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Abstract

In statistical parsing with ccg, the standard eval-
uation method is based on predicate-argument
structure and evaluates dependencies labelled
in part by lexical categories. When a predicate
has multiple argument slots that can be filled,
the same lexical category is used for the label of
multiple dependencies. In this paper, we show
that this evaluation can result in disproportion-
ate penalization of supertagging errors and ob-
fuscate the truly erroneous dependencies. En-
abled by the compositional nature of ccg lexi-
cal categories, we propose decomposed scoring
based on subcategorial labels to address this.

To evaluate our scoring method, we engage
fellow categorial grammar researchers in two
English-language judgement tasks: (1) directly
ranking the outputs of the standard and exper-
imental scoring methods; and (2) determining
which of two sentences has the better parse in
cases where the two scoring methods disagree
on their ranks. Overall, the judges prefer decom-
posed scoring in each task; but there is substan-
tial disagreement among the judges in 24% of
the given cases, pointing to potential issues with
parser evaluations in general.

1 Introduction

With a suitably designed architecture, combinatory
categorial grammar (ccg) supertaggers can learn to
better maintain syntagmatic consistency, adjusting
for their own errors to keep the sentence parsable
(Vaswani et al., 2016; Bhargava and Penn, 2020).
This kind of adjustment, however, comes at the
expense of its evaluated word accuracy, which is
the prevailing evaluation measure for supertagging.
The standard, final parser evaluation is no kinder
in such cases: it examines induced bilexical depen-
dencies, but these are labelled (in part) by the lexi-
cal category assigned to the head word (Clark and

The code for decomposed ccg scoring is available online at
https://www.cs.toronto.edu/~aditya/ccgds

Hockenmaier, 2002). If the category is incorrect,
its outgoing dependencies are considered incorrect.

While other areas of nlp such as natural language
generation and machine translation have recently
warmed to efforts to validate their intrinsic evalu-
ations against human judgements (e.g., Novikova
et al., 2017; Reiter, 2018), this has not been the case
so far with statistical parsing. This is likely because
evaluating the quality of a syntactic parse requires
grammatical expertise.

In this paper, we examine ccg parser evaluation
and identify a number of cases where the standard
ccg scoring method gives undesirable results. We
address these shortcomings by introducing decom-
posed scoring. To evaluate our new method, we
elicit judgements from categorial grammar (cg) ex-
perts in two pairwise selection tasks using English-
language data from CCGbank (Hockenmaier and
Steedman, 2007). In the first, intrinsic task, the
judges are directly asked which of the two scoring
methods they prefer for a given sentence. We find
that they prefer decomposed scoring in 90% of the
cases presented. In the second, extrinsic task, judges
are given two different sentences, each with an er-
roneous parse, where the scoring methods disagree
about which parse should be ranked higher. Here,
we find that the judges do not have majority agree-
ment in 24% of the cases presented; but where they
do reach majority consensus, they agree with de-
composed scoring in 62% of cases. The high dis-
agreement raises important questions about statisti-
cal parser evaluations, which we discuss.

2 Background

Following Clark and Hockenmaier (2002), the stan-
dard evaluation measure for CCGbank-based ccg
parsers is F₁ over bilexical dependencies. Each de-
pendency represents a predicate-argument relation-
ship as indicated by the corresponding lexical cat-
egories. A (labelled) ccg dependency 𝑑 is defined
as a 4-tuple 𝑑 = (ℎp, ℎa, c, 𝑠) where:
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(s\np)/pp, 1 (s\np)/pp, 2
pp/np, 1

np/n, 1

s\np, 1 ((s\np)\(s\np))/np, 2
((s\np)\(s\np))/np, 3

np/n, 1

np (s\np)/pp pp/np np/n n
I believe in the system
np s\np ((s\np)\(s\np))/np np/n n

Figure 1: A CCGbank sentence, with ground truth shown
above it and predictions by C&C underneath. Category
features (e.g., sdcₗ) are omitted for compactness. Errors
are shown in orange, with erroneous dependency edges
drawn dashed. Ground-truth dependencies marked as
erroneous convey their absence from the prediction.

• ℎp is the head word token of the predicate;
• ℎa is the head word token of the argument;
• c is the lexical category of the predicate; and
• 𝑠 is the predicate’s argument slot number that
is filled by the argument.

Given an input sentence, the set of correspond-
ing ground-truth dependencies𝒟G from CCGbank,
and a candidate set of dependencies 𝒟C from a
parser, the candidate dependencies are evaluated
according to the F₁ score between the two sets:

F1(𝒟G,𝒟C) =
2∣𝒟G ∩ 𝒟C∣
∣𝒟G∣ + ∣𝒟C∣

A dependency 𝑑 ∈ 𝒟G ∪ 𝒟C is considered correct
if and only if 𝑑 ∈ 𝒟G ∩ 𝒟C. In computing |𝒟C ∩
𝒟G|, individual dependency elements are compared
for equality. Formally, for a given dependency 𝑑 =
(ℎp, ℎa, c, 𝑠), let 𝑑h = (ℎp, ℎa), 𝑑c = c, and 𝑑s = 𝑠.
Then𝒟C ∩ 𝒟G is:

𝒟G ∩ 𝒟C =

⎧{{{
⎨{{{⎩

(𝑔, 𝑐)

∣∣∣∣∣∣∣

𝑔 ∈ 𝒟G ∧ 𝑐 ∈ 𝒟C
∧ 𝑔h = 𝑐h
∧ 𝑔c = 𝑐c
∧ 𝑔s = 𝑐s

⎫}}}
⎬}}}⎭

(1)

This dependency-based measure directly eval-
uates the parser’s ability to produce the intended
predicate-argument structure. Models that analyze
sentences with different derivations than the one
provided by the corpus will not be penalized un-
less the derivation alters the semantics—i.e., this
evaluation is invariant to spurious ambiguities.

3 Decomposed dependency scoring

In this paper, we do not take issue with the treatment
of the head words ℎp and ℎa, but rather of the lexical

category, 𝑐, and argument slot number, 𝑠. We alter
how ccg dependency labels are compared so that
a dependency’s correctness no longer requires the
entire lexical category to be correct and allow (judi-
cious) flexibility in valid values for the slot number.
As these modifications are dependent on subcatego-
rial decompositions of the lexical category labels,
we term the overall approach decomposed scoring.

3.1 Subcategorial labelling

Requiring predicted lexical categories to be fully
equal to the ground truth can cause errors to be over-
penalized. In the example shown in Figure 1, the
parser makes a complement-adjunct confusione rror
(a common parser pathology): the complement in is
mistakenly analyzed as an adjunct. While this error
is directly indicated by the erroneous dependencies
between the verb and its complement, the standard
scoring method “delocalizes” the error, marking
75% of the dependencies as erroneous.

To address this, we propose subcategorial la-
belling of ccg dependencies: instead of the entire
lexical category, only the subcategory correspond-
ing to the argument slot is used for comparison. To
define this more formally, we first define a function
arg𝑛(x) that extracts the subcategory for argument
slot 𝑛 from category x:

arg𝑛(x) =

⎧{{
⎨{{⎩

x if 𝑛 = arity(x) = 0,
z if x = (y |z) ∧ 𝑛 = arity(x),
arg𝑛(y) if x = (y |z) ∧ 𝑛 < arity(x),

where arity(x) is the number of arguments that x
takes before yielding its target category and | is a
variable that ranges over the categorial slash opera-
tors {/, \}. For example, arg1(s/(s\np)) = s\np.

Thus, subcategorial labelling replaces 𝑔c = 𝑐c
from Equation 1 with arg𝑔s

(𝑔c) = arg𝑐s
(𝑐c). Return-

ing to our example, subcategorial labelling allows
the verb-subject dependency (from believe to I ) to
be marked correct as shown in Figure 2.

3.2 Subcategorial alignment

On its own, there are some situations where subcat-
egorial labelling is insufficient. insufficient. In par-
ticular, subcategorial labelling is ineffective when
the argument slot numbers differ between two de-
pendencies that are being compared, as is the case
for the prepositional complement dependency in
Figure 2 (from in to system). While subcategorial
labelling indicates that the argument subcategory is
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np, 1 pp, 2
np, 1

n, 1

np, 1 s\np, 2
np, 3

n, 1

np (s\np)/pp pp/np np/n n
I believe in the system
np s\np ((s\np)\(s\np))/np np/n n

Figure 2: The example from Figure 1 altered to use sub-
categorial labelling.

correct, the differing slot numbers mean that the de-
pendency is still considered incorrect, even though
the parser found the correct syntactic relationship.

We thus propose subcategorial alignment: we
allow the proposed slot number to be considered cor-
rect if there exists a plausible alignment (to be de-
fined shortly) between its corresponding argument
slot in the candidate lexical category and the correct
argument slot in the ground-truth lexical category.

In order to establish such an alignment, we first
decompose the (full) lexical categories for the given
dependencies into a linear representation consisting
of its target category and its “directed” argument
subcategories such that the distinction between left
and right arguments is maintained. We call these
linear representations functorial sequences. More
formally, the functorial sequence fs(x) of category
x is defined as:

fs(x) =
⎧{
⎨{⎩

[x] if arity(x) = 0,
fs(y) ⊕ [z] if x = y |z,

where ⊕ denotes list concatenation. For example,
pp/np and ((s\np)\(s\np))/np decompose into the
functorial sequences [pp, /np] and [s, \np, \(s\np),
/np], respectively.

Next, we compute the Levenshtein distance be-
tween the two functorial sequences and then back-
track, gathering the set of optimal paths. A plau-
sible alignment is then any match state (i.e., zero-
cost substitution) on any optimal path.

Formally, letℳ(x, y) denote the set of all match
states (𝑖, 𝑗) in any Levenshtein alignment between
functorial sequences fs(x) and fs(y), where 𝑖 in-
dexes over fs(x) and 𝑗 indexes over fs(y). Thus, in
Equation 1, subcategorial alignment replaces 𝑔s =
𝑐s with (𝑔s, 𝑐s) ∈ ℳ(𝑔c, 𝑐c).

Our use of Levenshtein alignments is motivated
by the view of many supertagging errors as inser-
tions or deletions of categorial arguments; for exam-
ple, in Figure 1, we see the /pp argument as having

np, 1 pp, 2
np, 1

n, 1

np, 1 s\np, 2
np, 3

n, 1

np (s\np)/pp pp/np np/n n
I believe in the system
np s\np ((s\np)\(s\np))/np np/n n

Figure 3: The example from Figure 2 altered to use sub-
categorial alignment.

been deleted in the predicted category for believe.
Levenshtein alignment is robust here as subcatego-
rial alignment is only relevant when the other ele-
ments of the dependency tuple are correct.¹ As well,
the alignment’s monotonicity prevents swapped ar-
guments (e.g., swapped direct and indirect objects)
from mistakenly being marked correct.²

Returning to the complement-adjunct confusion
example, the only plausible alignment that exists be-
tween pp/np and ((s\np)\(s\np))/np is at the /np
directed subcategories. The dependencies from in
to system are thus marked correct since there is a
plusible alignment between the corresponding ar-
gument slots. As shown in Figure 3, this leaves only
the dependencies that directly indicate the comple-
ment/adjunct relations as erroneous.

Other than complement-adjunct confusion, sub-
categorial alignment is also useful for prepositional
phrase attachment errors, another common parser
pathology. Refer to Appendix A.1 for an example.

3.3 Root node inclusion
Our final modification is the inclusion of root nodes.
The choice of root is relevant in de dicto–de re dis-
tinctions (inter alia), as shown in Figure 4. Despite
the error in the parse, the standard ccg evaluation
assigns a perfect F₁ score since it does not include
root nodes (and corresponding dependencies).

Importantly, including root nodes also addresses
a potential pathology of directly using subcategorial
labels. If the only error is in the choice of spanning
category for the sentence, subcategorial labelling
without a root can result in a perfect F₁ score since

1. For instance, if a parser mistakenly uses a ditransitive verb
category ((s\np)/np)/np rather than the correct transitive verb
category (s\np)/np, a plausible alignment exists for both the
direct and indirect object dependencies. But since the depen-
dency endpoints differ, both cannot be marked correct.
2. Such swapped arguments can occur if the parser incor-

rectly decides to use type-raising and backward crossing com-
position. Notably, unlabelled dependencies are unable to find
such errors.
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sdcₗ

np, 1 sₐdⱼ\np, 2 np, 2
sdcₗ, 1

sdcₗ
np, 1 sₐdⱼ\np, 2 np, 2

sdcₗ, 1

root np (sdcₗ\np)/(sₐdⱼ\np) sₐdⱼ\np , np (sdcₗ\sdcₗ)\np
This is effective , they claim

root np (sdcₗ\np)/(sₐdⱼ\np) sₐdⱼ\np , np (sdcₗ\sdcₗ)\np

Figure 4: A sentence where the supertagger made no mistakes, but the parser’s analysis indicates a de re reading
instead of the correct de dicto.

the root category does not fill any argument slots.
Including a root dependency that specifies the cor-
rect top-level category entirely addresses this. Refer
to Appendix A.2 for an example.

4 Evaluating decomposed scoring

Thus far, we have argued for decomposed scoring
on the basis of examples that show cases where de-
composed scoring is able to more precisely isolate
and penalize parsing errors. Our next aim is to deter-
mine the extent to which this capability holds true
over a larger set of parser outputs when evaluated
by expert judges in a systematic manner.

From here, we refer to the standard ccg evalua-
tion as F₁ and to decomposed scoring as DF₁.

4.1 Intrinsic and extrinsic evaluation tasks
The evaluation is split into two judgement tasks.
The first task gauges whether cg researchers agree
that DF₁ is better able to isolate parsing errors than
F₁. Judges are given sentences with corresponding
dependency sets where F₁ and DF₁ disagree about
the correctness of at least one dependency. Each
sentence is presented as a pair of dependency fig-
ures similar to those presented above (e.g., Figures 1
and 3 are one such pair, though all figures in the
judgement tasks include root nodes). For each sen-
tence, the judges are asked which of the two meth-
ods better isolates the error made by the parser, as
judged against the ground truth. As the first task di-
rectly compares F₁ and DF₁ on common sentences,
we consider it to be an intrinsic evaluation.

The second task uses F₁ and DF₁ in situ as scoring
methods; we therefore consider it to be an extrin-
sic evaluation. Since there is no objectively correct
score for partially correct dependency sets, whether
the score assigned by DF₁ to a given dependency set
is better than that assigned by F₁ to the same set can
only be evaluated in relative terms. At the extreme,

if DF₁ were to yield a different score than F₁ for each
dependency set of interest but the two induced the
same preorder over the dependency sets, the two
methods would not be meaningfully different.

The second task therefore examines pairwise
rank inversions: pairs of sentences where F₁ and
DF₁ disagree on which sentence’s dependency set
is better. Here the judges are given pairs of different
sentences and then asked to select the sentence that
they believe has the better parser-generated depen-
dency set.³ The question underlying the extrinsic
task is thus whether using DF₁ instead of F₁ results
in sentence rankings that better match those that
would be assigned by human judges.

For both tasks, the instructions include wording
directing the judges to consider semantics in their
evaluations. This maintains the assumption inherent
in evaluations based on predicate-argument struc-
ture that parsing errors are significant in proportion
to their effects on semantics.

4.1.1 Task administration
The tasks are administered sequentially, with the
second task being given to each judge after comple-
tion of the first. For each task, each judge is given
a unique link to an online interface that describes
notational conventions, specifies the task they are
to complete, presents the data, and records their re-
sponses. No time limit is imposed, and previous
judgements can be changed at any time.

Prior to having external judges complete the
tasks, we conducted an internal pilot study; consult
Appendix B for details. Here we focus on details
and results of the main study only.

We use three parsers to generate parse predictions
for sentences from the CCGbank test set: EasyCCG
Lewis and Steedman (2014), C&C (Clark and Cur-

3. As the figures are too wide to comfortably include here,
refer to the supplementary materials of this paper for examples.
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Dev set Test set

Parser F₁ DF₁ F₁ DF₁

C&C 83.4 88.5 84.2 88.9
EasyCCG 82.6 88.0 83.1 88.1
DepCCG 89.9 93.3 89.8 93.0

Table 1: F₁ and DF₁ scores of three parsers on CCGbank.

ran, 2007), and DepCCG (Yoshikawa et al., 2017).
Table 1 shows the performance of the three parsers
according to both F₁ and DF₁. Verbatim copies of
all data and instructions as given to each judge are
available in the supplementary materials of this pa-
per, including the judges’ responses. Refer to Ap-
pendix C for further details of the data generation
and sampling procedures.

4.1.2 Judge recruitment and compensation
To decrease the likelihood of bias towards DF₁ for
the main study, we do not provide any judgements
ourselves; nor do we ask members of our institu-
tion to do so. Instead, we sought unaffiliated cg re-
searchers to provide their expert judgements: four
judges were recruited via professional connections.
Two judges were compensated at a flat rate and the
remaining twowere seconded by their employer. All
four judges have peer-reviewed publications at rele-
vant cg research venues and are fluent in English.

5 Results and discussion

In the first task, the judges ruled strongly in favour
of DF₁, agreeing with it in ¹⁸⁄∕20 cases. This is statis-
tically significant (binomial test, 𝑝 ≈ 2.0 × 10−4).
We therefore conclude that DF₁ is better than F₁ at
identifying the ultimate error in the parser’s output.

In the second task, we find some disagreement
among judges: for ¹¹⁄∕45 sentence pairs, two judges
agreed with DF₁, while the remaining two disagreed
with it, leading to a tie. But of the remaining 34 sen-
tence pairs, a majority of judges agreed with DF₁ on
21 pairs. Even with the ties, this is also statistically
significant (𝑝 ≈ 0.02); we thus conclude that DF₁ is
preferable to F₁.

Disagreement among judges in the second task
merits discussion. Judges are taken to be providing
ground truth, so tied pairs are cases where a ground
truth judgement is unavailable.What does this mean
for decomposed scoring, and for ccg parser evalua-
tions more generally?

Concerning decomposed scoring, the first task’s
results empirically validate the utility of DF₁ over

F₁. DF₁ prevents obfuscation of erroneous depen-
dencies, improving the granularity of the evaluation
measure. In addition, there is the possibility of help-
ing with the training of statistical parsers: when a
dependency’s only crime is sharing a lexical cat-
egory with an erroneous one, training a parser to
learn that both are errors may cause it to learn to
avoid correct dependencies.

Moreover, we examined the sentence pairs in the
second task ourselves and found that even when we
judged DF₁’s rank inversion to be incorrect, undo-
ing DF₁’s changes would not address the issue; the
severity of parsing errors varies and is in part mod-
ulated by semantic intricacies. We thus expect that
the disagreements among judges are due at least
in part to underlying differences in opinions about
sentence meaning and/or salience.

Turning to the broader issue of ccg parser evalu-
ations, the lack of definitive ground truth for many
inter-sentence comparisons implies limitations for
inter-parser comparisons. Imagine a case where
parser A claims to outperform parser B, and closer
inspection reveals that A and B differ in their out-
puts on only two sentences. For one of these sen-
tences, A’s output has a higher F₁ than does B’s; for
the other, the opposite is true, but the difference in
F₁ is smaller. Now, the claim that A outperforms B
becomes a claim that the parse that A produces for
the first sentence is better than the parse that B pro-
duces for the second. And yet, as indicated by the
judges’ disagreements in the second task, it is not
always possible to make these kinds of judgements.

6 Conclusion

We have found that the standard ccg evaluation
method’s choice of dependency labels is prone to
amplifying minor errors. We proposed decomposed
scoring and validated it by consulting experts. From
their judgements, we conclude that decomposed
scoring is better at isolating parser errors and is,
overall, a better choice than the standard scoring
method. Disagreement in the second task, however,
is a source of concern and suggests potential issues
for ccg parser evaluations. Given the frequently-
small deltas between modern parsers, this is worth
investigating further.

7 Limitations

While we used multiple parsers to avoid biasing
the evaluation towards one parser, all parsers used
are relatively high-performing parsers—all have la-
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belled F₁ scores above 0.8 on the CCGbank devel-
opment and test sets. This evaluation is thus biased
towards especially difficult sentences, since those
will be the ones where good parsers produce er-
rors. While we found no correlation between parser
scores and judge disagreement, at least suggesting
that the judgements were not a function of parse
quality, poorer parsers (or good parsers on novel
domains) may make different kinds of errors than
those that appeared in our sample. It is unclear
how F₁ and DF₁ would compare under such circum-
stances; understanding this better remains an open
area of research.

The relatively high disagreement among judges
in the second task (24% of sentence pairs) is con-
cerning, but it should be noted that the sentence
pairs were sampled from a set of disagreements be-
tween two different scoring methods. The extent
to which this is a problem in practice is unclear,
as judge agreement may not be as low on outputs
from different parsers evaluated by the same scor-
ing method—but it could also be lower.

Although the dependency-based evaluations dis-
cussed in this paper are standard for CCGbank-
based statistical ccg parser evaluations, the reliance
on extra resources (namely, the generate program
and markup files from C&C) makes it somewhat
unique. Because of this, the extent to which de-
composed scoring, or the ideas behind it, would be
useful for other evaluations scenarios (such as for
other corpora, including ccg corpora from other
languages) is unclear.
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(sb\np)/np, 2
n/n, 1

n/n, 1 (np\np)/np, 1
(np\np)/np, 2

n/n, 1

(sb\np)/np, 2
n/n, 1

n/n, 1

((s\np)\(s\np))/np, 2

((s\np)\(s\np))/np, 3
n/n, 1

(sb\np)/np n/n n/n n (np\np)/np n/n n
Take Lake Vineyard Cabernet from Diamond Creek

(sb\np)/np n/n n/n n ((s\np)\(s\np))/np n/n n

Figure 5: A CCGbank sentence parsed by C&C, which makes a prepositional phrase attachment error.

sb\np

np, 2
n, 1

n, 1 np, 1
np, 2

n, 1

sb\np

np, 2
n, 1

n, 1

s\np, 2

np, 3
n, 1

root (sb\np)/np n/n n/n n (np\np)/np n/n n
Take Lake Vineyard Cabernet from Diamond Creek

root (sb\np)/np n/n n/n n ((s\np)\(s\np))/np n/n n

Figure 6: The example from Figure 5 altered to use decomposed scoring.

(sb\np)/np, 2
(sb\np)/np, 2

npₙb/n, 1 npₙb/n, 1

(sₙg\np)/np, 2
(sₙg\np)/np, 2

npₙb/n, 1 npₙb/n, 1

(sb\np)/np npₙb/n n , npₙb/n n
Pick a country , any country

(sₙg\np)/np npₙb/n n , npₙb/n n

Figure 7: A CCGbank sentence parsed by DepCCG.

Decomposed scoring again localizes the error di-
rectly to the adjuncts and their (adjunctival) argu-
ments, as shown in Figure 6.

A.2 Root category pathology

In Figure 7, the standard ccg evaluation substan-
tially over-penalizes the very minor error in the root
category (sₙg vs sb).

However, without including root nodes, subcat-
egorial labelling suffers from a pathology in such
cases. As shown in Figure 8, the subcategorial la-
belling (alone) results in all dependencies being

np, 2
np, 2

n, 1 n, 1

np, 2
np, 2

n, 1 n, 1

(sb\np)/np npₙb/n n , npₙb/n n
Pick a country , any country

(sₙg\np)/np npₙb/n n , npₙb/n n

Figure 8: The example from Figure 7 altered to use sub-
categorial labelling.

marked correct and thus a perfect F₁ score, despite
the error in the parse.

Fortunately, as shown in Figure 9, adding the root
node entirely solves this issue.

B Pilot study

Before our main study, we first conducted a pilot
study to confirm the details of our tasks. Two mem-
bers of our research lab served as pilot judges: one
professor (the second author of this paper) and one
Ph.D. student (uninvolved with the work in this pa-
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sb\np

np, 2
np, 2

n, 1 n, 1

sₙg\np

np, 2
np, 2

n, 1 n, 1

root (sb\np)/np npₙb/n n , npₙb/n n
Pick a country , any country

root (sₙg\np)/np npₙb/n n , npₙb/n n

Figure 9: The example from Figure 8 altered to include
root nodes, which is effectively full decomposed scoring
in this case.

per), both of whom have peer-reviewed publications
in relevant cg research venues.

For both tasks in the pilot study, all judges were
given the same data for evaluation. The first task
included 10 annotation items (sentences) while the
second task included 20 annotation items (sentence
pairs). See Appendix C for details of the data gen-
eration and sampling procedures.

B.1 Results

In the first task, opinion among the judges was unan-
imous: for each sentence, both judges agreed that
the labelling and error assignment provided by DF₁
was better at identifying the ultimate error in the
parser’s output. For the null hypothesis of judges
that make their selections at (uniform) random, the
binomial test indicates that this degree of agree-
ment in favour of DF₁ is extremely unlikely, with
𝑝 ≈ 9.5 × 10−7; we therefore reject it.

In the second task, the judges agreed with each
other only half the time (¹⁰⁄∕20 pairs). Out of the ten
cases where they agreed with each other, however,
they agreed with the DF₁ ranking nine times.We can
again reject the null hypothesis of judges choosing
at (uniform) random: the binomial test indicates that
such high agreement in favour of DF₁ would have
𝑝 ≈ 0.04.

B.2 Changes for main study

The results of the pilot study led us to make the
following alterations for the main study:

• Given the complete agreement between judges
in the first task, we treated judges as inter-
changeable for the first task in the main study.
Each judge was thus given a different sample
of sentences, allowing more sentences to be
covered.

• To account for the high level of inter-judge dis-
agreement in the second task, we increased
the number of sentence pairs in the task to 45;
the number of sentences in the first task was
reduced to five per judge in order to make bet-
ter use of the judges’ time. As with the pilot
study, each judge was given the same set of
sentences.

As well, since each parser was tuned on the CCG-
bank development set, we used the CCGbank test
set (i.e., section 23) to sample the sentences for the
main study. Remaining task and administration de-
tails were the same as for the pilot study.

C Data generation and sampling

To generate the data for both tasks, we started with
the CCGbank development set (i.e., section 00).
As the dependency figures can easily become very
wide, we excluded all sentences where the ground
truth has more than 20 dependencies (including
the root dependency). This ensured that the figures
fit legibly on most displays. Next, we ran off-the-
shelf parsers on the remaining sentences to pro-
duce predicted parses. For the pilot study, we used
EasyCCG Lewis and Steedman (2014) only. For
the main study, we prevented the results from be-
ing biased towards a single parser by using three
different parsers: EasyCCG, C&C (Clark and Cur-
ran, 2007), and DepCCG (Yoshikawa et al., 2017).
When sampling data for the two tasks, the parsers
were alternated for selection per sampled item so
that each parser was evenly represented in the data
given to the judges (15 sentence pairs each for the
second task). We converted all parser outputs into
dependency sets using the generate program from
C&C; we used updated markup files from the Java
version of C&C (Clark et al., 2015). Sentential cat-
egories were extracted as needed from the parsers’
outputs, after which each sentence was scored with
both F₁ and DF₁. From here, the process diverged
for the first and second tasks.

For the first (intrinsic) task, we kept only those
sentences that met the relevant criterion: F₁ and DF₁
must disagree about at least one dependency. From
these, we sampled sentences uniformly and without
replacement to yield the set of sentences to be pre-
sented to judges for the first task (10 sentences for
the pilot study and 5 for the main study). Although
F₁ does not evaluate the root dependency, we found
that omitting the root node from one of the two de-
pendency figures in each pair made for a visually
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conspicuous absence; instead, we kept the root node
for both cases, labelled the dependency accordingly,
and never marked the root dependency as erroneous
for the F₁ diagrams.

For the second (extrinsic) task, we first gathered
all sentence pairs where F₁ and DF₁ disagreed on the
relative ranks of the two pair elements. In order to
avoid differences in scale, we then removed all pairs
where the two sentences in the pair did not have
the same number of dependencies in their ground
truths. Next, in order to keep the task as simple as
possible, we disallowed ties and therefore removed
all pairs where at least one of F₁ or DF₁ assigned the
same score to both elements in a pair. From these,
sentence pairs were sampled uniformly and without
replacement to yield the set of sentence pairs to be
presented to judges for the second task (20 for the
pilot study and 45 for the main study).
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