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Abstract

Multiple algorithms are known for efficiently
calculating the prefix probability of a string
under a probabilistic context-free grammar
(PCFG). Good algorithms for the problem have
a runtime cubic in the length of the input string.
However, some proposed algorithms are subop-
timal with respect to the size of the grammar.
This paper proposes a novel speed-up of Je-
linek and Lafferty’s (1991) algorithm, whose
original runtime is O(N3|N |3 + |N |4), where
N is the input length and |N | is the number of
non-terminals in the grammar. In contrast, our
speed-up runs in O(N2|N |3 +N3|N |2).

https://github.com/rycolab/
prefix-parsing

1 Introduction

Probabilistic context-free grammars (PCFGs) are
an important formalism in NLP (Eisenstein, 2019,
Chapter 10). One common use of PCFGs is to con-
struct a language model. For instance, PCFGs form
the backbone of many neural language models, e.g.,
recurrent neural network grammars (RNNGs; Dyer
et al., 2016; Dyer, 2017; Kim et al., 2019). How-
ever, in order to use a PCFG as a language model,
one needs to be able to compute prefix probabilities,
i.e., the probability that the yield of a derivation
starts with the given string. In notation, given a
string w = w1 · · ·wN , we seek the probability
p(S

∗⇒ w · · · ) where S is the distinguished start
symbol of the grammar and ∗⇒ is the closure over
applications of derivation rules of the grammar.1

Our paper gives a more efficient algorithm for the
simultaneous computation of the prefix probabil-
ities of all prefixes of a string w under a PCFG.

The authors are aware of two existing efficient
algorithms to compute prefix probabilities under
a PCFG.2 The first is Jelinek and Lafferty’s (1991)

1Specifically, α ∗⇒ β means that there exists an n ≥ 0
such that α⇒ · · · ⇒︸ ︷︷ ︸

n times

β, where ⇒ marks a derivation step.

2Upon publication of this work, the authors were made
aware of two other algorithms for finding prefix probabilities
in the special case of idempotent semirings (Corazza et al.
1994; Sánchez and Benedí 1997). See App. B for a discussion
of prefix parsing under a semiring.

algorithm which is derived from CKY (Kasami,
1965; Younger, 1967; Cocke and Schwartz, 1970)
and, thus, requires the grammar to be in Chomsky
normal form (CNF). Jelinek–Lafferty runs in
O(N3|N |3 + |N |4) time, where N is the length
of the input and N is the number of non-terminals
of the grammar, slower than the O(N3|N |3)
required for parsing with CKY, when the number
of non-terminals |N | is taken into account.

The second, due to Stolcke (1995), is derived
from Earley parsing (Earley, 1970) and can parse
arbitrary PCFGs,3 with a runtime of O(N3|N |3).
Many previous authors have improved the runtime
of Earley’s (Graham et al., 1980; Leermakers
et al., 1992; Moore, 2000, inter alia), and Opedal
et al. (2023) successfully applied this speed-up
to computing prefix probabilities, achieving a
runtime of O(N3|G|), where |G| is the size of
the grammar, that is, the sum of the number of
symbols in all production rules.

Our paper provides a more efficient version of
Jelinek and Lafferty (1991) for the computation of
prefix probabilities under a PCFG in CNF. Specif-
ically, we give an O(N2|N |3 +N3|N |2) time al-
gorithm, which is the fastest attested in the liter-
ature for dense grammars in CNF,4 matching the
complexity of CKY adapted for dense grammars
by Eisner and Blatz (2007).5 We provide a full
derivation and proof of correctness, as well as an
open-source implementation on GitHub. We also
briefly discuss how our improved algorithm can be
extended to work for semiring-weighted CFGs.

2 Preliminaries

We start by introducing the necessary background
on probabilistic context-free grammars.

3Note that Earley’s and, by extension, Stolcke’s algorithms
also implicitly binarize the grammar during execution by using
dotted rules as additional non-terminals.

4A PCFG in CNF is dense if for every X,Y,Z ∈ N , we
have a production rule X → YZ ∈ R.

5Note that there exist approximate parsing algorithms with
lower complexity bounds (Cohen et al., 2013). Moreover,
there are parsing algorithms that asymptotically run in sub-
cubic time in the input length using fast matrix multiplication
(Valiant, 1975; Benedí and Sánchez, 2007). However, they are
of limited practical use (Lee, 1997).
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Definition 1. A probabilistic context-free gram-
mar (PCFG) is a five-tuple G = (N ,Σ,S,R, p),
made up of:

• A finite set of non-terminal symbols N ;

• A finite set of terminal symbols Σ, Σ ∩N=∅;
• A distinguished start symbol S ∈ N ;

• A finite set of production rules R ⊂ N ×
(N ∪ Σ)∗ where each rule is written as X −→
α with X ∈ N and α ∈ (N ∪ Σ)∗. Here, ∗

denotes the Kleene closure;

• A weighting function p : R → [0, 1] assigning
each rule r ∈ R a probability such that p
is locally normalized, meaning that for all
X ∈ N that appear on the left-hand side of a
rule,

∑
X−→α∈R

p(X −→ α) = 1.

Note that not every locally normalized PCFG
constitutes a valid distribution over Σ∗. Specifi-
cally, some may place probability mass on infinite
trees (Chi and Geman, 1998). PCFGs that do con-
stitute a valid distribution over Σ∗ are referred to as
tight. Furthermore, if all non-terminals of the gram-
mar can be reached from the start non-terminal via
production rules, we say the PCFG is trim.

Definition 2. A PCFG G = (N ,Σ,S,R, p) is in
Chomsky normal form (CNF) if each production
rule inR is in one of the following forms:

X −→ YZ (1)

X −→ a (2)

S −→ ε (3)

where X,Y,Z ∈ N such that Y,Z ̸= S, a ∈ Σ,
and ε is the empty string.6

Definition 3. A derivation step α⇒ β is an appli-
cation of the binary relation⇒: (N ∪Σ)∗× (N ∪
Σ)∗, which rewrites the left-most non-terminal in α
according to a rule inR from the left-hand side of
that rule to its right-hand side, resulting in β. The
probability of a derivation step is the probability of
the applied rule: p(αXγ ⇒ αβγ)

def
= p(X −→ β).

Definition 4. A derivation under a grammar
G is a sequence α0,α1, · · · ,αm, where α0 ∈
N ,α1, · · · ,αm−1 ∈ (N ∪ Σ)∗, and αm ∈ Σ∗,
in which each αi+1 is formed by applying a deriva-
tion step to αi. αm = w1 · · ·wN ∈ Σ∗ is called
the yield of the derivation. If α0 is not the start

6Note that any PCFG can be converted to an equivalent
PCFG in CNF (Smith and Johnson, 2007).

symbol S, we call it a partial derivation. We define
p(α

∗⇒ β) as the sum of probabilities of all sub-
sequences from α to β, where each subsequence
probability is the product of the individual deriva-
tion step probabilities defined in Def. 3.

We represent derivations as trees whose structure
corresponds to production rules, where any parent
node is the non-terminal on the left-hand side of
a rule and its children are the symbols from the
right-hand side. The leaves of the tree, when read
from left to right, form the yield. Such a tree, when
rooted S, is called a derivation tree. Otherwise, it
is called a derivation subtree.
Definition 5. The probability of a derivation tree
(or derivation subtree) τ is the product of the prob-
abilities of all its corresponding production rules:

p(τ )
def
=

∏
(α−→β)∈τ

p(α −→ β) (4)

Definition 6. TX(wi · · ·wk) is the set of all deriva-
tion subtrees τ rooted at X with yield wi · · ·wk.
Definition 7. Given a PCFG G = (N ,Σ, S,R, p),
a string w = w1 · · ·wN ∈ Σ∗, and a non-terminal
X ∈ N , the inside probability of X between indices
i and k (where 0 ≤ i ≤ k ≤ N ) is defined as:

β(i,X, k)
def
= p(X

∗⇒ wi+1 · · ·wk) (5)

=
∑

τ∈TX(wi+1···wk)

p(τ ) (6)

That is, the sum of the probabilities of all derivation
trees τ starting at X that have yield wi · · ·wk.
Definition 8. Given a PCFG G = (N ,Σ, S,R, p),
a string w = w1 · · ·wN ∈ Σ∗, and a non-terminal
X ∈ N , we define the prefix probability π, i.e., the
probability of w being a prefix under G, as:

π(w | X) def
=

∑
u∈Σ∗

p(X
∗⇒ wu) (7)

In words, π is the probability of deriving w with
an arbitrary continuation from X, that is, the sum
of probabilities of deriving wu from X over all
possible suffixes u ∈ Σ∗. In the following, we
write the prefix probability of deriving prefix w =
wi+1 · · ·wk from X as π(i,X, k).
Definition 9. Let G be a PCFG in CNF. Then for
non-terminals X,Y,Z ∈ N , the left-corner expec-
tations ξ(Y | X) and ξ(Y Z | X) are defined as:

ξ(Y | X) def
=

∑
u∈Σ∗

p(X
∗⇒ Yu) (8)

ξ(Y Z | X) def
=

∑
X′∈N

ξ(X′ | X) · p(X′−→YZ) (9)
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Algorithm 1 CKY
1: def CKY(w = w1 · · ·wN ):
2: ▷ Initialize inside probabilities

3: β(·, ·, ·)←− 0
4: ▷ Handle special rule, S −→ ε

5: β(0, S, 0)←− p(S −→ ε)
6: for k ∈ 0, . . . , N − 1 :
7: for X −→ wk+1 ∈ R :
8: ▷Handle single word tokens

9: β(k,X, k+1) += p(X −→ wk+1)

10: ▷ ℓ is the span size

11: for ℓ ∈ 2, . . . , N :
12: ▷ i marks the beginning of the span

13: for i ∈ 0, . . . , N − ℓ :
14: ▷ k marks the end of the span

15: k ←− i+ ℓ
16: ▷Recursively compute β

17: for X −→ Y Z ∈ R :
18: β(i,X, k) += p(X−→YZ)

·
k−1∑

j=i+1
β(i,Y, j) · β(j,Z, k)

19: return β

Algorithm 2 Jelinek–Lafferty

1: P ′ ←− (I − P )−1 ▷ Precompute P ∗ by Eq. (14)
2: for Xi,Xj ∈ N : ▷ Assign ξ(Y | X)

3: ξ(Xj | Xi)←− P ′
ij

4: for X′ −→ Y Z ∈ R : ▷ Precompute ξ(Y Z | X)

5: ξ(Y Z | X)←−
∑

X∈N
ξ(X′ | X) · p(X′−→YZ)

6: def JL(w = w1 · · ·wN ):
7: π(·, ·, ·)←− 0 ▷ Initialize prefix probabilities
8: for k ∈ 0, . . . , N :
9: for X ∈ N : ▷ Prefix probability of ε

10: π(k,X, k)←− 1
11: β ←− CKY(w) ▷ Compute β with Alg. 1
12: for k ∈ 0, . . . , N − 1 :
13: for X ∈ N : ▷ Compute base case
14: π(k,X,k+1)←−

∑
Y∈N

ξ(Y|X)·p(Y−→wk+1)

15: for ℓ ∈ 2 . . . N :
16: for i ∈ 0 . . . N − ℓ :
17: k ←− i+ ℓ
18: for X,Y,Z ∈ N : ▷ Recursively compute π
19: π(i,X, k) += ξ(Y Z | X)

·
k−1∑

j=i+1
β(i,Y, j) · π(j,Z, k)

20: return π

Figure 1: Pseudocode for the CKY algorithm (left) and Jelinek–Lafferty (right)

X

· · ·
Y

(a) ξ(Y | X)

X

· · ·
X′

Y Z

(b) ξ(Y Z | X)

Figure 2: Visualization of left-corner expectations

The left-corner expectation ξ(Y | X) is hence
the sum of the probabilities of partial derivation
subtrees rooted in X that have Y as the left-most
leaf; see Fig. 2a for a visualization. Similarly,
ξ(Y Z | X) is the sum of the probabilities of
partial derivation subtrees that have Y and Z as the
leftmost leaves; see Fig. 2b.

3 Jelinek and Lafferty (1991)

We now give a derivation of the Jelinek–Lafferty
algorithm. The first step is to derive an expression
for the prefix probability in PCFG terms.

Lemma 1. Given a tight, trim PCFG in CNF and
a string w = w1 · · ·wN , the prefix probability of a

substring wi+1 · · ·wk of w being derived from X
can be defined recursively as follows:

π(i,X, k) =
∑

Y,Z∈N
ξ(Y Z | X)

·
k−1∑

j=i+1

β(i,Y, j) · π(j,Z, k)
(10)

Base case (for all k ∈ 0 . . . N − 1 and all X ∈ N ):

π(k,X, k+1) =
∑
Y∈N

ξ(Y|X)·p(Y−→wk+1) (11)

Proof. A proof of Lem. 1 is given in App. A.

The above formulation of the prefix probability is
closely related to that of the inside probability from
Baker’s (1979) inside–outside algorithm, which
can be efficiently computed using CKY, see Alg. 1.
Next, the left-corner expectations ξ as defined by
Eq. (8) can be computed efficiently as follows. Let
P denote the square matrix of dimension |N |, with
rows and columns indexed by the non-terminals N
(in some fixed order), where the entry at the ith row
and the jth column corresponds to p(Xi −→ Xj _),
i.e., the probability of deriving Xj on the left corner
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from Xi in one step (we use _ as a wildcard):

p(Xi −→ Xj _) def
=

∑
Y∈N

p(Xi −→ Xj Y) (12)

We can find the probability of getting to non-
terminal Xj after k derivation steps starting from
Xi by multiplying P with itself k times:

p(Xi
k−→ Xj _) = (P k)ij (13)

We can hence get the matrix P ∗, whose entries cor-
respond to deriving Xj from Xi after any number
of derivation steps, by summing over all the powers
of the matrix P :7

P ∗ def
= I + P + P 2 + P 3 + · · · =

∞∑
n=0

Pn (14)

= I + P

∞∑
n=0

Pn = I + PP ∗ = (I − P )−1

Note that the entry at the ith row and jth col-
umn of P ∗ is exactly the left-corner expectation
ξ(Xj | Xi). Finally, we can compute the left-corner
expectations ξ(Y Z | X) using Eq. (9):

ξ(Y Z | X) def
=

∑
X′∈N

ξ(X′ | X) · p(X′−→YZ)

Lastly, for completeness, we also compute the pre-
fix probability of the empty string, ε. For proba-
bilistic PCFGs, this probability is simply 1 because
ε is a prefix of any string:8

π(k,X, k)
def
= π(ε | X) = 1 (15)

We can now combine the quantities derived
above to obtain an efficient algorithm for the com-
putation of prefix probabilities π(i,S, k). For the
full algorithm, see Alg. 2.

Proposition 1. The time complexity of the CKY
algorithm as presented in Alg. 1 is O(N3|N |3).

Proof. Clearly, the computationally critical part is
in lines 11–18, where we iterate over all indices
of w for i, j, and k, as well as over the whole
set of grammar rules, thus taking O(N3|R|). In a
PCFG in CNF, with the size of Σ taken as constant,
the number of rules, |R|, is O(|N |3), making the
overall complexity of CKY O(N3|N |3). ■

7Note that this sum converges if the PCFG is tight and trim
since infinite derivation (sub)trees have zero probability mass.

8For a generalization of the algorithm that does not require
locally normalized rule weights, see App. B.

Proposition 2. The total time complexity of Jelinek–
Lafferty is O(N3|N |3 + |N |4):

Proof. First, we precompute any values that are
independent of the input. In lines 1–3, we pre-
compute all the left-corner expectations ξ(Y | X)
using Eq. (14), which has the complexity of in-
verting the matrix P , i.e., O(|N |3), and move the
values into a map of left-corner expectations in
O(|N |2) (this is just for readability). In lines 4–
5, we then use Eq. (9) to compute ξ(Y Z | X),
iterating once over all non-terminals X for each
rule, which takesO(|R||N |), that is,O(|N |4). Af-
ter initializing the probabilities in lines 7–10 in
O(N2|N |), we begin by pre-computing all the in-
side probabilities β in line 11 of Alg. 2, which takes
O(N3|N |3) by Prop. 1. Computing π(k,X, k + 1)
for all X ∈ N by Eq. (11) in lines 12–14 takes
O(N |N |2) as we iterate over all positions k ∈ N
and over all Y ∈ N for each X ∈ N . And fi-
nally, computing the π chart in lines 15–19 takes
O(N3|N |3) since we iterate over all ℓ, i, j ≤ N
and X,Y,Z ∈ N . This yields an overall time com-
plexity of O(N3|N |3 + |N |4). ■

4 Our Speed-up

We now turn to our development of a faster dy-
namic program to compute all prefix probabilities.
The speed-up comes from a different way to
factorize π(i,X, k), which allows additional mem-
oization. Starting with the definition of the prefix
probability in Eq. (16a), we first expand ξ(Y Z | X)
by Eq. (9), as seen in Eq. (16b). Then, we factor
out all terms that depend on the left-corner non-
terminal Y in Eq. (16c), which we store in a chart
γ, see Eq. (16e). We then do the same for all terms
depending on X′, factoring them out in Eq. (16d)
and storing them in another chart δ, see Eq. (16f).

Our improved algorithm for computing all prefix
probabilities is shown in Alg. 3.

Proposition 3. The complexity of our improved
algorithm is O(N2|N |3 +N3|N |2).

Proof. As before, Alg. 3 starts by precomputing
and assigning the left-corner expectations in lines 1–
3, which takesO(|N |3) andO(|N |2), respectively.
We then initialize the prefix probabilities and com-
pute the inside probabilities in lines 5–8, taking
O(N2|N |). As Eisner and Blatz (2007) show, one
can compute β (line 9) in O(N2|N |3 +N3|N |2),
thus improving the runtime of Alg. 1 for dense
grammars. Pre-computing γ and δ in lines 10–14
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π(i,X, k) =
∑

Y,Z∈N
ξ(Y,Z | X) ·

k−1∑
j=i+1

β(i,Y, j) · π(j,Z, k) (16a)

=
∑

Y,Z∈N

∑
X′∈N

ξ(X′ | X) · p(X′ −→ YZ) ·
k−1∑

j=i+1

β(i,Y, j) · π(j,Z, k) (16b)

=
∑

X′,Z∈N
ξ(X′ | X) ·

k−1∑
j=i+1

γij(X
′,Z) · π(j,Z, k) (16c)

=
∑
Z∈N

k−1∑
j=i+1

δij(X,Z) · π(j,Z, k) (16d)

where γij(X
′,Z)

def
=

∑
Y∈N

p(X′ −→ YZ) · β(i,Y, j) (16e)

and δij(X,Z)
def
=

∑
X′∈N

ξ(X′ | X) · γij(X′,Z) (16f)

Algorithm 3 Faster prefix probability algorithm

1: P ′ ←− (I − P )−1 ▷ Precompute P ∗ with Eq. (14)
2: for Xi,Xj ∈ N : ▷ Assign ξ(Y | X)

3: ξ(Xj | Xi)←− P ′
ij

4: def FastJL(w = w1 · · ·wN ):
5: π(·, ·, ·)←− 0 ▷ Initialize prefix probabilities
6: for k ∈ 0, . . . , N :
7: for X ∈ N : ▷ Prefix probability of ε
8: π(k,X, k)←− 1

9: β ←− CKY(w) ▷ Compute β with Alg. 1
10: for i, j = 0, . . . , N :
11: for X,Z ∈ N : ▷ Compute γ by Eq. (16e)
12: γij(X,Z)←−

∑
Y∈N

p(X−→YZ)·β(i,Y, j)

13: for X,Z ∈ N : ▷ Compute δ by Eq. (16f)
14: δij(X,Z)←−

∑
Y∈N

ξ(Y | X) · γij(Y,Z)

15: for k ∈ 0, . . . , N − 1 :
16: for X ∈ N : ▷ Compute base case
17: π(k,X, k+1)←−

∑
Y∈N

ξ(Y | X)

·p(Y −→ wk+1)

18: for ℓ ∈ 2 . . . N :
19: for i ∈ 1 . . . N − ℓ :
20: k ←− i+ ℓ
21: for X,Z ∈ N : ▷ Recursively compute π

22: π(i,X, k)+=
k−1∑

j=i+1
δij(X,Z)·π(j,Z, k)

23: return π

takes O(N2|N |3), as we sum over non-terminals,
and both charts each have two dimensions index-
ing N and two indexing N . Computing the base

case π(k,X, k + 1) for all non-terminals X and
positions k in lines 15–17 takes O(N |N |2), as be-
fore. Finally, the loops computing π in lines 18–
22 take O(N3|N |2), as we are now iterating over
X,Z ∈ N and ℓ, i, j ≤ N . Hence, our new overall
time complexity is O(N2|N |3 +N3|N |2). ■

5 Generalization to Semirings

It turns out that Jelinek–Lafferty, and, by extension,
our improved algorithm, can be generalized to
work for semiring-weighted CFGs, with the same
time complexity, under the condition that the
semiring is closed, i.e., it has a Kleene star. This
follows from the fact that the only operations used
by the algorithm are addition and multiplication
if we use Lehmann’s (1977) algorithm for the
computation of left-corner expectations, ξ. We
can even relax the condition of local normalization
by changing how left-corner expectations and the
weight of the prefix ε are computed. The relevant
definitions and derivation of the adapted algorithm
can be found in App. B.

6 Conclusion

In this paper, we have shown how to efficiently
compute prefix probabilities for PCFGs in CNF,
adapting Jelinek–Lafferty to use additional memo-
ization, thereby reducing the time complexity from
O(N3|N |3 + |N |4) to O(N2|N |3 + N3|N |2).
We thereby addressed one of the main limitations
of the original formulation, of being slow for large
grammar sizes.
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Limitations

While we have improved the asymptotic running
time of a classic algorithm with regard to grammar
size, the time complexity of our algorithm is still
cubic in the length of the input. Our result follows
the tradition of dynamic programming algorithms
that trade time for space by memoizing and reusing
precomputed intermediate results. The usefulness
of this trade-off in practice depends on the specifics
of the grammar, and while the complexity is strictly
better in terms of non-terminals, it will be most
noticeable for denser grammars with many non-
terminals.
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A Proof of Lem. 1

Lemma 1. Given a tight, trim PCFG in CNF and a string w = w1 · · ·wN , the prefix probability of a
substring wi+1 · · ·wk of w being derived from X can be defined recursively as follows:

π(i,X, k) =
∑

Y,Z∈N
ξ(Y Z | X) ·

k−1∑
j=i+1

β(i,Y, j) · π(j,Z, k) (10)

Base case (for all k ∈ 0 . . . N − 1 and all X ∈ N ):

π(k,X, k+1) =
∑
Y∈N

ξ(Y | X) · p(Y−→wk+1) (11)

Proof. Eq. (11): The base case, π(k,X, k+1), is the probability of wk+1 being the left-most terminal
in the parse subtree under X. It is, therefore, simply the sum of probabilities of any non-terminal Y being
on the left corner of the parse subtree under X multiplied by the corresponding probability of Y directly
deriving wk+1.

Eq. (10): Given the PCFG is in CNF and assuming k > i+ 1, in order to derive the prefix wi+1 · · ·wk

we must first apply some rule X −→ YZ, where the first part of the substring is then derived from Y and
the remainder (and potentially more) from Z:

π(i,X, k) =
∑

Y,Z∈N
p(X −→ YZ)

 k−1∑
j=i+1

β(i,Y, j) · π(j,Z, k) + π(i,Y, k)

 (17)

where the last term, π(i,Y, k), handles the case where the whole prefix is derived from Y alone.
This term is clearly recursively defined through Eq. (17), with X replaced by Y. Defining
R(Y,Z)

def
=

∑k−1
j=i+1 β(i,Y, j)π(j,Z, k), we can rewrite Eq. (17) as:

π(i,X, k) =
∑

Y,Z∈N
p(X −→ YZ) ·R(Y,Z) +

∑
A,B∈N

p(X −→ AB) · π(i,A, k) (18)

After repeated substitutions ad infinitum, we get:

π(i,X, k) =
∑

A,B∈N
p(X

∗⇒ AB)
∑

Y,Z∈N
p(A −→ YZ) ·R(Y,Z) (19)

Note that, in the last step, infinite derivations do not carry any probability mass since we assumed the
PCFG to be tight and trim. Hence, the final form of the equation is:

π(i,X, k) =
∑

A,B∈N
p(X

∗⇒ AB)
∑

Y,Z∈N
p(A −→ YZ) ·R(Y,Z)

=
∑

Y,Z∈N
ξ(Y Z | X)

k−1∑
j=i+1

β(i,Y, j) · π(j,Z, k)
(20)

■
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B Extension of Alg. 3 to Semirings

In the following, we give the necessary background on semirings and then show how the algorithms
introduced above can be framed in terms of semirings.

B.1 Semirings
We start by introducing the necessary definitions and notation.

Definition 10. A monoid is a 3-tuple ⟨A, ◦,1⟩ where:

(i) A is a non-empty set;

(ii) ◦ is an associative binary operation: ∀a, b, c ∈ A, (a ◦ b) ◦ c = a ◦ (b ◦ c);

(iii) 1 is a left and right identity element: ∀a ∈ A,1 ◦ a = a ◦ 1 = a

(iv) A is closed under the operation ◦: ∀a, b ∈ A, a ◦ b ∈ A

A monoid is commutative if ∀a, b ∈ A : a ◦ b = b ◦ a.

Definition 11. A semiring is a 5-tupleW = ⟨A,⊕,⊗,0,1⟩, where

(i) ⟨A,⊕,0⟩ is a commutative monoid over A with identity element 0 under the addition operation ⊕;

(ii) ⟨A,⊗,1⟩ is a monoid over A with identity element 1 under the multiplication operation ⊗;

(iii) Multiplication is distributive over addition, that is, ∀a, b, c ∈ A:

• a⊗ (b⊕ c) = a⊗ b⊕ a⊗ c;
• (b⊕ c)⊗ a = b⊗ a⊕ c⊗ a.

(iv) 0 is an annihilator for A, that is, ∀a ∈ A,0⊗ a = a⊗ 0 = 0.

A semiring is commutative if ⟨A,⊗,1⟩ is a commutative monoid. A semiring is idempotent if ∀a ∈ A :
a⊕ a = a.

Definition 12. A semiringW = ⟨A,⊕,⊗,0,1⟩ is complete if it is possible to extend the addition operator
⊕ to infinite sums, maintaining the properties of associativity, commutativity, and distributivity from the
finite case (Rozenberg and Salomaa, 1997, Chapter 9). In this case, we can define the unary operation of
the Kleene star denoted by a superscript ∗ as the infinite sum over powers of its operand, that is, ∀a ∈ A:

a∗
def
=

∞⊕
i=0

ai (21)

Analogously to Eq. (14), it then follows that:

a∗ =

∞⊕
i=0

ai = a0 ⊕
∞⊕
i=1

ai = 1⊕ a⊗
∞⊕
i=0

ai = 1⊕ a⊗ a∗ (22)

and, similarly:

a∗ = a0 ⊕
∞⊕
i=1

ai = 1⊕
∞⊕
i=0

ai ⊗ a = 1⊕ a∗ ⊗ a (23)

We now discuss how complete semirings can be lifted to square matrices. The definitions follow
analogously to matrices over the real numbers.

Definition 13. We define semiring matrix addition as follows. Let A and B be d × d matrices whose
entries are elements from a complete semiringW = ⟨A,⊕,⊗,0,1⟩. Then the sum ("+") of A and B is
defined as:

(A+B)ij
def
= Aij ⊕Bij i, j ∈ 1, . . . , d (24)
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Definition 14. We define semiring matrix multiplication as follows. Let A and B be d × d matrices
whose entries are elements from a complete semiringW = ⟨A,⊕,⊗,0,1⟩. Then the product of A and B
is defined as:

(AB)ij
def
=

d⊕
k=1

Aik ⊗Bkj i, j ∈ 1, . . . , d (25)

We also define the zero matrix, O, over the complete semiringW = ⟨A,⊕,⊗,0,1⟩, such that all
entries are 0, and the unit matrix I as (I)ij = 1 iff i = j and 0 otherwise for all indices i, j ∈ 0, . . . , d.
It is then straightforward to show that matrix addition is associative and commutative, while matrix
multiplication is associative and distributive over matrix addition. Hence, the set of square matrices
of dimension d over a semiring, with addition and multiplication as defined above, is itself a semiring.
Furthermore, by the element-wise definition of its addition operation, it is also complete.

B.2 Semiring-weighted prefix algorithm

We now consider a semiring-weighted CFG G = ⟨N ,Σ,S,R, p,W⟩, where N ,Σ,S,R are defined as
before but the weighting function p : R → W now maps rules to elements of a commutative semiring
W .9 Note that we no longer require the rule weights to sum to one. As before, we define the matrix P
as the square matrix of dimension |N | whose rows and columns are indexed by the non-terminals N in
some fixed order so that the entry Pij corresponds to the weight of getting the non-terminal Xj on the left
after one rule application to Xi. Since the rule weights are no longer locally normalized, however, we
need to include the treesum under the right non-terminal of each rule as an additional term:10

Pij = p(Xi −→ Xj _) def
=

⊕
Y∈N

p(Xi −→ XjY) · treesum(Y) (26)

We can then calculate the weight of getting Xj from Xi at the leftmost non-terminal after exactly k

derivation steps as (P k)ij , where P k def
= P · · ·P︸ ︷︷ ︸

k times

. Finally, to get the left-corner expectations, we then

need to calculate the Kleene closure over the matrix P ,11 that is, we want to find P ∗ =
∑∞

k=0 P
k. To

compute the Kleene closure over the transition matrix we can use an efficient algorithm by Lehmann
(1977) which is a generalization of the well-known shortest-path algorithm usually attributed to Floyd
(1962) and Warshall (1962), but introduced previously by Roy (1959).12 The algorithm works under the
condition that the Kleene closure of all individual matrix entries from semiringW exists, which is true for
our case since we assumedW to be complete. The algorithm is shown in Alg. 4.

Algorithm 4 Lehmann’s algorithm for computing the Kleene closure over a transition matrix

1: def Lehmann(M ):
2: d←− dim(M) ▷ M is a d× d matrix over a complete semiring

3: M (0) ←−M
4: for j = 1, . . . , d :
5: for i = 1, . . . , d :
6: for k = 1, . . . , d :
7: M

(j)
ik ←−M

(j−1)
ik ⊕M

(j−1)
ij ⊗

(
M

(j−1)
jj

)∗
⊗M

(j−1)
jk

8: return I+M (d)

9We require that W be commutative because the order of rule applications does not affect string weight in a weighted CFG.
10For locally normalized semirings, the treesum of any non-terminal is 1. In the general case when the weights are not

normalized, the treesum of a semiring-weighted WCFG can be computed through fixed point iteration in a similar way to
Newton’s method (Esparza et al., 2007).

11Note that the Kleene closure exists since matrices with elements from a complete semiring are complete.
12The generalization is by way of choosing the appropriate semiring for the given problem. By the same token, Lehmann’s

algorithm can also be seen as a generalization of Kleene’s (1956) algorithm for converting finite-state automata to regular
expressions and the Gauss–Jordan algorithm for computing matrix inversion (see e.g. Althoen and McLaughlin (1987)).
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Lastly, since we no longer have normalized rule weights, we need to set the prefix weight of ε under
any non-terminal X ∈ N to the treesum under X. With this, we can now generalize our prefix weight
algorithm to semirings, as shown in Alg. 5.

Algorithm 5 Faster prefix algorithm over semirings

1: P ′ ←− Lehmann(P ) ▷ Precompute P ∗ with Alg. 4

2: for Xi,Xj ∈ N : ▷ Assign ξ(Xj | Xi)

3: ξ(Xj | Xi)←− P ′
ij

4: def FastSemiringJL(w = w1 · · ·wN ,G):
5: π(·, ·, ·)←− 0 ▷ Initialize prefix probabilities

6: for k ∈ 0, . . . , N :
7: for X ∈ N : ▷ Prefix weight of ε

8: π(k,X, k)←− treesum(X)

9: β ←− CKY(w) ▷ Compute β with Alg. 1

10: for i, j = 0, . . . , N :
11: for X,Z ∈ N : ▷ Compute γ by Eq. (16e)

12: γij(X,Z)←−
⊕

Y∈N
p(X−→YZ)⊗ β(i,Y, j)

13: for X,Z ∈ N : ▷ Compute δ by Eq. (16f)

14: δij(X,Z)←−
⊕

Y∈N
ξ(Y | X)⊗ γij(Y,Z)

15: for k ∈ 0, . . . , N − 1 :
16: for X ∈ N : ▷ Compute base case

17: π(k,X, k+1)←−
⊕

Y∈N
ξ(Y | X)⊗ p(Y−→wk+1)

18: for ℓ ∈ 2 . . . N :
19: for i ∈ 1 . . . N − ℓ :
20: k ←− i+ ℓ
21: for X,Z ∈ N : ▷ Recursively compute π

22: π(i,X, k) +=
k−1⊕

j=i+1
δij(X,Z)⊗ π(j,Z, k)

23: return π

Proposition 4. The semiring-weighted version of our algorithm runs in O(N2|N |3 +N3|N |2).

Proof. Lehmann’s algorithm, as presented in Alg. 4, has three nested for loops of d iterations each, where
d is the dimension of the input matrix. In our case, d is the number of non-terminals, |N |. Assuming the
Kleene closure of elements inW can be evaluated in O(1), this means that computing the left corner
expectations in line 1 of Alg. 5 takes O(|N |3), as before. Hence, the complexity of the overall algorithm
remains unchanged, that is, we can compute the prefix probabilities under a semiring-weighted, locally
normalized CFG G in O(N2|N |3 +N3|N |2). ■
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