
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics
Volume 2: Short Papers, pages 416–426

July 9-14, 2023 ©2023 Association for Computational Linguistics

Split-NER: Named Entity Recognition via Two Question-Answering-based
Classifications

Jatin Arora
Nuro Inc.

jarora@nuro.ai

Youngja Park
IBM T.J. Watson Research Center

young_park@us.ibm.com

Abstract

In this work, we address the NER problem
by splitting it into two logical sub-tasks: (1)
Span Detection which simply extracts mention
spans of entities, irrespective of entity type;
(2) Span Classification which classifies the
spans into their entity types. Further, we for-
mulate both sub-tasks as question-answering
(QA) problems and produce two leaner mod-
els which can be optimized separately for
each sub-task. Experiments with four cross-
domain datasets demonstrate that this two-step
approach is both effective and time efficient.
Our system, SplitNER outperforms baselines
on OntoNotes5.0, WNUT17 and a cybersecu-
rity dataset and gives on-par performance on
BioNLP13CG. In all cases, it achieves a signifi-
cant reduction in training time compared to its
QA baseline counterpart. The effectiveness of
our system stems from fine-tuning the BERT
model twice, separately for span detection and
classification. The source code can be found at
github.com/c3sr/split-ner.

1 Introduction
Named entity recognition (NER) is a founda-

tional task for a variety of applications like ques-
tion answering and machine translation (Li et al.,
2020a). Traditionally, NER has been seen as a
sequence labeling task where a model is trained
to classify each token of a sequence to a prede-
fined class (Carreras et al., 2002, 2003; Chiu and
Nichols, 2016; Lample et al., 2016; Ma and Hovy,
2016; Devlin et al., 2019; Wan et al., 2022).

Recently, there has been a new trend of formulat-
ing NER as span prediction problem (Stratos, 2017;
Li et al., 2020b; Jiang et al., 2020; Ouchi et al.,
2020; Fu et al., 2021), where a model is trained to
jointly perform span boundary detection and multi-
class classification over the spans. Another trend
is to formulate NER as a question answering (QA)
task (Li et al., 2020b), where the model is given a
sentence and a query corresponding to each entity

type. The model is trained to understand the query
and extracts mentions of the entity type as answers.
While these new frameworks have shown improved
results, both approaches suffer from a high com-
putational cost: span-based NER systems consider
all possible spans (i.e., n2 (quadratic) spans for a
sentence with n tokens) and the QA-based system
multiplies each input sequence by the number of
entity types resulting in N×T input sequences for
N sentences and T entity types.

In this work, we borrow the effectiveness of
span-based and QA-based techniques and make
it more efficient by breaking (splitting up) the NER
task into a two-step pipeline of classification tasks.
In essence, our overall approach comes under the
span-based NER paradigm, and each sub-task is
formulated as a QA task inspired by the higher
accuracy offered by the QA framework. The first
step, Span Detection performs token-level classi-
fication to extract mention spans from text, irre-
spective of entity type and the second step, Span
Classification classifies the extracted spans into
their corresponding entity type, thus completing
the NER task. Unlike other span-based NER tech-
niques which are quadratic in terms of sequence
length, our Span Detection process is linear. Com-
pared to other QA-based techniques which query
for all entity types in each sentence, our Span Clas-
sification queries each sentence only once for each
entity mention in the sentence. This makes it highly
efficient for datasets with large number of entity
types like OntoNotes5.0.

2 Method

Figure 1 illustrates how our two-step SplitNER
system works. Span Detection Model is entity-
agnostic and identifies all mention spans irrespec-
tive of entity type. The extracted spans are passed
to Span Classification Model which reanalyses
them in the sentence structure and classifies them
into an entity type. Both models use BERT-

416

https://github.com/c3sr/split-ner

Figure 1: SplitNER System Overview. Span Detection Model identities two mention spans (Emily and United
States) from the input (“Emily lives in United States"), and Span Classification Model assigns each span to their
entity type.

base as their underlying architecture and are de-
signed as QA tasks. Hence, moving forward,
we may sometimes explicitly call our system as
SplitNER(QA-QA) to distinguish it from other vari-
ants we experiment with.

2.1 Span Detection
Given a sentence S as a n-length sequence of

tokens, S = ⟨w1, w2 . . . wn⟩, the goal is to output
a list of spans ⟨s, e⟩, where s, e ∈ [1, n] are start
and end indices of a mention. We formulate this
as a QA task classifying each token using BIOE
scheme1. Since the goal is to detect spans irrespec-
tive of their entity type, we use a generic question,
“Extract important entity spans from the following
text”, prefixed with input sentence (see Figure 1)2.

A well-known problem in pipeline systems is
error propagation. Inaccurate mention boundaries
will lead to incorrect entity type classification. We
observed that such boundary detection errors hap-
pen mostly for domain-specific terms which occur
rarely and do not have a good semantic represen-
tation in the underlying BERT model. However,
these domain specific terms often share patterns at
character-level (e.g., chemical formulas). Thus we
add character sequences and intrinsic orthographic
patterns as additional features along with the BERT
embeddings. The character and pattern features are
shown to produce better word representations (Car-
reras et al., 2002; Limsopatham and Collier, 2016;
Boukkouri et al., 2020; Lange et al., 2021).

Character Sequence Feature To learn character-
level representation of each token, we use five one-
dimensional CNNs with kernel sizes from 1 to 5,
each having 16 filters and 50 input channels. Each

1All experiments in this paper use BIOE scheme but the
approach is generalizable to other schemes like BIOES.

2Other similar question texts / no question text also gives
similar results as shown in ablation study in Appendix A.

token output from WordPiece Tokenizer is fed to
the five CNN models simultaneously, which pro-
duce a 50-dimensional embedding for each char-
acter. These are max-pooled and the outputs from
the CNNs are concatenated and passed through
a linear layer with ReLU activation to get a 768-
dimensional character-level representation of the
token. Figure 2a shows the process.

Orthographic Pattern Feature To capture the
intrinsic orthographic patterns (or word shapes) of
entity mentions at the sub-word level, we map all
uppercase tokens to a single character, U, all low-
ercase tokens to L, all digit tokens to D. If a token
contains a mix of uppercase, lowercase and digits,
we map each lowercase character to l, uppercase
to u and digit to d. Special characters are retained
and BERT’s special tokens, “[CLS]” and “[SEP]”,
are mapped to C and S respectively.

We use 3 CNNs with the same setup as char-
acter sequence with kernel sizes of 1 to 3. Note
that a contextual learning layer is needed to cap-
ture patterns in mentions spanning multiple tokens.
Thus, we pass the pattern-level embeddings for
all tokens to a bidirectional LSTM with 256 hid-
den dimensions as shown in Figure 2b. Finally,
the character and pattern features are concatenated
with the BERT output for the token and fed to a
final classifier layer as shown in Figure 3.

2.2 Span Classification
Given a sentence S = ⟨w1, w2 . . . wn⟩ and a

span ⟨s, e⟩, this step determines the entity type for
the span. Existing QA-based NER methods take
the target entity type as the question (e.g., “Where
is person?) and return the corresponding mentions
in the sentence. On the contrary, our model takes
a mention as the question (e.g., “What is Emily?)
and outputs its entity type.

During training, we create a training sample for

417

(a) Character Sequence Feature Learning (b) Orthographic Feature Learning

Figure 2: Architecture for Character and Pattern Feature Learning

Figure 3: Token-level Schematic Model for Span Detec-
tion Model

each labeled entity mention in a sentence. During
inference, the model gets the mention spans from
Span Detection Model as its input. An input sample
is created by appending the mention span text as

“What is [mention]?" to the input sentence (see top
diagrams in Figure 1 for example). This is fed to a
BERT model and the pooled sequence embedding
is fed to a fully connected layer and converted into
a probability distribution over the entity types.

3 Experimental Results

We demonstrate the effectiveness of our method
in terms of performance and latency.

3.1 Datasets
Table 1 shows our datasets, including three pub-

lic benchmark datasets, BioNLP13CG (Pyysalo
et al., 2015), OntoNotes5.0 (Weischedel et al.,
2013), and WNUT17 (Derczynski et al., 2017), and
a private dataset3 (CTIReports) from the cyberse-
curity domain which contains news articles and
technical reports related to malware and security
threats. These datasets cover not only the tradi-
tional whole-word entities like PERSON but also

3The dataset curation procedure, entity types and their
distribution is described in detail in Appendix C.

entity types with non-word mentions (e.g., chemi-
cal formulas) and very long mentions (e.g., URLs).

Dataset Type Density Train Dev Test

BioNLP13CG 16 3.59 3, 033 1, 003 1, 906
CTIReports 8 0.63 38, 721 6, 322 9, 837

OntoNotes5.0 18 1.36 59, 924 8, 528 8, 262
WNUT17 6 0.68 3, 394 1, 009 1, 287

Table 1: Dataset Summary. Type and Density show num-
ber of entity types and average number of mentions per
sentence. Train, Dev, Test show number of sentences.

3.2 Experimental Setup
We implement our baselines and our pro-

posed system, SplitNER in pytorch using
transformers (Wolf et al., 2019). All mod-
els are trained on Nvidia Tesla V100 GPUs and
use BERT-base architecture. We use pretrained
RoBERTa-base (Liu et al., 2019) backbone for
all experiments with OntoNotes5.0 corpus follow-
ing Ye et al. (2022); Zhu and Li (2022) and use
SciBERT-scivocab-uncased (Beltagy et al., 2019)
for BioNLP13CG since this dataset has chemical
formulas and scientific entities4. For WNUT175

and CTIReports, we use BERT-base-uncased (De-
vlin et al., 2019). Note that our model is a general
two-step NER framework which has the perfor-
mance benefits of QA-based and span-based ap-
proaches with efficiency. It can work with any
BERT-based pretrained backbones.

The training data is randomly shuffled, and
a batch size of 16 is used with post-padding.
The maximum sequence length is set to 512 for

4We also experimented with BioBERT(Lee et al., 2020)
(dmis-lab/biobert-base-cased-v1.1) which gives similar
trends. But SciBERT outperforms in our experiments.

5BERTweet(Nguyen and Vu, 2020) model can also be used
for WNUT17. We expect it to give same trends with even better
performance figures.

418

Model BioNLP13CG CTIReports OntoNotes5.0 WNUT17

SplitNER(QA-QA) 86.75 74.96 90.86 57.25
SplitNER(QANoCharPattern-QA) 86.70 74.05 90.58 56.24

SplitNER(SeqTag-QA) 86.08 73.84 90.30 56.10

Single(QA) 86.68 71.70 89.02 43.45
Single(SeqTag) 87.08 72.36 88.64 44.97

Table 2: NER Performance Comparison (mention-level F1). SplitNER(QA-QA) is our proposed method.

Model BioNLP13CG CTIReports OntoNotes5.0 WNUT17

Train Inf. Train Inf. Train Inf. Train Inf.

SplitNER(QA-QA) 241.2 57.7 1,455.7 120.0 3,007.8 183.0 122.9 26.0
Single(QA) 1,372.8 323.3 8,771.0 551.6 73,818.4 2,227.8 568.2 91.2

Single(SeqTag) 102.2 25.2 6,425.9 86.4 9,181.1 105.0 101.3 18.6

Table 3: Comparison of training and inference (Inf.) latency in seconds.

OntoNotes5.06 and to 256 for all other datasets.
For model optimization, we use cross entropy loss
for span detection and dice loss(Li et al., 2020c) for
span classification. All other training parameters
are set to defaults in transformers.

3.3 Performance Evaluation

We compare our method SplitNER(QA-QA)
with the following baselines and variants. (1)
Single(SeqTag): The standard single-model se-
quence tagging NER setup which classifies each
token using BIOE scheme. (2) Single(QA): The
standard single-model QA-based setup which
prefixes input sentences with a question de-
scribing the target entity type (e.g., Where
is the person mentioned in the text?); (3)
SplitNER(SeqTag-QA): A variant of our model
which uses sequence tagging for span detection
with our QA-based Span Classification Model;
(4) SplitNER(QANoCharPattern-QA): This model
is the same as our method but without the additional
character and pattern features. All other baselines
use character and pattern features for fair compari-
son. We trained all models with 5 random seeds and
report the mean mention-level Micro-F1 score in
Table 2. As can be seen, SplitNER(QA-QA) outper-
forms all baselines on three cross-domain datasets
and gives comparable results on BioNLP13CG. We
present further ablation studies on individual com-
ponents of our system in Appendix A and a quali-
tative study in Appendix B.

6Sentences in OntoNotes5.0 are found to be longer and
with maximum sequence length set to 256, lots of sentences
get truncated. Hence we select a larger limit of 512.

3.4 Latency Evaluation
We compare the latency of our method,

SplitNER(QA-QA) and the two single-model NER
methods. Table 3 shows the training and inference
times. Training time is measured for one epoch
and averaged over 10 runs. For a fair comparison,
we report the training latency for our system as
the sum of span detection and classification even
though they can be trained in parallel.

The results show that, compared to Single(QA),
our method is 5 to 25 times faster for training
and about 5 times faster for inference, and it is
especially beneficial for large datasets with many
entity types. Compared to Single(SeqTag), our
method is slightly slower but achieves much bet-
ter F1 scores (Table 2). These results validate
SplitNER(QA-QA)’s effectiveness in achieving the
balance between performance and time efficiency.

4 Related Work

In recent years, deep learning has been increas-
ingly applied for NER (Torfi et al., 2020; Li et al.,
2020a), a popular architecture being CNN-LSTM-
CRF (Ma and Hovy, 2016; Xu et al., 2021) and
BERT (Devlin et al., 2019). Li et al. (2020b,c) pro-
pose a QA-based setup for NER using one model
for both span detection and classification. Li et al.
(2020b); Jiang et al. (2020); Ouchi et al. (2020); Fu
et al. (2021); Zhu and Li (2022) perform NER as a
span prediction task. However, they enumerate all
possible spans in a sentence leading to quadratic
complexity w.r.t. sentence length. Our model does
a token-level classification and hence is linear.

Xu et al. (2021) propose a Syn-LSTM setup
leveraging dependency tree structure with pre-

419

trained BERT embeddings for NER. Yan et al.
(2021) propose a generative framework leverag-
ing BART (Lewis et al., 2020) for NER. Yu et al.
(2020) propose a biaffine model utilizing pretrained
BERT and FastText (Bojanowski et al., 2017) em-
beddings along with character-level CNN setup
over a Bi-LSTM architecture. All of these models
report good performance on OntoNotes5.0, how-
ever, using BERT-large architecture. Nguyen and
Vu (2020) propose the BERTweet model by train-
ing BERT on a corpus of English tweets and re-
port good performance on WNUT17. Wang et al.
(2021) leverage external knowledge and a cooper-
ative learning setup. On BioNLP13CG, Crichton
et al. (2017) report 78.90 F1 in a multi-task learn-
ing setup and Neumann et al. (2019) report 77.60
using the SciSpacy system. SplitNER(QA-QA) out-
performs both of these by a large margin.

5 Conclusion

Using the QA-framework for both span detection
and span classification, we show that this division
of labor is not only effective but also significantly
efficient through experiments on multiple cross-
domain datasets. Through this work, we open up
the possibility of breaking down other complex
NLP tasks into smaller sub-tasks and fine-tuning
large pretrained language models for each task.

Limitations

Our proposed approach requires to train two in-
dependent classification models. While the mod-
els can be trained in parallel, this requires larger
GPU memory. For the experiments, we trained
two BERT-base models, which have around 220M
trainable parameters when trained in parallel. This
requires almost twice the GPU memory compared
to a single BERT-base NER model, having around
110M trainable parameters.

Owing to a pipeline-based structure, the overall
performance of our system is upper bounded by the
performance of Span Detection Model which has
lots of potential for improvement. On dev set, we
find that around 30% of errors for OntoNotes5.0
and BioNLP13CG, and around 22% errors on
WNUT17 are just due to minor boundary detec-
tion issues. Their entity types are being detected
correctly. We henceforth encourage the research
community to design architectures or new training
objectives to detect mention boundaries more ef-
fectively. Currently, in our Span Detection Model,

all entity mentions are grouped into a single class.
As a potential future work, we expect to get even
better performance by a hierarchical extension of
our setup. At the top level, we can detect men-
tions belonging to some crude categories and grad-
ually break them down into more fine-grained cate-
gories.

References
Iz Beltagy, Kyle Lo, and Arman Cohan. 2019. Scibert:

A pretrained language model for scientific text. In
Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing (EMNLP).
Association for Computational Linguistics.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and
Tomas Mikolov. 2017. Enriching word vectors with
subword information. Transactions of the Associa-
tion for Computational Linguistics, 5:135–146.

Hicham Boukkouri, Olivier Ferret, Thomas Lavergne,
Hiroshi Noji, and Pierre Zweigenbaum. 2020. Char-
acterbert: Reconciling elmo and bert for word-level
open-vocabulary representations from characters. In
Proceedings of the 28th International Conference on
Computational Linguistics, pages 6903–6915.

Xavier Carreras, Lluís Màrquez, and Lluís Padró.
2002. Named entity extraction using AdaBoost. In
COLING-02: The 6th Conference on Natural Lan-
guage Learning 2002 (CoNLL-2002).

Xavier Carreras, Lluís Màrquez, and Lluís Padró. 2003.
Learning a perceptron-based named entity chunker
via online recognition feedback. In Proceedings of
the Seventh Conference on Natural Language Learn-
ing at HLT-NAACL 2003.

Jason P. C. Chiu and Eric Nichols. 2016. Named en-
tity recognition with bidirectional lstm-cnns. Trans.
Assoc. Comput. Linguistics, 4:357–370.

Gamal Crichton, Sampo Pyysalo, Billy Chiu, and Anna
Korhonen. 2017. A neural network multi-task learn-
ing approach to biomedical named entity recognition.
BMC bioinformatics, 18(1):1–14.

Leon Derczynski, Eric Nichols, Marieke van Erp, and
Nut Limsopatham. 2017. Results of the wnut2017
shared task on novel and emerging entity recognition.
In Proceedings of the 3rd Workshop on Noisy User-
generated Text, pages 140–147.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, NAACL-HLT, pages 4171–4186.

420

Jinlan Fu, Xuanjing Huang, and Pengfei Liu. 2021.
Spanner: Named entity re-/recognition as span pre-
diction. In Proceedings of the 59th Annual Meet-
ing of the Association for Computational Linguis-
tics and the 11th International Joint Conference on
Natural Language Processing, ACL/IJCNLP, pages
7183–7195.

Zhengbao Jiang, Wei Xu, Jun Araki, and Graham Neu-
big. 2020. Generalizing natural language analysis
through span-relation representations. In Proceed-
ings of the 58th Annual Meeting of the Association for
Computational Linguistics, ACL, pages 2120–2133.
Association for Computational Linguistics.

Guillaume Lample, Miguel Ballesteros, Sandeep Sub-
ramanian, Kazuya Kawakami, and Chris Dyer. 2016.
Neural architectures for named entity recognition. In
NAACL HLT 2016, The 2016 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 260–270. The Association for Computational
Linguistics.

Lukas Lange, Heike Adel, Jannik Strötgen, and Diet-
rich Klakow. 2021. FAME: feature-based adversarial
meta-embeddings for robust input representations. In
Proceedings of the 2021 Conference on Empirical
Methods in Natural Language Processing, EMNLP,
pages 8382–8395.

Jinhyuk Lee, Wonjin Yoon, Sungdong Kim, Donghyeon
Kim, Sunkyu Kim, Chan Ho So, and Jaewoo Kang.
2020. Biobert: a pre-trained biomedical language
representation model for biomedical text mining.
Bioinformatics, 36(4):1234–1240.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Veselin Stoyanov, and Luke Zettlemoyer. 2020. Bart:
Denoising sequence-to-sequence pre-training for nat-
ural language generation, translation, and comprehen-
sion. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics, pages
7871–7880.

Jing Li, Aixin Sun, Jianglei Han, and Chenliang Li.
2020a. A survey on deep learning for named entity
recognition. IEEE Transactions on Knowledge and
Data Engineering.

Xiaoya Li, Jingrong Feng, Yuxian Meng, Qinghong
Han, Fei Wu, and Jiwei Li. 2020b. A unified MRC
framework for named entity recognition. In Proceed-
ings of the 58th Annual Meeting of the Association for
Computational Linguistics, ACL, pages 5849–5859.
Association for Computational Linguistics.

Xiaoya Li, Xiaofei Sun, Yuxian Meng, Junjun Liang,
Fei Wu, and Jiwei Li. 2020c. Dice loss for data-
imbalanced NLP tasks. In Proceedings of the 58th
Annual Meeting of the Association for Computational
Linguistics, ACL, pages 465–476. Association for
Computational Linguistics.

Nut Limsopatham and Nigel Collier. 2016. Bidirec-
tional LSTM for named entity recognition in Twitter
messages. In Proceedings of the 2nd Workshop on
Noisy User-generated Text (WNUT), pages 145–152.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Xuezhe Ma and Eduard H. Hovy. 2016. End-to-end
sequence labeling via bi-directional lstm-cnns-crf.
In Proceedings of the 54th Annual Meeting of the
Association for Computational Linguistics ACL.

Mark Neumann, Daniel King, Iz Beltagy, and Waleed
Ammar. 2019. Scispacy: Fast and robust models for
biomedical natural language processing. In Proceed-
ings of the 18th BioNLP Workshop and Shared Task,
pages 319–327.

Dat Quoc Nguyen and Thanh Vu. 2020. Bertweet: A
pre-trained language model for english tweets. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 9–14.

Hiroki Ouchi, Jun Suzuki, Sosuke Kobayashi, Sho
Yokoi, Tatsuki Kuribayashi, Ryuto Konno, and Ken-
taro Inui. 2020. Instance-based learning of span
representations: A case study through named entity
recognition. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
ACL, pages 6452–6459.

Sampo Pyysalo, Tomoko Ohta, Rafal Rak, Andrew
Rowley, Hong-Woo Chun, Sung-Jae Jung, Sung-Pil
Choi, Jun’ichi Tsujii, and Sophia Ananiadou. 2015.
Overview of the cancer genetics and pathway cura-
tion tasks of bionlp shared task 2013. BMC bioinfor-
matics, 16(10):1–19.

Karl Stratos. 2017. Entity identification as multitask-
ing. In Proceedings of the 2nd Workshop on Struc-
tured Prediction for Natural Language Processing,
SPNLP@EMNLP, pages 7–11.

Amirsina Torfi, Rouzbeh A Shirvani, Yaser Keneshloo,
Nader Tavvaf, and Edward A Fox. 2020. Natural
language processing advancements by deep learning:
A survey. arXiv preprint arXiv:2003.01200.

Juncheng Wan, Dongyu Ru, Weinan Zhang, and Yong
Yu. 2022. Nested named entity recognition with
span-level graphs. In Proceedings of the 60th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), ACL, pages
892–903. Association for Computational Linguistics.

Xinyu Wang, Nguyen Bach, Tao Wang, Zhongqiang
Huang, Fei Huang, and Kewei Tu. 2021. Improving
named entity recognition by external context retriev-
ing and cooperative learning. In Proceedings of the
59th Annual Meeting of the Association for Compu-
tational Linguistics and the 11th International Joint

421

Conference on Natural Language Processing, pages
1800–1812.

Ralph Weischedel, Martha Palmer, Mitchell Marcus, Ed-
uard Hovy, Sameer Pradhan, Lance Ramshaw, Nian-
wen Xue, Ann Taylor, Jeff Kaufman, Michelle Fran-
chini, et al. 2013. Ontonotes release 5.0 ldc2013t19.
Linguistic Data Consortium, Philadelphia, PA, 23.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander M. Rush. 2019. Hug-
gingface’s transformers: State-of-the-art natural lan-
guage processing.

Lu Xu, Zhanming Jie, Wei Lu, and Lidong Bing. 2021.
Better feature integration for named entity recogni-
tion. In Proceedings of the 2021 Conference of the
North American Chapter of the Association for Com-
putational Linguistics: Human Language Technolo-
gies, pages 3457–3469.

Hang Yan, Tao Gui, Junqi Dai, Qipeng Guo, Zheng
Zhang, and Xipeng Qiu. 2021. A unified generative
framework for various ner subtasks. In Proceedings
of the 59th Annual Meeting of the Association for
Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing,
pages 5808–5822.

Deming Ye, Yankai Lin, Peng Li, and Maosong Sun.
2022. Packed levitated marker for entity and relation
extraction. In Proceedings of the 60th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 4904–4917.

Juntao Yu, Bernd Bohnet, and Massimo Poesio. 2020.
Named entity recognition as dependency parsing. In
Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 6470–
6476.

Enwei Zhu and Jinpeng Li. 2022. Boundary smooth-
ing for named entity recognition. arXiv preprint
arXiv:2204.12031.

A Performance Ablations
Here, we study the individual components of

our system, SplitNER(QA-QA) in detail. First, we
investigate the effectiveness of the additional char-
acter and pattern features for span detection. As
we can see from Table 4, the character and pat-
tern features improve the NER performance for all
datasets.

We also study the effect of the character and pat-
tern features separately. Table 5 shows this ablation
study on the BioNLP13CG dataset. As we can see,
adding the character feature or the pattern feature

alone makes a small change in the performance. In-
terestingly, the character feature helps with recall,
while the pattern features improves precision, and,
thus, adding them together improves both precision
and recall. However, adding part-of-speech (POS)
in addition to the character and pattern features
shows little impact on the performance.

Next, we compare dice loss and cross-entropy
loss for their effectiveness in handling the class
imbalance issue in span classification. As shown in
Table 6, dice loss works better for imbalanced data
confirming the results found in Li et al. (2020c).

Finally, we experimented with different ques-
tion sentences in Span Detection Model to check if
BERT is giving any importance to the query part.
As shown in Table 7, different queries do have a
minor impact but as expected, the model mostly
learns not to focus on the query part as can be seen
by the comparable results with <empty> query.

A.1 Discussions
From the results of the experiments described

in Section 3 together with the ablation studies, we
make the following observations:

• As shown in Table 2, SplitNER(QA-QA)
outperforms both the sequence tagging
and QA-based baselines on three cross-
domain datasets and performs on-par on
BioNLP13CG.

• The division of labor allows each model to
be optimized for its own sub-task. Adding
character and pattern features improves the
accuracy of Span Detection Model (Table 4).
However, adding these same features in Span
Classification Model was found to deterio-
rate the performance. Similarly, dice loss
improves the performance for Span Classi-
fication Model (Table 6), but no such impact
was observed for Span Detection Model.

• Span detection using the QA setting is slightly
more effective than the sequence tagging setup
as done in SplitNER(SeqTag-QA) (Table 2).

• Our model has more representative power than
the baseline approaches, because it leverages
two BERT models, each working on their own
sub-tasks.

• It also leverages the QA framework much
more efficiently than the standard single-
model QA system (Table 3). The margin of
improvement is more pronounced when the
data size and number of entity types increase.

422

Span Detection
Features

BioNLP13CG CTIReports OntoNotes5.0 WNUT17

P R F1 P R F1 P R F1 P R F1

+CharPattern 91.43 90.70 91.06 80.59 77.21 78.86 92.17 92.83 92.50 73.38 44.25 55.21
-CharPattern 90.31 91.03 90.67 79.65 77.77 78.70 91.96 92.79 92.37 72.63 44.06 54.85

Table 4: Span Detection Model performance with and without character and pattern features.

Features P R F1

Base Model 90.31 91.03 90.67
+Char 89.85 91.45 90.64
+Pattern 91.29 90.22 90.75
+Char+Pattern 91.43 90.70 91.06
+Char+Pattern+POS 91.14 90.64 90.89

Table 5: Span Detection Model performance for
BioNLP13CG with different feature sets. Base Model
does not use character and pattern features.

Dataset Dice Loss Cross Entropy Loss

BioNLP13CG 94.27 94.04
CyberThreats 87.84 87.58
OntoNotes5.0 96.74 96.50

WNUT17 73.40 73.31

Table 6: Span classification performance comparison

Question Type F1

Extract important entity spans from the following text. 90.67
Where is the entity mentioned in the text? 90.38
Find named entities in the following text. 90.32
<empty> 90.48

Table 7: Span Detection Model performance for
BioNLP13CG using different questions. <empty> de-
notes an empty question sentence. All experiments were
done using Base Model in Table 5.

• The training time for our model in Table 3
considers Span Detection Model and Span
Classification Model being trained sequen-
tially. However, the two components can be
trained in parallel, reducing the overall train
time significantly. The sequential execution is
necessary only at inference time.

• WNUT17 has a diverse range of rare and
emerging entities crudely categorized into 6
entity types. A single-model NER system
may get confused and try to learn sub-optimal
entity-specific extraction rules. Our task seg-
regation allows Span Detection Model to form
generalized extraction rules which is found to
be more effective as shown in Table 2.

• As a sidenote, all the models built in this
work outperform the previously published ap-

proaches on BioNLP13CG (Table 2), thus set-
ting new state-of-the-art results. The credit
goes to the SciBERT model and the additional
character and pattern features.

B Qualitative Analysis

Table 8 shows some sample predictions by our
method, SplitNER(QA-QA) and compares them
with our single-model NER baseline, Single(QA).
From the results, we observe that:

• SplitNER(QA-QA) is better in detecting
emerging entities and out-of-vocabulary
(OOV) terms (e.g., movie titles and soft-
wares). This can be attributed to Span De-
tection Model being stronger in generalizing
and sharing entity extraction rules across mul-
tiple entity types.

• Single(QA) gets confused when entities have
special symbols within them (e.g., hyphens
and commas). Our character and orthographic
pattern features help handle such cases well.

• Single(QA) model develops a bias towards
more common entity types (e.g., PER-
SON) and misclassifies rare entity men-
tions when they occur in a similar context.
SplitNER(QA-QA) handles such cases well
thanks to the dedicated Span Classification
Model using dice loss.

C CTIReports Dataset

The CTIReports dataset is curated from a collec-
tion of 967 documents which include cybersecurity
news articles and white papers published online
by reputable companies and domain knowledge
experts. These documents usually provide deep
analysis on a certain malware, a hacking group or
a newly discovered vulnerability (like a bug in soft-
ware that can be exploited). The documents were
published between 2016 and 2018. We split the
dataset into the train, development, and test sets as
shown in Table 9.

A team of cybersecurity domain experts labeled
the dataset for the following 8 entity types. These

423

Category Example Sentence

General
Detection

CVS selling their own version of ...
CVS selling their own version of ...

Emerging
Entities

Rogue One create a plot hole in Return of the Jedi
Rogue One create a plot hole in Return of the Jedi

Scientific
Terms

Treating EU - 6 with anti-survivin antisense ...
Treating EU - 6 with anti-survivin antisense ...

Boundary Hotel Housekeepers Needed in Spring , TX ...
Hotel Housekeepers Needed in Spring , TX ...

OOV
Terms

Store SQL database credentials in a webserver
Store SQL database credentials in a webserver

Entity
Type

Why do so many kids in Digimon wear gloves?
Why do so many kids in Digimon wear gloves?

Table 8: Qualitative comparison of SplitNER(QA-QA)
and Single(QA) systems. For each category, the first
line shows the result of Single(QA), and the second
line shows the result of SplitNER(QA-QA). The words
in italics are the entity mentions extracted by the sys-
tems color-coded as ORG, CREATIVE WORK, GENE,
LOCATION and PRODUCT.

types were selected based on the STIX (Structured
Threat Information Expression) schema which is
used to exchange cyber threat intelligence. For
more detailed information about the 8 types, please
refer the STIX documentation7.

• CAMPAIGN: Names of cyber campaigns that
describe a set of malicious activities or attacks
over a period of time.

• COURSE OF ACTION: Tools or actions to
take in response to cyber attacks.

• EXPLOIT TARGET: Vulnerabilities that are
targeted for exploitation.

• IDENTITY: Individuals, groups or organiza-
tions.

• INDICATOR: Objects that are used to detect
suspicious or malicious cyber activity such as
domain name, IP address and file names.

• MALWARE: Names of malicious codes used
in cyber crimes.

• RESOURCE: Tools that are used in cyber at-
tacks.

• THREAT ACTOR: Individuals or groups that
commit cyber crimes.

Table 10 and Table 11 show the statistics of the
entity types in the corpus and some sample men-
tions of these types respectively.

7https://stixproject.github.io/releases/1.2

Train Test Dev Total

documents 667 133 167 967
sentences 38,721 9,837 6,322 54,880
tokens 465,826 119,613 92,788 678,227

Table 9: Summary of the CTIReports corpus showing
the number of documents, sentences and tokens in each
dataset.

Entity Type Train Dev Test

CAMPAIGN 247 27 85
COURSE OF ACTION 1,938 779 329

EXPLOIT TARGET 5,839 1,412 1,282
IDENTITY 6,175 1,262 1,692

INDICATOR 3,718 1,071 886
MALWARE 4,252 776 1,027
RESOURCE 438 91 114

THREAT ACTOR 755 91 144

Table 10: The number of mentions for each entity type
in the train, development and test sets

Entity Type Examples

CAMPAIGN
“Operation Pawn Storm”, “The Mask”
“MiniDuke”, “Woolen-Goldfish”
“Ke3chang”

COURSE
OF

ACTION

“Trojan.Poweliks Removal Tool”
“HPSBHF03535”, “TDSSKiller”
“cd chktrust -i FixTool.exe”
“http://www.ubuntu.com/usn/usn-2428-1”
“Initial Rapid Release version June 15,
2015 revision 02”

EXPLOIT
TARGET

“CVE-2015-8431”, “Adobe Flash Player”
”Ubuntu”, “Windows”, “CGI.pm”
“version 20.0.0.306 and earlier”

IDENTITY “Symantec”, “Jon DiMaggio”, “Belgium”
“Kaspersky Lab”, “RSA”

INDICATOR
“C:\WINDOWS\assembly\GAC_MSIL”
“hxxp://deschatz-army.net”, “67.23.112.226”
“b4b483eb0d25fa3a9ec589eb11467ab8”

MALWARE

“ChewBacca”, “SONAR.AM.E.J!g13”
“Trojan.Poweliks”, “BlackHole”
“TDL3”, “LockyZeus”
“JS/TrojanDownloader.Nemucod”

RESOURCE
“IRC”, “Tor”, “DroidPlugin”, “Onion”
“PowerShell”, “Google Play”
“Free Pascal 2.7.1.”, “Teamviewer”

THREAT
ACTOR

“ProjectSauron”, “Strider”, “Ogundokun”
“APT28”, “APT 28”, “Fancy Bear”
“Pro_Mast3r”, “Equation Group”

Table 11: Sample entity mentions for each type in the
CTIReports corpus

424

https://stixproject.github.io/releases/1.2

ACL 2023 Responsible NLP Checklist

A For every submission:
�3 A1. Did you describe the limitations of your work?

Limitations Section

� A2. Did you discuss any potential risks of your work?
Not applicable. Left blank.

�3 A3. Do the abstract and introduction summarize the paper’s main claims?
Abstract and Section 1

�7 A4. Have you used AI writing assistants when working on this paper?
Left blank.

B �7 Did you use or create scientific artifacts?
Left blank.

� B1. Did you cite the creators of artifacts you used?
No response.

� B2. Did you discuss the license or terms for use and / or distribution of any artifacts?
No response.

� B3. Did you discuss if your use of existing artifact(s) was consistent with their intended use, provided
that it was specified? For the artifacts you create, do you specify intended use and whether that is
compatible with the original access conditions (in particular, derivatives of data accessed for research
purposes should not be used outside of research contexts)?
No response.

� B4. Did you discuss the steps taken to check whether the data that was collected / used contains any
information that names or uniquely identifies individual people or offensive content, and the steps
taken to protect / anonymize it?
No response.

� B5. Did you provide documentation of the artifacts, e.g., coverage of domains, languages, and
linguistic phenomena, demographic groups represented, etc.?
No response.

� B6. Did you report relevant statistics like the number of examples, details of train / test / dev splits,
etc. for the data that you used / created? Even for commonly-used benchmark datasets, include the
number of examples in train / validation / test splits, as these provide necessary context for a reader
to understand experimental results. For example, small differences in accuracy on large test sets may
be significant, while on small test sets they may not be.
No response.

C �3 Did you run computational experiments?
Section 3

�3 C1. Did you report the number of parameters in the models used, the total computational budget
(e.g., GPU hours), and computing infrastructure used?
Section 2, 3

The Responsible NLP Checklist used at ACL 2023 is adopted from NAACL 2022, with the addition of a question on AI writing
assistance.

425

https://2023.aclweb.org/
https://2022.naacl.org/blog/responsible-nlp-research-checklist/
https://2023.aclweb.org/blog/ACL-2023-policy/
https://2023.aclweb.org/blog/ACL-2023-policy/

�3 C2. Did you discuss the experimental setup, including hyperparameter search and best-found
hyperparameter values?
Section 2, 3

�3 C3. Did you report descriptive statistics about your results (e.g., error bars around results, summary
statistics from sets of experiments), and is it transparent whether you are reporting the max, mean,
etc. or just a single run?
Section 3

�3 C4. If you used existing packages (e.g., for preprocessing, for normalization, or for evaluation), did
you report the implementation, model, and parameter settings used (e.g., NLTK, Spacy, ROUGE,
etc.)?
Section 2, 3

D �7 Did you use human annotators (e.g., crowdworkers) or research with human participants?
Left blank.

� D1. Did you report the full text of instructions given to participants, including e.g., screenshots,
disclaimers of any risks to participants or annotators, etc.?
No response.

� D2. Did you report information about how you recruited (e.g., crowdsourcing platform, students)
and paid participants, and discuss if such payment is adequate given the participants’ demographic
(e.g., country of residence)?
No response.

� D3. Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? For example, if you collected data via crowdsourcing, did your instructions to
crowdworkers explain how the data would be used?
No response.

� D4. Was the data collection protocol approved (or determined exempt) by an ethics review board?
No response.

� D5. Did you report the basic demographic and geographic characteristics of the annotator population
that is the source of the data?
No response.

426

