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Abstract

Pre-trained transformer-based models have re-
cently shown great performance when applied
to Named Entity Recognition (NER). As the
complexity of their self-attention mechanism
prevents them from processing long documents
at once, these models are usually applied in a
sequential fashion. Such an approach unfor-
tunately only incorporates local context and
prevents leveraging global document context in
long documents such as novels, which might
hinder performance. In this article, we explore
the impact of global document context, and its
relationships with local context. We find that
correctly retrieving global document context
has a greater impact on performance than only
leveraging local context, prompting for further
research on how to better retrieve that context.

1 Introduction

Named Entity Recognition (NER) is a fundamental
task in Natural Language Processing (NLP), and is
often used as a building block for solving higher-
level tasks. Recently, pre-trained transformer-
based models such as BERT (Devlin et al., 2019)
or LUKE (Yamada et al., 2020) showed great NER
performance and have been able to push the state
of the art further.

These models, however, have a relatively short
range because of the quadratic complexity of self-
attention in the number of input tokens: as an ex-
ample, BERT (Devlin et al., 2019) can only process
spans of up to 512 tokens. For longer documents,
texts are usually processed sequentially using a
rolling window. Depending on the document, this
local window may not always include all the con-
text needed to perform inference, which may be
present at the global document level. This leads
to prediction errors (Stanislawek et al., 2019): In
NER, this often occurs when the type of an en-
tity cannot be inferred from the local context. For

*These authors contributed equally.

instance, in the following sentence from the fan-
tasy novel Elantris, one cannot decide if the en-
tity Elantris is a person (PER) or a location (LOC)
without prior knowledge:

“Raoden stood, and as he did, his eyes
fell on Elantris again.”

In the novel, this prior knowledge comes from
the fact that a human reader can recall previous
mentions of Elantris, even at a very long range.
A sequentially applied vanilla transformer-based
model, however, might make an error without a
neighboring sentence clearly establishing the status
of Elantris as a city.

While some works propose to retrieve external
knowledge to disambiguate entities (Zhang et al.,
2022; Wang et al., 2021), external resources are not
always available. Furthermore, external retrieval
might be more costly or less relevant than perform-
ing document-level context retrieval, provided the
document contains the needed information, which
depends on the type of document.

Therefore, we wish to explore the relevance of
document-level context when performing NER. We
place ourselves at the sentence level, and we distin-
guish and study two types of contexts:

• local context, consisting of surrounding sen-
tences. This type of context can be used di-
rectly by vanilla transformer-based models, as
their range lies beyond the simple sentence.
Fully using surrounding context as in Devlin
et al. (2019) is, however, computationally ex-
pensive.

• global context, consisting of all sentences
available at the document level. To enhance
NER prediction at the sentence level, we re-
trieve a few of these sentences and provide
them as context for the model.

We seek to answer the following question: is
local context sufficient when solving the NER task,
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or would the model obtain better performance by
retrieving global document context?

To answer this question, we conduct experiments
on a literary NER dataset we improved from its
original version (Dekker et al., 2019). We release
the annotation process, data and code necessary to
reproduce these experiments under a free license1.

2 Related Work

2.1 Sparse Transformers

Since the range problem of vanilla transformer-
based models is due to the quadratic complexity of
self-attention in the number of input tokens, several
works on sparse transformers proposed alternative
attention mechanisms in hope of reducing this com-
plexity (Zaheer et al., 2020; Wang et al., 2020;
Kitaev et al., 2020; Tay et al., 2020b,a; Beltagy
et al., 2020; Choromanski et al., 2020; Katharopou-
los et al., 2020; Child et al., 2019). While reducing
self-attention complexity improves the effective
range of transformers, these models still have is-
sues processing very long documents (Tay et al.,
2020c).

2.2 Context retrieval

Context retrieval in general has been widely lever-
aged for other NLP tasks, such as semantic pars-
ing (Guo et al., 2019), question answering (Ding
et al., 2020), event detection (Pouran Ben Vey-
seh et al., 2021), or machine translation (Xu et al.,
2020).

In NER, context retrieval has mainly been used
in an external fashion, for example by leveraging
names lists and gazetteers (Seyler et al., 2018; Liu
et al., 2019), knowledge bases (Luo et al., 2015)
or search engines (Wang et al., 2021; Zhang et al.,
2022). Meanwhile, we are interested in document-
level context retrieval, which is comparatively sel-
dom explored. While Luoma and Pyysalo (2020)
study document-level context, their study is re-
stricted to neighboring sentences, i.e. local context.

3 Method and Experiments

3.1 Retrieval Heuristics

We wish to understand the role of both local and
global contexts for the NER task. We split all
documents in our dataset (described in Section 3.3)
into sentences. We evaluate both local and global

1https://github.com/CompNet/conivel/tree/
ACL2023

simple heuristics of sentence retrieval in terms of
NER performance impact. We study the following
local heuristics:

• before: Retrieves the closest k sentences at
the left of the input sentence.

• after: Same as before, but at the right of
the input sentence.

• surrounding: Retrieves the closest k
2 sen-

tences on both sides of the input sentence.

And the following global heuristics:

• random: Randomly retrieves a sentence from
the whole document.

• samenoun: Randomly retrieves a sentence
from the set of all sentences that have at least
one common noun with the input sentence2.
Intuitively, this heuristic will return sentences
that contain entities of the input sentence, al-
lowing for possible disambiguation. We use
the NLTK library (Bird et al., 2009) to identify
nouns.

• bm25: Retrieves sentences that are sim-
ilar to the input sentences according to
BM25 (Robertson, 1994). Retrieving similar
sentences has already been found to increase
NER performance (Zhang et al., 2022; Wang
et al., 2021).

It has to be noted that global heuristics can some-
times retrieve local context, as they are not re-
stricted in which sentences they can retrieve at the
document level. For all configurations, we concate-
nate the retrieved sentences to the input. During
this concatenation step, we preserve the global or-
der between sentences in the document.

3.2 Oracles
For each heuristic mentioned in Section 3.1, we
also experiment with an oracle version. The oracle
version retrieves 16 sentences from the document
using the underlying retrieval heuristic, and retain
only those that enhance the NER predictions the
most. We measure this enhancement by counting
the difference in numbers of NER BIO tags errors
made with and without the context. In essence, the
oracle setup simulates a perfect re-ranker model,
and allows us to study the maximum performance
of such an approach.

2If the set of sentences with a common noun is empty, the
samenoun heuristic does not retrieve any sentence.
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3.3 Dataset
To evaluate our heuristics, we use a corrected and
improved version of the literary dataset of Dekker
et al. (2019). This dataset is comprised of the first
chapter of 40 novels in English, which we consider
long enough for our experiments.

Dataset corrections The original dataset suffers
mainly from annotation issues. To fix them, we
design an annotation guide inspired by CoNLL-
2003 (Tjong Kim Sang and De Meulder, 2003)
and apply it consistently using a semi-automated
process:

1. We apply a set of simple rules to identify obvi-
ous errors3 (for example, non capitalized enti-
ties annotated as PER are often false positives).
Depending on the estimated performance of
each rule, we manually reviewed its choices
before application.

2. We manually review each difference between
the predictions of a BERT (Devlin et al., 2019)
model finetuned on a slightly modified version
of the CoNLL-2003 dataset (Tjong Kim Sang
and De Meulder, 2003)4 and the existing an-
notations.

3. We manually correct the remaining errors.

Further annotations The original dataset only
consists of PER entities. We go further and annotate
LOC and ORG entities. The final dataset contains
4476 PER entities, 886 LOC entities and 201 ORG
entities.

3.4 NER Training
For all experiments, we use a pretrained
BERTBASE (Devlin et al., 2019) model, consist-
ing in 110 million parameters, followed by a
classification head at the token level to perform
NER. We finetune BERT for 2 epochs with a
learning rate of 2 · 10−5 using the huggingface
transformers library (Wolf et al., 2020), starting
from the bert-base-cased checkpoint.

3.5 NER evaluation
We perform cross-validation with 5 folds on our
NER dataset. We evaluate NER performance using
the default mode of the seqeval (Nakayama, 2018)
python library to ensure results can be reproduced.

3See Appendix A.2 for details.
4We modified the CoNLL-2003 dataset to include hon-

orifics as part of PER entities to be consistent with our annota-
tion guidelines.

4 Results

4.1 Retrieval heuristics

The NER performance for retrieval heuristics can
be seen in Figure 1. The samenoun heuristic per-
forms the best among global heuristics, whereas
the surrounding heuristic is the best for local
heuristics. While the top results obtained with
both heuristics are quite similar, we consider global
heuristics as naive retrieval baselines: they could be
bested by more complex approaches, which might
enhance performance even more.

Interestingly, the performance of both before
and bm25 heuristics decrease strongly after four
sentences, and even drop behind the no retrieval
baseline. For both heuristics, this might be due to
retrieving irrelevant sentences after a while. The
bm25 heuristic is limited by the similar sentences
present in the document: if there are not enough
of them, the heuristic will retrieve unrelated ones.
Meanwhile, the case of the before heuristic seems
more puzzling, and could be indicative of a specific
entity mention pattern that might warrant more
investigations.

4.2 Oracle versions

NER results with the oracle versions of retrieval
heuristics can be found in Figure 2.

It is worth noting that the performance of the or-
acle versions of the heuristics always peaks when
retrieving a single sentence. This might indicate
that a single sentence is usually sufficient to re-
solve entity type ambiguities, but it might also be
a result of the oracle ranking sentences individu-
ally, thereby not taking into account their possible
combinations.

Global heuristics perform better than local ones
overall, with the oracle version of the random
heuristic even performing better than both the
before and after heuristics. These results tend
to highlight the benefits of using global document
context, provided it can be retrieved accurately.

Retrieved sentences To better understand which
sentences are useful for predictions when perform-
ing global retrieval, we plot in Figure 3 the dis-
tribution of the distance between sentences and
their retrieved contexts for the oracle versions of
heuristics samenoun and bm25. We find that 8%
and 16% of retrieved sentences (for samenoun and
bm25, respectively) are comprised within 6 sen-
tences of their input sentence, while the other are
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Figure 1: Mean F1 score versus max number of
retrieved sentences for all retrieval heuristics across
3 runs.
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Figure 2: Mean F1 score versus max number of
retrieved sentences across 3 runs for oracle versions
of all retrieval heuristics.
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Figure 3: Distribution of the distance of retrieved sentences using the oracle versions of the samenoun and bm25
heuristics. The samenoun heuristic retrieves fewer sentences overall, since it is possible for some sentence to not
have a common noun with any other sentence of its document.
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Figure 4: Mean F1 score versus number of retrieved
sentences across 3 runs for the oracle version of the bm25
heuristic, and the same heuristic restricted to distant
context.

further away, highlighting the need for long-range

retrieval.

Local context importance To see whether or not
local context is an important component of NER
performance, we perform an experiment where we
restrict the oracle version of the bm25 heuristic from
retrieving local surrounding context. Results can
be found in Figure 4. NER performance remains
about the same without local context, which tends
to show that local context is not strictly necessary
for performance.

5 Conclusion and Future Work

In this article, we explored the role of local and
global context in Named Entity Recognition. Our
results tend to show that, for literary texts, retriev-
ing global document context is more effective at
enhancing NER performance than retrieving only
local context, even when using relatively simple re-
trieval heuristics. We also showed that a re-ranker
model using simple document-level retrieval heuris-
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tics could obtain significant NER performance im-
provements. Overall, our work prompts for further
research in how to accurately retrieve global con-
text for NER.

6 Limitations

We acknowledge the following limitations of our
work:

• While the oracle selects a sentence according
to the benefits it provides when performing
NER, it does not consider the interactions be-
tween selected sentences. This may lead to
lowered performances when the several sen-
tences are retrieved at once.

• The retrieval heuristics considered are naive
on purpose, as the focus of this work is not per-
formance. Stronger retrieval heuristics may
achieve better results than presented in this
article.

• The studied documents only consist in the
first chapter of a set of novels. Using com-
plete novel would increase the number of pos-
sible information to retrieve for the presented
global heuristics.
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A Dataset Details

A.1 Document Lengths
Our NER dataset is composed of documents
longer that typical NER datasets such as CoNLL-
2003 (Tjong Kim Sang and De Meulder, 2003).
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Figure 5: Distribution of the number of sentences in
our enhanced version of the dataset from Dekker et al.
(2019).

Figure 5 shows the distribution of the number of
sentences of our NER dataset.

A.2 Automatic Correction Rules
We use the following rules to automatically identify
obvious errors in the original dataset from Dekker
et al. (2019). The original dataset only contained
PER entities, so these rules only apply to them:

• If a span appears in the list of characters from
its novel but is not annotated as an entity, we
investigate whether or not this is a false nega-
tive.

• Similarly, if a span annotated as an entity does
not appear in the list of characters from its
novel, we investigate whether or not it is a
false positive.

• Finally, if a span is annotated as an entity but
all of its tokens are not capitalized, we check
if it is a false positive.

B Heuristics Results Breakdown by
Precision/Recall

Figures 6 and 7 show precision and recall for all re-
trieval heuristics. Interestingly, retrieval only has a
positive effect on recall, with precision being lower
than the baseline except for the surrounding
heuristic.

B.1 Oracle Versions
Figures 6 and 7 show precision and recall for the
oracle versions of all retrieval heuristics. While
retrieval benefits recall more than precision, preci-
sion is still increased using retrieval. Together with
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Figure 6: Mean precision versus max number of
retrieved sentences for all retrieval heuristics across
3 runs.
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Figure 7: Mean recall versus max number of re-
trieved sentences for all retrieval heuristics across 3
runs.
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Figure 8: Mean precision versus max number of
retrieved sentences across 3 runs for oracle versions
of all retrieval heuristics.
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Figure 9: Mean recall versus max number of re-
trieved sentences across 3 runs for oracle versions
of all retrieval heuristics.

the results from the regular heuristics, these results
again highlight the potential performance gains of
using a suitable re-ranker model to retrieve context.
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