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Abstract

Textual representations based on pre-trained
language models are key, especially in few-shot
learning scenarios. What makes a representa-
tion good for text classification? Is it due to the
geometric properties of the space or because it
is well aligned with the task? We hypothesize
the second claim. To test it, we develop a task
alignment score based on hierarchical cluster-
ing that measures alignment at different levels
of granularity. Our experiments on text classifi-
cation validate our hypothesis by showing that
task alignment can explain the classification
performance of a given representation.

1 Introduction

Recent advances in text classification have shown
that representations based on pre-trained language
models are key, especially in few-shot learning sce-
narios (Ein-Dor et al., 2020; Lu et al., 2019). It is
natural to ask: What makes a representation good
for text classification in this setting? Is the repre-
sentation good due to intrinsic geometric properties
of the space or because it is well aligned with the
classification task? The goal of this paper is to
answer this question to better understand the rea-
son behind the performance gains obtained with
pre-trained representations.

Our hypothesis is that representations better
aligned with class labels will yield improved perfor-
mance in few-shot learning scenarios. The intuition
is simple: in this setting, the limited number of la-
beled samples will only provide a sparse coverage
of the input domain. However, if the representation
space is properly aligned with the class structure,
even a small sample can be representative. To illus-
trate this, take any classification task. Suppose we
perform clustering on a given representation space
that results in a few pure clusters (with all samples
belonging to the same class). Then, any training set
that ‘hits’ all the clusters can be representative. No-
tice that there is a trade-off between the number of
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Figure 1: Three-step process for computing THAS.

clusters and their purity. A well-aligned represen-
tation is one for which we can obtain a clustering
with a small number of highly pure clusters. Based
on this, we propose a task alignment score based
on hierarchical clustering that measures alignment
at different levels of granularity: Task Hierarchical
Alignment Score (THAS).

To test our hypothesis that task alignment is key
we conduct experiments on several text classifica-
tion datasets comparing different representations.
Our results show that there is a clear correlation
between the THAS of a representation and its clas-
sification performance under the few-shot learning
scenario, validating our hypothesis and showing
that task alignment can explain performance. In
contrast, our empirical study shows that intrinsic
geometric properties measured by classical cluster-
ing quality metrics fail to explain representation
performance in the few-shot learning scenario.

Our study suggests an answer to our main ques-
tion: A good efficient representation (i.e. one that
enables few-shot learning) is a representation that
induces a good alignment between latent input
structure and class structure. Our main contribu-
tions are: 1) We develop a score based on hierar-
chical clustering (§2) that measures the extent to
which a representation space is aligned with a given
class structure and 2) We conduct an empirical
study using several textual classification datasets
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(§3) that validates the hypothesis that the best rep-
resentations are those with a latent input structure
that is well aligned with the class structure.

2 Task Hierarchical Alignment Score

We now present the Task Hierarchical Alignment
Score (THAS) designed to measure the alignment
between a textual representation and the class la-
bel for a given task. The idea is quite simple, in
a good representation space, points that are close
to each other should have a higher probability of
belonging to the same class. Therefore, we could
perform clustering of the points and obtain high
purity clusters, where most points belong to the
same class. We assume that we are given: a dataset
S = {(xi, yi)}ni=1 of n labeled data points where
x ∈ X is a text fragment and y ∈ Y its correspond-
ing class label (e.g., a sentiment classification label)
and a representation function r : X → Rd map-
ping points in X to a d-dimensional representation
space Rd (e.g., a sparse bag-of-words).

Our goal is to compute a metric τ(S, r) that
takes some labeled domain data and a represen-
tation function and computes a real value score.
Fig. 1 illustrates the steps involved in computing
THAS. There are three main steps: 1) hierarchi-
cal clustering, 2) computing clustering partition
alignments, and 3) computing the aggregate metric.
In the first step, we compute the representation of
each point and build a data dendrogram using hier-
archical clustering. The data dendrogram is built
by merging clusters, progressively unfolding the
latent structure of the input space. Traversing the
tree, for each level we get a partition of the training
points into k clusters. In step 2, for each partition,
we measure its alignment with the class label distri-
bution producing an alignment curve as a function
of k. Finally, we report the area under this curve.
Algorithm 1 summarizes the whole procedure. Im-
plementation details and performance information
can be found in A.1.

2.1 Hierarchical Clustering

In the first step, we will consider the input points
X = {xi | (xi, yi) ∈ S} and the representation
function r to obtain a representation of all points
R = {r(xi) | xi ∈ X}.

We then apply Hierarchical Clustering (HC) to
the points in R obtaining a dendrogram D =
HC(R) = {Pk}nk=1 that defines a set of n clus-
ter partitions. Fig. 1 (left) shows a diagram of a

Algorithm 1: THAS

Input: Dataset S = {(xi, yi)}ni=1,
representation function r

Output: τ(S, r)
1 Get representation:

R = {r(xi) | xi ∈ X}
2 Run Hierarchical Clustering:

D = HC(R) = {Pk}nk=1

3 Traverse the dendrogram:
foreach partition Pk ⊂ D do

4 Predict scores for all points:
foreach point xi ∈ X in i = 1, . . . , n
where r(xi) ∈ C ⊂ Pk do

5 Label prediction scores:
foreach y′j ∈ Y in j = 1, . . . , |Y|
do Ŷk,i,j = s(xi, y

′
j)

6 Partition alignment score:
a(Pk) = AUCy+(Ŷk,Y )

7 Final aggregate metric:
τ(S, r) = 1

n

∑n
k=1 a(Pk)

dendrogram. The root of this tree is the whole set
and, at the leaves, each point corresponds to a sin-
gleton. At intermediate levels, top-down branching
represents set splitting.

For each level k = 1, . . . , n of the dendrogram
there is an associated clustering partition of the
input points into k clusters Pk = {Cj}kj=1. That is,
for any particular level we have a family of k non-
empty disjoint clusters that cover the representation
R =

⋃k
j=1Cj , where each representation point

r(x) ∈ R is assigned to one of the k clusters.

2.2 Partition Alignment Score
We use the gold labels Y = {yi | (xi, yi) ∈ S} to
compute an alignment score a(Pk) for each parti-
tion Pk ⊂ D. We compute it in two parts.

First, for every point x ∈ X and label y′ ∈ Y
we compute a label probability score by looking at
the gold label distribution of the cluster C to which
the point belongs in the clustering partition:

s(x, y′) =
1

|C|#[y′ ∈ C] (1)

where #[y′ ∈ C] is the number of samples in
cluster C with gold label y′. Intuitively, this assigns
to a point x a label probability that is proportional
to the distribution of that label in the cluster C.

Second, we use the label probability scores of all
points Ŷk = {s(xi, y

′
j) | xi ∈ X, y′j ∈ Y} and the
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Repr. ALC THAS ADBI

IM WT CC S1 µ IM WT CC S1 µ IM WT CC S1 µ

BERTall .84 .50 .32 .79 .61 .84 .67 .27 .75 .63 2.87 3.03 3.31 3.25 3.11
GloVe .80 .48 .26 .74 .57 .80 .63 .26 .73 .60 2.62 2.12 2.01 2.47 2.31
BERTcls .80 .48 .23 .74 .56 .80 .56 .22 .74 .58 2.81 2.97 3.15 2.92 2.96
fastText .75 .41 .18 .66 .50 .77 .57 .21 .71 .56 2.78 2.13 1.93 2.47 2.33
BoW .76 .32 .11 .59 .45 .71 .50 .20 .68 .52 3.14 3.83 4.23 3.86 3.76

Table 1: Learning curve performance (ALC), task alignment (THAS), and unsupervised clustering quality (ADBI)
for different representations and datasets. (Rows are sorted by average ALC.)

dataset gold labels Y to compute a partition align-
ment score. We choose as a single metric the area
under the precision-recall curve (AUC) because it
has the nice property that it applies to tasks with
both balanced and unbalanced class distributions.1

More specifically, we compute the AUC of the tar-
get (positive) class y+ ∈ Y of the dataset (more
details in the experimental part in §3):

a(Pk) = AUCy+(Ŷk,Y ) (2)

2.3 Final Aggregate Metric: THAS

Once we have an alignment score for every level
of the hierarchical dendrogram, we are ready to
define our final Task Hierarchical Alignment Score
(THAS). Consider the alignment scoring function a
applied to the partition corresponding to the lowest
level of the dendrogram. The alignment score will
be a(Pn) = 1 because every cluster in this partition
is a singleton and therefore #[y′ ∈ C] will be 1
for the gold label and 0 for any other label. At the
other end, for the partition corresponding to the
root of the dendrogram (where all points belong
to a single cluster), the alignment score a(P1) is
the AUC corresponding to assigning to every point
x ∈ X a prediction score for each label y′ ∈ Y
equal to the relative frequency of y′ in Y .

Consider now the alignment score as a function
of the size of the partition. As we increase k we
will get higher scores. A good representation is one
that can get a high score while using as few clusters
as possible. Instead of choosing a predefined level
of granularity, we propose to leverage the align-
ment information across all levels. To achieve this,
we consider the alignment score as a function of
the number of clusters and measure the area under

1F1 could be a valid alternative, but this metric requires
the validation of decision thresholds.

a(Pk).2 We are ready to define our final metric:

τ(S, r) =
1

n

n∑

k=1

a(Pk) (3)

3 Experimental Setup

In this section we empirically study the correlation
of few-shot learning performance with 1) THAS

and 2) an unsupervised clustering quality metric.
We use four text classification datasets with

both balanced and imbalanced label distributions:
IMDB (IM; Maas et al., 2011), WikiToxic (WT;
Wulczyn et al., 2017), Sentiment140 (S1; Maas
et al., 2011) and CivilComments (CC; Borkan et al.,
2019).

We will compare the following representations:
a sparse bags-of-words (BoW); BERT embeddings
(Devlin et al., 2019) using two token average pool-
ing strategies (BERTall and BERTcls); GloVe (Pen-
nington et al., 2014); and fastText (Bojanowski
et al., 2017; Joulin et al., 2016).

For further details, please refer to A.2.

3.1 Few-Shot Performance vs. THAS

Since the focus of these experiments is comparing
representations, we follow previous work on prob-
ing representations and use a simple model (Tenney
et al., 2019; Lu et al., 2019). More precisely, we
use a linear max-entropy classifier trained with l2
regularization.

To simulate a few-shot learning scenario, we
create small training sets by selecting N random
samples, from 100 to 1000 in increments of 100.
For each point N in the learning curve we create an

2We could consider weighting methods that neutralize un-
informative areas in the curve. In particular, we could subtract
the scores originating from a random clustering. However, this
contribution is solely determined by the sample size and the
prior distribution. As a result, it would not have any impact
when comparing representations.
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80%/20% 5-fold cross-validation split to find the
optimal hyper-parameters. We then train a model
using the full N training samples and measure its
performance on the test set. We repeat the experi-
ment with 5 random seeds and report the mean re-
sults. As the evaluation metric, we use accuracy for
the balanced datasets (IMDB and Sentiment140)
and F1 for the imbalanced datasets (WikiToxic and
CivilComments).

We generate learning curves for each dataset
and representation (A.3). To study the correlation
between task alignment and few-shot learning per-
formance, it is useful to have a single score that
summarizes the learning curve: We use the area
under the learning curve (ALC). Representations
with a larger ALC perform better in the few-shot
learning scenario.3 We observe that BERTall is
consistently the best representation followed by
BERTcls and GloVe performing similarly. Repre-
sentations based on word embeddings are better
than the sparse baseline for all datasets, except for
fastText which does not exhibit a consistent im-
provement.

To test for correlation, we also computed THAS

for each representation and dataset. (The corre-
sponding curves can be found in A.3.) Since this
metric is a measure of the alignment between a
label distribution and an input representation, there
is a THAS score per label.4 In the classification
tasks that we consider there is always a single tar-
get class (e.g., toxicity for WikiToxic). We measure
the alignment score with respect to this class.

Table 1 summarizes the results showing ALC
(left) and corresponding THAS (center) for all repre-
sentations and datasets. Overall, BERTall is the best
representation for few-shot learning followed by
GloVe and BERTcls. All the representations based
on pre-trained word embeddings significantly out-
perform the baseline sparse BoW representation.
THAS predicts accurately the relative ranking be-
tween representations and the larger gap between
BERTall and the rest. Fig. 2 shows a scatter plot
of THAS as a function of ALC (blue dots; each
point corresponds to a dataset and representation).
We compute the correlation coefficients, which are
displayed in Table 2. We observe a clear positive
correlation between the two metrics, providing sup-

3Alternatively, we could have picked a single point but we
believe that ALC provides a more robust measure of few-shot
learning performance and allows for a more concise analysis.

4We could also aggregate the scores of different classes,
for example taking the average of the scores over all labels.
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Figure 2: Few-shot performance (ALC) vs. task align-
ment (THAS) and clustering quality (ADBI).

(µ)ALC vs rp (p-value) rs (p-value)

THAS 0.98 (< 10−12) 0.99 (< 10−17)
ADBI 0.11 (0.62) 0.07 (0.76)
µTHAS 0.98 (0.002) 1.0 (0.017)
µADBI −0.41 (0.48) −0.3 (0.68)

Table 2: Pearson correlation coefficient (rp) and Spear-
man’s correlation coefficient (rs) with the correspond-
ing p-values for ALC vs. THAS and ALC vs. ADBI, and
similar analysis for mean scores across all datasets.

porting evidence for our main hypothesis that a
good representation under few-shot learning is a
representation that is well aligned with the classifi-
cation task.

3.2 Unsupervised Clustering Quality

We now look at standard metrics of cluster quality
and test if they can explain few-shot learning per-
formance. We use the Davies and Bouldin (1979)
index (DBI) to measure the quality of the cluster
partitions at every level of the dendrogram. This
metric measures the compactness of each cluster
and their separation, with better cluster partitions
scoring lower. Similar to the computation of THAS

described in §2, we compute DBI as a function
of the number of clusters k corresponding to each
level of the dendrogram. As an aggregate metric,
we calculate the area under these curves to obtain a
single ADBI score. (The curves are shown in A.3.)

The right side of Table 1 shows the results for the
same datasets and representations used for THAS.
GloVe induces the best clusters according to the
ADBI metric. BERTall does not produce particu-
larly good clusters despite being the strongest few-
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shot representation. Fig. 2 (red crosses) and Table
2 show that there is a low correlation between the
two metrics. This suggests that the geometric prop-
erties of the clusters alone can not explain few-shot
performance.

4 Related Work

Representation choice has recently gained signifi-
cant attention from the active learning (AL) com-
munity (Schröder and Niekler, 2020; Shnarch et al.,
2022; Zhang et al., 2017). Some work has at-
tempted to quantify what representation is best
when training the initial model for AL, which is
usually referred to as the cold start problem (Lu
et al., 2019). The importance of word embeddings
has been also studied in the context of highly imbal-
anced data scenarios (Sahan et al., 2021; Naseem
et al., 2021; Hashimoto et al., 2016; Kholghi et al.,
2016). Most research conducted by the AL com-
munity on textual representations has focused on
determining which representations lead to higher
performance for a given task. However, our pa-
per aims to investigate why a certain representation
performs better in the few-shot scenario.

Our work, focused on examining properties of
various textual representations, is closely related to
recent research on evaluating the general capabili-
ties of word embeddings. Many studies are inter-
ested in testing the behavior of such models using
probing tasks that signal different linguistic skills
(Conneau et al., 2018; Conneau and Kiela, 2018;
Marvin and Linzen, 2018; Tenney et al., 2019; Mi-
aschi and Dell’Orletta, 2020). Others have targeted
the capacity of word embeddings to transfer lin-
guistic content (Ravishankar et al., 2019; Conneau
et al., 2020).

Looking at approaches that analyze the proper-
ties of representations directly, without intermedi-
ate probes, Saphra and Lopez (2019) developed a
correlation method to compare representations dur-
ing consecutive pre-training stages. Analyzing the
geometric properties of contextual embeddings is
also an active line of work (Reif et al., 2019; Etha-
yarajh, 2019; Hewitt and Manning, 2019). While
these previous works focus on analyzing representa-
tion properties independently, without considering
a specific task, our study investigates the relation-
ship between representations and task labels. We
conduct a comparison between this relationship and
the unsupervised analysis of representation proper-
ties.

Our work falls in line with broader research
on the relationship between task and represen-
tation. Yauney and Mimno (2021) proposed a
method to measure the alignment between docu-
ments and labels in a given representation space
using a data complexity measure developed in the
learning-theory community. In the computer vision
area, Frosst et al. (2019) introduced a loss metric
and investigated the entanglement of classes in the
representation space during the learning process.
Zhou and Srikumar (2021) proposed a heuristic
to approximate the version space of classifiers us-
ing hierarchical clustering, highlighting how rep-
resentations induce the separability of class labels,
thereby simplifying the classification task. In con-
trast, our work specifically examines the few-shot
performance and emphasizes the importance of un-
balanced scenarios. We find that in these more real-
istic situations, the choice of representation plays a
critical role, paving the way for advanced strategies
in active learning.

5 Conclusion

In this paper, we asked the question: What under-
lying property characterizes a good representation
in a few-shot learning setting? We hypothesized
that good representations are those in which the
structure of the input space is well aligned with the
label distribution. We proposed a metric to mea-
sure such alignment: THAS. To test our hypothesis,
we conducted experiments on several textual clas-
sification datasets, covering different classification
tasks and label distributions (i.e. both balanced
and unbalanced). We compared a range of word
embedding representations as well as a baseline
sparse representation.

Our results showed that when labeled data
is scarce the best-performing representations are
those where the input space is well aligned with
the labels. Furthermore, we showed that the perfor-
mance of a representation can not be explained by
looking at classical measures of clustering quality.

The main insight provided in this work could be
leveraged to design new strategies in active learn-
ing. The fact that good representations induce clus-
ters of high purity at different granularities creates
opportunities for wiser exploration of the represen-
tation space in an active manner. Similar to the
work of Dasgupta and Hsu (2008), we could em-
ploy the data dendrogram to guide this exploration.
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Limitations

In this paper, we focused on analyzing the proper-
ties of textual representations in the few-shot learn-
ing scenario. Its applicability to broader annotation
scenarios could be presumed but is not supported
by our empirical results.

Our experimental setup is based on binary clas-
sification tasks using English datasets. While our
approach is general and could be easily extended
to multi-class scenarios, more work would be re-
quired to extend it to other more complex structured
prediction settings such as sequence tagging.

We see several ways in which this work could
be extended. The most obvious extension consists
of trying to generalize the notion of alignment to
other tasks beyond sequence classification, such
as sequence tagging. In this paper, we have used
THAS to understand the quality of a given textual
representation. However, since THAS is a function
of a labeling and a representation, it could also
be used to measure the quality of a labeling (Yan
and Huang, 2018), given a fixed representation.
For example, this might be used in the context of
hierarchical labeling, to measure which level of
label granularity is better aligned with some input
representation.

The goal of this paper was to provide an expla-
nation for the success of pre-trained word embed-
dings for text classification in the few-shot learn-
ing scenario. We believe that with our proposed
methodology we have successfully achieved this
goal. However, it should be clear to the reader
that we do not provide a method for picking the
best representation, i.e. for model selection. This
is because our analysis requires access to labeled
data and if labeled data is available the best way to
select a model will be via cross-validation.
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A Appendix

A.1 THAS Implementation Details
The data dendrogram is obtained via hierarchical
agglomerative clustering. More precisely, we use a
bottom-up algorithm that starts with each sample
as a singleton cluster and consecutively merges
clusters according to a similarity metric and merge
criterion until a single cluster is formed.

We apply Ward’s (1963) method, which uses the
squared Euclidean distance between samples and
then minimizes the total within-cluster variance by
finding consecutive pairs of clusters with a minimal
increase. The clustering algorithm produces a list
of merges that represent a dendrogram and can be
traversed to generate a clustering partition for each
value of k. It was implemented using Scikit-learn
(Pedregosa et al., 2011) and NumPy (Harris et al.,
2020).

Expressed as a nearest-neighbor chain algorithm,
Ward’s method has a time complexity of O(n2)
(Murtagh, 1983). THAS experiments have been
performed using sub-samples of size 10K and av-
eraged over 5 seeds. Using 32 CPUs and 16GiB
of RAM, each agglomerative clustering took on
average 3.3 minutes. Each task alignment curve
took 3 minutes on average. In contrast, DBI curves
took 7.8 hours on average.

A.2 Experimental Details
Datasets. Table 3 shows the statistics of the
datasets used in this paper. They were extracted
from HuggingFace Datasets (Lhoest et al., 2021).
For WikiToxic and CivilComments, we have ap-
plied a pre-processing consisting of removing all
markup code and non-alpha-numeric characters.

Dataset Size Prior Task

IMDB 50K 50% sentiment
WikiToxic 224K 9% toxicity
Sentiment140 1.6M 50% sentiment
CivilComments 2M 8% toxic behav.

Table 3: Datasets statistics with the number of samples,
target (positive) class prior, and classification task.

Representations. The following is a detailed de-
scription of the text representations used in our
experiments:

BoW: this is a standard sparse term frequency
bag-of-words representation.

BERTall: word embeddings from Devlin et al.’s
(2019) BERTBASE uncased model, average
pooling of 2nd to last layers and average pool-
ing of all tokens.

BERTcls: the same as above but using the [CLS]
token alone.

GloVe: Pennington et al.’s (2014) word vectors
pre-trained on Common Crawl with average
pooling.

fastText: word vectors from Bojanowski et al.
(2017); Joulin et al. (2016) pre-trained on
Wikipedia with average pooling.

BERT representations were extracted using the
HuggingFace Transformers library (Wolf et al.,
2020) implemented in PyTorch (Paszke et al.,
2019).

Models. The parameters for max-entropy learn-
ing curves were validated using 5-fold cross-
validation and the results averaged over sub-
samples from 5 seeds.

A.3 Curves
Fig. 3 presents the curves used to compute the main
results in §3. The left column contains the learn-
ing curves used to compute the few-shot learning
performance of the different datasets and repre-
sentations. The center column shows task align-
ment scores as a function of the number of clus-
ters. THAS is computed as the area under these
curves. The pre-trained word embeddings, in par-
ticular BERT, tend to achieve the best results. In the
curves, they show higher values of alignment for a
small number of clusters. The relative performance
of the representations in the learning curves is par-
alleled in the task hierarchical alignment curves.
BERTall (i.e. using average pooling over all tokens)
seems to be superior to BERTcls (i.e. using only
the [CLS] token).

The right column in Fig. 3 shows the DBI curves
as a function of the number of clusters. These
curves were used to compute the unsupervised clus-
tering metric (ADBI) results presented in §3.2. As
shown in the figure, these curves do not preserve
the relative ranking we find in the corresponding
learning curves.
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Figure 3: Learning curves (left), task hierarchical alignment curves (center), and DBI curves (right) for all the
datasets: IMDB, WikiToxic, Sentiment140, and CivilComments.
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