Bootstrapping Neural Relation and Explanation Classifiers

Zheng Tang, Mihai Surdeanu
Department of Computer Science
University of Arizona, Tucson, Arizona, USA
{zhengtang, msurdeanu}@arizona.edu

Abstract

We introduce a method that self trains (or boot-
straps) neural relation and explanation classi-
fiers. Our work expands the supervised ap-
proach of (Tang and Surdeanu, 2022), which
jointly trains a relation classifier with an expla-
nation classifier that identifies context words
important for the relation at hand, to semi-
supervised scenarios. In particular, our ap-
proach iteratively converts the explainable mod-
els’ outputs to rules and applies them to unla-
beled text to produce new annotations. Our
evaluation on the TACRED dataset shows that
our method outperforms the rule-based model
we started from by 15 F1 points, outperforms
traditional self-training that relies just on the
relation classifier by 5 F1 points, and performs
comparatively with the prompt-based approach
of Sainz et al. (2021) (without requiring an addi-
tional natural language inference component).’

1 Introduction

Recently Tang and Surdeanu (2022) proposed
a supervised method that jointly trains a rela-
tion classifier (e.g., which extracts the relation
per:city_of_birth between John and London
in the sentence John was born in London) with an
explanation classifier that identifies context words
that are important for the relation at hand (e.g., born
and in in the above example). One limitation of this
method is that, similar to other neural approaches,
it is data hungry. This is an important drawback
for real-world applications where annotated data is
expensive to obtain.

In this work, we expand this approach to semi-
supervised scenarios where the only supervision
comes from a few example rules. In particular,
our method iteratively converts the explanations
produced by the above method into rules, and uses
these rules to generate new ‘“‘silver” annotations

'We release all code and data behind this work

at: https://github.com/clulab/releases/tree/
master/acl2023-bootstrappingRules/.

48

that are added to the training data. The specific
contributions of this effort are:

(1) We introduce a novel semi-supervised neuro-
symbolic strategy for relation extraction that is ex-
plainable and requires minimal supervision. Our
approach is neuro-symbolic because it relies on
rules to explain the predictions of the neural rela-
tion classifier, and also to self-label training data.

(2) We evaluate this approach on the TACRED
dataset (Zhang et al., 2017) and obtain competive
results in a few-shot setting, where the only su-
pervision comes from a small number of example
rules.” Our experiments highlight several impor-
tant observations. First, our approach outperforms
the model that contains the seed rules by 15 F1
points, which validates the self-training direction.
Second, our method performs considerably better
than a sister approach that uses the relation classi-
fier (rather than the rules generated from explana-
tions) for self supervision. We hypothesize that this
is because the neural classifier suffers more from
the “curse of dimensionality” due to its large num-
ber of parameters and the small amount of training
data than our rules, which are constrained to simple
syntactic patterns. Third, our approach performs
comparatively with prompt-based methods (Sainz
et al., 2021; Zhang et al., 2022), even though our
direction is simpler as it does not require a separate
natural language inference component.

2 Related Work

For brevity, we focus our related work dis-
cussion on semi-supervised directions for infor-
mation extraction that are closest to the pro-
posed work: bootstrapping/self-training and recent
prompt-based zero- or few-shot methods.

2.1 Bootstrapping/Self-Training

Typical bootstrapping methods iterate through three
steps: (a) annotate seed data using a small amount

*We use an average of 7 rules per relation type in our
experiments.

Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics
Volume 2: Short Papers, pages 48-56
July 9-14, 2023 ©2023 Association for Computational Linguistics

https://github.com/clulab/releases/tree/master/acl2023-bootstrappingRules/.
https://github.com/clulab/releases/tree/master/acl2023-bootstrappingRules/.

of human supervision (e.g., rules for information
extraction); (b) train a model with the available
annotations, and, finally, (c) apply the model on
unlabeled texts to produce new “silver” annota-
tions (Abney, 2002). These approaches were popu-
lar before the deep-learning revolution. For exam-
ple, Yarowsky (1995) used bootstrapping for word
sense disambiguation; Riloff (1996) used it for dic-
tionary acquisition; and Collins and Singer (1999)
relied on bootstrapping for named entity classifi-
cation. More recently, Gupta and Manning (2015)
proposed a bootstrapping algorithm for named en-
tity extraction that expands the set of known enti-
ties using word embeddings and k-nearest neigh-
bor clustering. Eyal et al. (2021) used a syntactic
search engine (Shlain et al., 2020) to bootstrap rela-
tion extraction. They also utilized natural language
generation to further augment training data, which
led to improved results. To our knowledge, we are
the first to apply bootstrapping to a neuro-symbolic
information extraction method, providing us both
generalizability and explainability.

2.2 Prompt-based Zero- or Few-shot Learning

Recent large pre-trained language models (PLMs)
with huge amount of parameters have showed the
ability to handle NLP tasks with only a few exam-
ples or with prompts. Sainz et al. (2021) reformat-
ted the relation extraction task as a natural language
inference (NLI) task driven by a small set of man-
ual templates. They obtained state-of-the-art results
on the TACRED relation extraction dataset (Zhang
et al., 2017) in both zero- and few-shot scenarios.
The main limitation of this work is that it relies on
a transformer-based NLI engine, which is not avail-
able in every domain. Wei et al. (2022) show that
PLMs can perform multi-hop reasoning when us-
ing chain-of-thought prompts. Zhang et al. (2022)
propose a prompt-based rule discovery and model
boosting. However, Webson and Pavlick (2022)
showed that the PLMs do not actually understand
the prompt, which makes their decisions unreliable.
Unlike the prompt-based approaches, our approach
does not need the specific engine, e.g., for NLI, to
perform the task. This gives us more flexibility in
the choice of PLM and application domain.

3 Approach

Similar to traditional bootstrapping (Abney, 2002),
our approach iteratively trains its classifier with the
currently annotated data and applies the resulting
model to the raw data to produce new annotations.

49

RO — Rmanual;
Dyyain < RuleEzecutor(Ro, Dyaw);
fori < 1to N do
Mi — fEC—RC’(DtTain);
Py, E; < M;(Dirain);
R; < RuleGenerator(P;, E;);
Dtra'in —
Diyrain + RuleExecutor(R;, Dyaw);
end
Algorithm 1: Pseudo code of our training pro-
cedure. R,,qnual 1S the small set of seed rules;
D44 18 the collection of unlabeled sentences.
fEc—Rc is the joint explanation-relation clas-
sifier of Tang and Surdeanu (2022). M; is the
trained neural model in ith iteration, P; and F;
are the M; model’s outputs (labels and explana-
tions), and R; is the set of new rules generated
from M;’s outputs.

However, unlike traditional self training, which
uses the classifier to annotate data, our approach
converts the current model and data into rules, and
uses the generated rules to annotate data. As we dis-
cuss in Section 4 this performs better empirically.
Algorithm 1 shows the overall training procedure.
We discuss the three key components below.

(1) Rule Executor: We use Odin (Valenzuela-
Escércega et al., 2016) system as our rule execu-
tor. Common rules in this paper are syntactic
patterns that contain a lexical trigger (or predi-
cate) and syntactico-semantic arguments. These
rules can be summarized as if-this-then-that pat-
terns, e.g.: if predicate=born and nsubj
is PERSON and nmod_in 1is CITY then
relation=per:city_of_birth.? The rule execu-
tor efficiently matches these patterns over the syn-
tactic trees of sentences.
(2) Neural Model: Our approach utilizes the ap-
proach of Tang and Surdeanu (2022). It contains
two main classifiers: a relation classifier (RC),
and an explanation classifier (EC). The RC is a
multiclass classifier that distinguishes between ac-
tual relation labels seen in training. The EC is a
binary word-level classifier, which labels which
words in the sentence are important for the relation
at hand. For example, for the sentence “/CLS]
John was born in London.”, the RC predicts a
per:city_of_birth relation between John and
3nsubj and nmod_in are syntactic dependencies that indi-

cate nominal subject and indirect object attached to the verb
through the preposition in, respectively.

London, and the EC identifies which words are crit-
ical for this relation (born and in). The EC and RC
are trained jointly: the RC relies only on the hid-
den states of the context words identified by the EC
(rather than, say, the [CLS] embedding); the EC is
trained in a semi-supervised way, i.e., to maximize
the probability of the correct RC label.

(3) Rule Generator: The rule generator has two
major components: the generator and the filter. The
generator takes the model output from the neural
model above and produces rules by: (a) connecting
the EC output to the trigger of the rule; (b) generat-
ing subject and object arguments that are connected
to the trigger through the shortest syntactic depen-
dency path, and (c) assigning the RC output (the
label) to this syntactic pattern. The filter takes the
rules produced by the generator, applies them to
a validation set and evaluates their precision. If a
rule’s performance is below a certain threshold, the
filter discards it.

3.1 Training Procedure

In iteration 0, we feed the seed rules Ry to the
rule executor which applies them on the unlabeled
sentence set D,,,,. These rules are a small set of
rules written by human annotators. We add the rule-
matched data as seed annotations to the labeled data
set Dy¢yqin, and remove them from D,.4,,.

In iteration ¢, we train the neural model M; with
all labeled data in Dy,..;n, and use it to labeled the
current D,.4,,. Then, we generate and filter the rules
that explain the sentences in D,4,, using the rule
generator. Next, we feed the newly generated rules
R; 1 to the rule executor, apply them over Dy,
and produced new labeled data, i.e., sentences with
labeled relations. Lastly, we add the newly labeled
data to Dy,q;, and remove the corresponding sen-
tences from D,4,,. We repeat this procedure until
performance converges on a validation set.

4 Experimental Results
4.1 Data Preparation

We report results on the TACRED relation extrac-
tion (RE) dataset (Zhang et al., 2017). To mimic
low-resource scenarios, we hide all gold labels
from the training set. We keep only 1% of the
development set labeled for tuning purposes. We
use as seeds (Rp) the rule set from (Tang and Sur-
deanu, 2022), which is a combination of the sur-
face patterns of Angeli et al. (2015), and syntactic
rules written in the Odin language (Valenzuela-
Escércega et al., 2016), which were manually cre-

50

ated by Tang and Surdeanu (2022). Overall, we
use an average of 7 rules per relation type. Tang
and Surdeanu (2022) indicated that these rules did
not require considerable effort, i.e., they were de-
veloped by one of the authors within a few hours.

4.2 Baselines

We compare our results with four baselines:
an extended version of the rule-based approach
of Angeli et al. (2015), a typical self-training ap-
proach, a prompt-based RE approach based on nat-
ural language inference (NLI) (Sainz et al., 2021),
and a prompt-based rule discovery and boosting
approach (Zhang et al., 2022):

Rule-based extraction: This baseline uses only
the two sets of rules in our seed set (Rgp): (a) the
surface rules from (Angeli et al., 2015), which are
executed in the Stanford CoreNLP pipeline (Man-
ning et al., 2014); and (b) the syntactic rules of
Tang and Surdeanu (2022), which are executed in
the Odin framework.*

Self-training: This baseline is similar with our full
method, with the exception that, in each iteration,
we use the trained RC model to label new data
rather than the generated rules.

NLI-prompt: (Sainz et al., 2021) reformulated the
RE task as an entailment task driven by templates.
They manually generated a number of verbaliza-
tion templates for each relation in TACRED, e.g.,
the per:city_of_birth relation is verbalized as as
{subj} was born in {obj}, where {subj} and {obj}
will be replaced with the entities in the given sen-
tence. Thus, the sentence containing the relation
to classify becomes the premise and the verbalized
template the hypothesis. The RE task is then re-
duced to finding the best entailment template for
the given sentence. no_relation is generated if
no entailment score over a certain threshold is ob-
served.

PRBOOST iteratively generates rules from
prompting, asks a human expert to filter the rules,
use the rules to generate new annotations, and,
lastly, use the annotations to train a new model
(Zhang et al., 2022).

4.3 Implementation and Evaluation Details

For our method we follow the same implementation
details and hyper parameters as Tang and Surdeanu
(2022). The only difference is that instead of using

“The rule set from (Angeli et al., 2015) also included some
syntactic rules, but we found out that they only matched the
simpler per:title relation, so we did not use them.

Approach Precision Recall F1
Baselines
Rules 85.82 2421 3777
Self-training 65.58 38.56 48.56
NLI-prompt’ 55.46 52.09 5372
PRBOOST - - 48.1
Our Approach

Iteration 4 67.10 45.14 53.97

Table 1: Relation extraction results on the TACRED test
partition. Iteration 4 was the best iteration in development.

the full development set, we randomly select 1%
from the TACRED development set for tuning, i.e.,
to decide which generated rules to keep, and to
decide when the bootstrapping training procedure
completes. For the former, we used 0.5 as the
threshold; that is, if the precision of a rule is lower
than the threshold, we discard that rule.

For a fair comparison, for the NLI-prompt ap-
proach of Sainz et al. (2021) we chose their zero-
shot scenario® and RoBERTa (Liu et al., 2019).°
Further, to guarantee the same level of supervision,
we converted our seed rules to their verbalization
templates (see Appendix A for the conversion pro-
cedure). Lastly, we estimate their threshold for
no_relation using the same validation dataset as
our approach. We iterated from 0.1 to 0.9 with a
step of 0.1, and observed the best validation results
for a threshold of 0.8.

4.4 Results and Discussion

Table 1 reports the overall performance of our ap-
proach and the four other methods. For PRBOOST
we used the numbers reported in the corresponding
paper. We draw the following observations:

(1) As expected, the rule-based baseline has high
precision but suffers from low recall. In contrast,
our best model that is bootstrapped from the same
rules has 20% higher recall and 15% higher F1
(absolute). This indicates that the bootstrapping
approaches popularized for information extraction
several decades ago remain valid in the neural era.

(2) Our approach performs statistically signifi-
cantly better than the traditional self-training ap-
proach that uses the relation classifier for self la-

SThis settings uses supervision from templates, similar to
our seed rules.

The NLI-prompt requires a fine-tuned NLI layer in the
language model, which differs from SpanBERT, the LM used
by Tang and Surdeanu (2022). We believe that ROBERTa is
the closest alternative.

"Results using our templates and tuning. Sainz et al. (2021)
reported a F1 score of 55.6 in their paper.

51

® Rue @ Model
0.6

0.4

0.2

0.0

Figure 1: Learning curves of our approach (Rule) and tradi-
tional model-based self-training (Model), on validation.

beling (53.97 vs. 48.56 F1)8. The fact that rules
perform better for self labeling than the actual neu-
ral model is somewhat surprising. Our hypothesis
is that the neural model suffers more from over-
fitting due to its large number of parameters and
the relatively small amount of training data. Rules
generalize better (and thus produce better “silver”
labels) because the simple syntactic patterns gener-
ated provide reduced opportunities for overfitting.
To validate this hypothesis we plot the learning
curves of the two approaches on our validation par-
tition in Figure 1.° These curves indicate that the
best performance of our approach is in iteration
4, while the neural self-training continues to im-
prove on validation until iteration 9. However, as
shown in Figure 2, the performance of the model-
based self-training on test saturates after iteration 4,
which suggests that, indeed, the neural self-training
method suffers from overfitting.

(3) Our method performs better than PRBOOST
and similarly to the NLI-prompt method. This
suggests that self-training, when carefully imple-
mented, remains competitive with more modern
alternatives such as prompt-based methods. More
importantly, our approach is simpler, as it does
not need the extra inference layers, e.g., the NLI
classifier in the NLI-prompt approach.

4.5 Error Analysis

We conclude this section with a brief error analy-
sis that compares our rule-based bootstrapping ap-
proach with the “traditional” neural-model-based
self-training approach.

First, we conducted a comparative analysis of

8We performed statistical significance analysis using non-
parametric bootstrap resampling with 1000 iterations.

° Appendix B contains a more detailed curve for our ap-
proach including precision, recall, and F1.

Sean Parker , a 17-year-old student , was portraying a casualty clutching a head injury caused by a falling classroom fan .

Gold label: per:title
Rule label: per:title
NN Model label: no_relation

Gilchrist teamed with Chris Simcox , a newspaper publisher in Tucson , Ariz. , to form the controversial Minuteman project ,

which drew nearly 900 volunteers to Arizona in April .
Gold label: no_relation

Rule label: per:title

NN Model label: no_relation

Table 2: Example outputs from a per: title rule, The subject and object entities, which are provided in the task

input, are highlighted in blue and
are highlighted in red.

® Rule @ Model

Figure 2: Learning curves of our approach (Rule) and tradi-
tional model-based self-training (Model), on test.

the annotations produced by the two methods after
the first iteration. In this setting, both approaches
were trained on the same seed annotations, which
ensures a fair comparison. Out of all positive exam-
ples in training data (excluding the seed examples),
our approach annotated 7.64% of them correctly,
while self-training annotated only 3.70% correctly.
Among these true positives produced by the neural
bootstrapping, 75.68% of them are also annotated
correctly by our approach. This indicates that our
generated rules not only cover most of the neural
model’s annotations, but also correctly annotate
more uncovered instances.

Table 2 shows a case where the neural-model-
based self-training method falls short (first row in
the table) and a case where bootstrapping does
not seem to help (second row). These two cases
are extracted by the same rule, in which the trig-
ger words “, a” are used to connect SUBJ_PERSON
and OBJ_TITLE entities through <punct or <punct
appos syntactic dependencies. This rule matches
120 examples in the training set, 102 of which are
true positive. Importantly, only 67 of the 120 ex-
amples are uncovered by the neural bootstrapping

52

. The important tokens for explainability identified by the various methods

model, which highlights again the increased cover-
age of our rule-based method. Interestingly, while
the label produced by the rule-based bootstrapping
model for the second example in the table is techni-
cally wrong, in the opinion of the authors the gold
label is incorrect here. This suggests that rules not
only improve self-training, but have the potential
to also improve the consistency of training data.

5 Conclusion

We introduced a method that self trains (or boot-
straps) a neuro-symbolic approach for relation ex-
traction that combines neural relation and explana-
tion classifiers. Unlike traditional self-training, our
approach uses rules for bootstrapping. In particu-
lar, our method iteratively converts the explainable
models’ outputs to rules and applies them to unla-
beled text to produce new annotations.

We evaluated our approach in a low-resource sce-
nario where there is no labeled data, and the only
supervision comes from a small number of seed
patterns. Our experiments showed that using rules
in the bootstrapped training procedure is better than
the typical self-training method that relies on neural
model predictions. Further, we show that we obtain
similar performance with prompt-based models for
relation extraction without the additional NLI com-
ponent required by such approaches.

Limitations

In this work we have tested our approach using
SpanBERT, a relatively small model when com-
pared to, say, DeBERTa_large or GPT. SpanBERT
has been reported to obtain state-of-the-art perfor-
mance for relation extraction (Joshi et al., 2020;
Tang and Surdeanu, 2022), but it is unclear if a
larger LM would improve this semi-supervised
learning setting.

We use both surface patterns (in the tokensregex

(Chang and Manning, 2014) format) and syntactic
patterns (Odin (Valenzuela-Escarcega et al., 2016))
as training seeds, but our approach can only pro-
duce syntactic patterns as outputs. This is not ideal,
since there is empirical evidence showing that the
mixed representation for rules may provide bet-
ter performance. For example, we can easily cap-
ture per_title relation with a surface rule such as
“fobj_title} {subj_person}”, which simply looks for
the two entities being adjacent.

Ethics Statement

This work did not involve human annotations, other
than the set of rules used as seeds (Angeli et al.,
2015; Tang and Surdeanu, 2022).

It is unlikely but possible that the automatically-
generated rules we used during bootstrapping aug-
ment some unknown biases in the unlabeled data.
In a brief analysis of the data we did not observe
any such situations. However, this potential un-
desired side effect is important and should not be
ignored in the eventual deployment of this method
in real-world applications.

References

Steven Abney. 2002. Bootstrapping. In Proceedings of
the 40th Annual Meeting on Association for Compu-
tational Linguistics, ACL *02, page 360-367, USA.
Association for Computational Linguistics.

Gabor Angeli, Victor Zhong, Danqi Chen, A. Cha-
ganty, J. Bolton, Melvin Jose Johnson Premkumar,
Panupong Pasupat, S. Gupta, and Christopher D.
Manning. 2015. Bootstrapped self training for knowl-
edge base population. Theory and Applications of
Categories.

Angel X Chang and Christopher D Manning. 2014. To-
kensregex: Defining cascaded regular expressions
over tokens. Stanford University Computer Science
Technical Reports. CSTR, 2:2014.

Michael Collins and Yoram Singer. 1999. Unsupervised
models for named entity classification. In 1999 Joint
SIGDAT conference on empirical methods in natural
language processing and very large corpora.

Matan Eyal, Asaf Amrami, Hillel Taub-Tabib, and Yoav
Goldberg. 2021. Bootstrapping relation extractors
using syntactic search by examples. In Proceedings
of the 16th Conference of the European Chapter of
the Association for Computational Linguistics: Main
Volume, pages 1491-1503, Online. Association for
Computational Linguistics.

Sonal Gupta and Christopher D. Manning. 2015. Dis-
tributed representations of words to guide boot-
strapped entity classifiers. In Proceedings of the 2015

53

Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 1215-1220, Denver,
Colorado. Association for Computational Linguis-
tics.

Mandar Joshi, Danqi Chen, Yinhan Liu, Daniel S. Weld,
Luke Zettlemoyer, and Omer Levy. 2020. Span-
BERT: Improving pre-training by representing and
predicting spans. Transactions of the Association for
Computational Linguistics, 8:64-77.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqgi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Christopher Manning, Mihai Surdeanu, John Bauer,
Jenny Finkel, Steven Bethard, and David McClosky.
2014. The Stanford CoreNLP natural language pro-
cessing toolkit. In Proceedings of 52nd Annual Meet-
ing of the Association for Computational Linguis-
tics: System Demonstrations, pages 55—-60, Balti-
more, Maryland. Association for Computational Lin-
guistics.

Ellen Riloff. 1996. Automatically generating extraction
patterns from untagged text. In AAAI/IAAL Vol. 2.

Oscar Sainz, Oier Lopez de Lacalle, Gorka Labaka,
Ander Barrena, and Eneko Agirre. 2021. Label ver-
balization and entailment for effective zero and few-
shot relation extraction. In Proceedings of the 2021
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 1199-1212, Online and
Punta Cana, Dominican Republic. Association for
Computational Linguistics.

Micah Shlain, Hillel Taub-Tabib, Shoval Sadde, and
Yoav Goldberg. 2020. Syntactic search by example.
In Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics: System
Demonstrations, pages 17-23, Online. Association
for Computational Linguistics.

Zheng Tang and Mihai Surdeanu. 2022. It Takes Two
Flints to Make a Fire: Multitask Learning of Neural
Relation and Explanation Classifiers. Computational
Linguistics, pages 1-40.

Marco A. Valenzuela-Escédrcega, Gus Hahn-Powell, and
Mihai Surdeanu. 2016. Odin’s runes: A rule lan-
guage for information extraction. In Proceedings of
the Tenth International Conference on Language Re-
sources and Evaluation (LREC’16), pages 322-329,
Portoroz, Slovenia. European Language Resources
Association (ELRA).

Albert Webson and Ellie Pavlick. 2022. Do prompt-
based models really understand the meaning of their
prompts? In Proceedings of the 2022 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, pages 2300-2344, Seattle, United States.
Association for Computational Linguistics.

https://doi.org/10.3115/1073083.1073143
https://doi.org/10.18653/v1/2021.eacl-main.128
https://doi.org/10.18653/v1/2021.eacl-main.128
https://doi.org/10.3115/v1/N15-1128
https://doi.org/10.3115/v1/N15-1128
https://doi.org/10.3115/v1/N15-1128
https://doi.org/10.1162/tacl_a_00300
https://doi.org/10.1162/tacl_a_00300
https://doi.org/10.1162/tacl_a_00300
https://doi.org/10.3115/v1/P14-5010
https://doi.org/10.3115/v1/P14-5010
https://doi.org/10.18653/v1/2021.emnlp-main.92
https://doi.org/10.18653/v1/2021.emnlp-main.92
https://doi.org/10.18653/v1/2021.emnlp-main.92
https://doi.org/10.18653/v1/2020.acl-demos.3
https://www.aclweb.org/anthology/L16-1050
https://www.aclweb.org/anthology/L16-1050
https://doi.org/10.18653/v1/2022.naacl-main.167
https://doi.org/10.18653/v1/2022.naacl-main.167
https://doi.org/10.18653/v1/2022.naacl-main.167

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Ed Chi, Quoc Le, and Denny Zhou. 2022.
Chain of thought prompting elicits reasoning in large
language models. arXiv preprint arXiv:2201.11903.

David Yarowsky. 1995. Unsupervised word sense dis-
ambiguation rivaling supervised methods. In 33rd
annual meeting of the association for computational
linguistics, pages 189-196.

Rongzhi Zhang, Yue Yu, Pranav Shetty, Le Song, and
Chao Zhang. 2022. Prompt-based rule discovery and
boosting for interactive weakly-supervised learning.
In Proceedings of the 60th Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 745-758, Dublin, Ireland.
Association for Computational Linguistics.

Yuhao Zhang, Victor Zhong, Danqi Chen, Gabor Angeli,
and Christopher D. Manning. 2017. Position-aware
attention and supervised data improve slot filling. In
Proceedings of the 2017 Conference on Empirical
Methods in Natural Language Processing (EMNLP
2017), pages 35-45.

A From Rules to NLI Templates

To guarantee the same level of supervision between
our approach and NLI-prompt, we converted our
seed rules to their verbalization templates. To con-
vert a rule to a verbalized template, we first apply
the rule to the available texts, extract the shortest
span that covers the trigger and the subject/object
arguments, and extract this shortest text span as
the verbalized template. The actual template is the
span with entities replaced with placeholders {subj}
and {obj}. For example, for the sentence “/CLS]
John was born in London.”, the shortest span is
“John was born in London”, and the template will
be “{subj} was born in {obj}.”

B Learning Curve

Precision

Figure 3: Learning curve of our approach in develop-
ment. The X axis indicates the bootstrapping iterations.

54

Figure 3 shows the changes in precision, recall,
and F1 scores over multiple iterations on the vali-
dation set. As shown, the recall and F1 are steadily
increasing during this procedure. This is inspiring
since it shows that our approach can help improve
the generalizability of the neural model in the low-
resource scenario. Further, we note that the drop
in precision is the reason the F1 score stops im-
proving after iteration 4. However, this is solvable
since our annotations are from the rules and there
are ways to control the quality of the rules other
than just filtering out the low precision ones. We
leave this analysis as future work.

C Experimental Details

We follow the same details from Tang and Sur-
deanu (2022)’s experiments. Table 3 shows the
hyperparameter details for training.

Number of iterations 10
Number of epochs 20
Learning rate le-5
Dropout rate 0.1
Batch size 32
Max sequence length 128
Scheduler Linear with warm-up

Table 3: Hyperparameter details for training.

https://doi.org/10.18653/v1/2022.acl-long.55
https://doi.org/10.18653/v1/2022.acl-long.55
https://nlp.stanford.edu/pubs/zhang2017tacred.pdf
https://nlp.stanford.edu/pubs/zhang2017tacred.pdf

ACL 2023 Responsible NLP Checklist

A For every submission:

¥ Al. Did you describe the limitations of your work?
At the beginning of page 5.

¥ A2. Did you discuss any potential risks of your work?
Discussed in the limitations section.

¥ A3. Do the abstract and introduction summarize the paper’s main claims?
abstract and section 1

A4. Have you used Al writing assistants when working on this paper?
Left blank.

B X Did you use or create scientific artifacts?
Left blank.

O B1. Did you cite the creators of artifacts you used?
No response.

0J B2. Did you discuss the license or terms for use and / or distribution of any artifacts?
No response.

0 B3. Did you discuss if your use of existing artifact(s) was consistent with their intended use, provided
that it was specified? For the artifacts you create, do you specify intended use and whether that is
compatible with the original access conditions (in particular, derivatives of data accessed for research
purposes should not be used outside of research contexts)?

No response.

0J B4. Did you discuss the steps taken to check whether the data that was collected / used contains any
information that names or uniquely identifies individual people or offensive content, and the steps
taken to protect / anonymize it?
No response.

[l B5. Did you provide documentation of the artifacts, e.g., coverage of domains, languages, and
linguistic phenomena, demographic groups represented, etc.?
No response.

L1 B6. Did you report relevant statistics like the number of examples, details of train / test / dev splits,
etc. for the data that you used / created? Even for commonly-used benchmark datasets, include the
number of examples in train / validation / test splits, as these provide necessary context for a reader
to understand experimental results. For example, small differences in accuracy on large test sets may
be significant, while on small test sets they may not be.

No response.

C ¥ Did you run computational experiments?
section 4
¥ C1. Did you report the number of parameters in the models used, the total computational budget

(e.g., GPU hours), and computing infrastructure used?
In appendix

The Responsible NLP Checklist used at ACL 2023 is adopted from NAACL 2022, with the addition of a question on Al writing
assistance.

55

https://2023.aclweb.org/
https://2022.naacl.org/blog/responsible-nlp-research-checklist/
https://2023.aclweb.org/blog/ACL-2023-policy/
https://2023.aclweb.org/blog/ACL-2023-policy/

v C2. Did you discuss the experimental setup, including hyperparameter search and best-found
hyperparameter values?
In appendix

v C3. Did you report descriptive statistics about your results (e.g., error bars around results, summary
statistics from sets of experiments), and is it transparent whether you are reporting the max, mean,
etc. or just a single run?

Section 4

v C4. If you used existing packages (e.g., for preprocessing, for normalization, or for evaluation), did
you report the implementation, model, and parameter settings used (e.g., NLTK, Spacy, ROUGE,
etc.)?

Section 3.

D Did you use human annotators (e.g., crowdworkers) or research with human participants?
Left blank.

O DI1. Did you report the full text of instructions given to participants, including e.g., screenshots,
disclaimers of any risks to participants or annotators, etc.?
No response.

(] D2. Did you report information about how you recruited (e.g., crowdsourcing platform, students)
and paid participants, and discuss if such payment is adequate given the participants’ demographic
(e.g., country of residence)?

No response.

[0 D3. Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? For example, if you collected data via crowdsourcing, did your instructions to
crowdworkers explain how the data would be used?

No response.

0 D4. Was the data collection protocol approved (or determined exempt) by an ethics review board?
No response.

0] DS. Did you report the basic demographic and geographic characteristics of the annotator population
that is the source of the data?
No response.

56

