
such as "organism" and "capsule" were consistently
overdetected when using the dictionary-based ap-
proach, resulting in a high false-positive rate. The
CRF model has correctly picked out the relevant
mentions considering their context.

4.3 Weaknesses
In general, the detection of concepts belonging to
SampleType and Invasiveness categories showed to
be the most challenging, making up 45% and 17%
of the total error cases, respectively. The errors
were largely due to the relatively modest size of
the training data, high lexical diversity and fewer
occurrences in the dataset.

The modest recall characteristic of the Inva-
siveness category is likely due to high lexical di-
versity and longer phrases consisting of multiple
tokens. For example, the model failed to clas-
sify phrases "tissue invasion" and "vessel lung
parenchyma infiltrated" as Invasiveness concepts,
even though individual words "invasiveness", "ves-
sel", and "parenchyma" were frequently occurring
in the training data. It is possible that engineering
a more extensive contextual feature set is required
to tackle such cases.

Some words did not appear in the training data
and thus the model may have never learned an ap-
propriate representation. This can be seen in exam-
ples involving both medical terms (e.g., "ileum",

"cyst") and generic English words (e.g., "back",
"leg").

The features used in the model may also occa-
sionally be misleading. For instance, the word
"RUL" is misclassified as Stain because a common
Stain concept "PAS" usually appears in uppercase.
Thus the model may associate the upper case with
that label, illustrating an example of the model giv-
ing form much more weight than context.

5 Conclusion

In conclusion, we have seen that the CRF model
performes better and, in particular, is more success-
ful in tackling the lexical diversity and variation
present in the CHIFIR corpus than the previous
dictionary-based method. Although the model per-
formance still suffers from the small sample size
and challenging lexical diversity cases, we demon-
strated that incorporation of context through the
CRF-based concept recognition model benefits de-
velopment of clinical concept recognition tools for
this corpus. It would also be worth exploring and
comparing this CRF-based approach with more ad-
vanced machine learning methods, which might be
able to learn richer representations from data, and
overcome challenges posed by the variability and
linguistic nuances in histopathology texts better.
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